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 
Abstract—Comprehensive numerical studies have been carried 

out to examine the best aerodynamic performance of subsonic aircraft 
at different winglet cant angles using a validated 3D k-ω SST model. 
In the parametric analytical studies NACA series of airfoils are 
selected. Basic design of the winglet is selected from the literature 
and flow features of the entire wing including the winglet tip effects 
have been examined with different cant angles varying from 150 to 
600 at different angles of attack up to 140. We have observed, among 
the cases considered in this study that a case, with 150 cant angle the 
aerodynamics performance of the subsonic aircraft during takeoff 
was found better up to an angle of attack of 2.80 and further its 
performance got diminished at higher angles of attack. Analyses 
further revealed that increasing the winglet cant angle from 150 to 600 
at higher angles of attack could negate the performance deterioration 
and additionally it could enhance the peak CL/CD on the order of 
3.5%. The investigated concept of variable-cant-angle winglets 
appears to be a promising alternative for improving the aerodynamic 
efficiency of aircraft. 
 

Keywords—Aerodynamic efficiency, Cant-angle, Drag 
reduction, Flexible Winglets.  

I. INTRODUCTION 

HE main purpose of any winglet is to improve the aircraft 
performance by reducing its drag [1]-[25]. The term 

winglet was previously used to describe an additional lifting 
surface on an aircraft. Wingtip devices are usually intended to 
improve the efficiency of fixed-wing aircraft [1]. There are 
several types of wingtip devices, and although they function in 
different manners, the intended effect is always to reduce the 
aircraft's drag by partial recovery of the tip vortex energy. 
Wingtip devices can also improve aircraft handling 
characteristics and enhance safety. Such devices increase the 
effective aspect ratio of a wing without materially increasing 
the wingspan. Note that an extension of span would reduce the 
lift-induced drag, but would increase parasitic drag and would 
require boosting the strength and weight of the wing.  

It is well known that any sort of body exposed in a viscous 
flow experiences profile drag, whether it produces lift or not. 
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The induced drag is a different type of drag. It is caused by the 
pressure imbalance at the tip of a finite wing between its upper 
(pressure side) and lower (suction side) surfaces. That 
imbalance is necessary in order to produce a positive lift force. 
However, near the tip the high pressure air from the lower side 
tends to move upwards, where the pressure is lower, causing 
the streamlines to curl (see Fig. 1). This three-dimensional 
motion leads to the formation of a vortex, which alters the 
flow field and induces a velocity component in the downward 
direction at the wing, called downwash [2]-[4]. The induced 
flow pattern causes the relative velocity to cant downwards at 
each airfoil section of the wing, thus reducing the apparent 
angle of attack. The lift vector is tilted backwards and a force 
component in the direction of the drag appears, called induced 
drag. Reducing the size of this tip vortex and minimizing the 
induced drag is of great importance for the modern aircraft 
designers. For this purpose designers developed the winglet 
concept. Winglets are specially designed extensions adjusted 
to the wingtip that alter the velocity and pressure field and 
reduce the induced drag term, thus increasing aerodynamic 
efficiency. 

 

 

Fig. 1 Demonstrating the tip vortex of a fixed wing aircraft 
 
Bourdin et al. [5] reported that the investigated concept of 

variable-cant-angle winglets appears to be a promising 
alternative to conventional control surfaces such as ailerons, 
elevators, and rudders as far as basic maneuvers are 
concerned. The concept consists of a pair of winglets with 
adjustable cant angle, independently actuated and mounted at 
the tips of a baseline flying wing. A potential application for 
the adjustable winglets would be for surveillance aircraft, for 
which enhanced low-speed maneuverability is required. Note 
that deflecting a winglet when the wing is flying near its stall 
angle is unlikely to cause the wing to stall (in contrast to the 
effect of an aileron). Hence, variable cant-angle winglets can 
be used for effective low-speed roll control (instead of spoilers 
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which are traditionally preferred to ailerons in that flight 
regime).  

 

 

Fig. 2 Front view of a fixed wing aircraft with fixed winglet 
 
Fig. 2 shows the front view of a typical aircraft with winglet 

at fixed cant angle. Numerical and experimental studies 
conducted by the earlier investigators on a flying wing 
configuration showed that adjustable winglets enable control 
moments about multiple axes, forming a highly coupled flight 
control system, which is in contrast to conventional control 
surfaces, which form a decoupled control system. Although 
many studies have been carried out for winglets design a 
generalized geometry is still not proposed by any aircraft 
designer under variable flying conditions [1]-[25]. In this 
paper diagnostic investigation of aircraft performance at 
different winglet cant angles has been carried out to examine 
the best cant angle for the winglets at variable lucrative flying 
conditions.  

II. LITERATURE REVIEW 

The initial concept of winglet dates back to 1897, when 
English engineer Frederick W. Lanchester patented wing end-
plates as a method for controlling wingtip vortices [6]. In the 
United States, Scottish-born engineer William E. Somerville 
patented the first functional winglets in 1910. Somerville 
installed the devices on his early biplane and monoplane 
designs. Wingtip devices increase the lift generated at the 
wingtip (by smoothing the airflow across the upper wing near 
the tip) and reduce the lift-induced drag caused by wingtip 
vortices, improving lift-to-drag ratio. This increases fuel 
efficiency in powered aircraft and increases cross-country 
speed in gliders, in both cases increasing range [1].  

The literature review reveals that the United States Air 
Force studies could come up with the improvement in fuel 
efficiency, which correlates directly with the causal increase in 
the aircraft's lift-to-drag ratio. In flight, induced drag results 
from the need to maintain lift. It is greater at lower speeds 
where a high angle of attack is required. As speed increases, 
the induced drag decreases, but parasitic drag increases 
because the fluid is striking the object with greater force, and 
is moving across the object's surfaces at higher speed. As 
speed continues to increase into the transonic and supersonic 
regimes, wave drag enters the picture. Each of these drag 
components changes in proportion to the others based on the 
speed. The combined overall drag curve therefore shows a 
minimum at some airspeed; an aircraft flying at this speed will 

be close to its optimal efficiency. Fig. 3 found in literature is 
reproduced herewith for a critical review. It shows that lowest 
total drag is at a particular airspeed. Note that Pilots will use 
this speed to maximize the gliding range in case of an engine 
failure. However, to maximize gliding endurance, aircraft’s 
speed should be at the point of minimum power, which occurs 
at lower speeds than minimum drag. 

 

 

Fig. 3 The typical drag curves at different airspeed  
 
Richard Whitcomb's research in the 1970s at NASA first 

used winglet with its modern meaning referring to near-
vertical extension of the wing tips [7]. It has already been 
reported that the upward angle (or cant) of the winglet, its 
inward or outward angle (or toe), as well as its size and shape 
are critical for correct performance and are unique in each 
application. The wingtip vortex, which rotates around from 
below the wing, strikes the cambered surface of the winglet, 
generating a force that angles inward and slightly forward, 
analogous to a sailboat sailing close hauled. The winglet 
converts some of the otherwise-wasted energy in the wingtip 
vortex to an apparent thrust. This small contribution can be 
worthwhile over the aircraft's lifetime, provided the benefit 
offsets the cost of installing and maintaining the winglets. 
Another potential benefit of winglets is that they reduce the 
strength of wingtip vortices, which trail behind the plane and 
pose a hazard to other aircraft. Minimum spacing requirements 
between aircraft operations at airports is largely dictated by 
these factors. Aircraft are generally classified by weight 
because the vortex strength grows with the aircraft lift 
coefficient, and thus, the associated turbulence is greatest at 
low speed and high weight.  

The drag reduction permitted by winglets can also reduce 
the required takeoff distance [8]. Winglets and wing fences 
also increase efficiency by reducing vortex interference with 
laminar airflow near the tips of the wing [7], by moving the 
confluence of low-pressure (over wing) and high-pressure 
(under wing) air away from the surface of the wing. Wingtip 
vortices create turbulence, originating at the leading edge of 
the wingtip and propagating backwards and inboard. This 
turbulence delaminates the airflow over a small triangular 
section of the outboard wing, which destroys lift in that area. 
The fence/winglet drives the area where the vortex forms 
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aircraft wing with 150 winglet cant angle. Fig. 5 shows the 3D 
grid system in the computational domain. Grid are selected 
after a detailed grid refinement history (Cells: 140144, Faces: 
929653, Nodes: 780461). The grids are clustered near the solid 
walls using suitable stretching functions. Orthogonal Quality 
ranges from 0 to 1, where values close to 0 correspond to low 
quality. Minimum orthogonal quality was 7.28711 E-01 and 
maximum aspect ratio was 2.60710 E+01.  

IV. RESULTS AND DISCUSSION 

It is well known that winglets application is one of the most 
noticeable fuel economic technologies on aircraft. The 
diagnostic investigation reveals that the winglet designs must 
be optimized to be able to get maximum benefits during cruise 
and non-cruise flight conditions. In this paper comprehensive 
numerical studies have been carried out to examine the best 
aerodynamic performance of subsonic aircraft at different 
winglet cant angles using a validated 3D k-ω SST model. In 
the parametric analytical studies NACA series of airfoils are 
selected. Basic design of the winglet is selected from the 
literature and flow features of the entire wing including the tip 
effects have been examined with different cant angles varying 
from 150 to 600 at different angles of attack up to 140.  

 

 

Fig. 6 Comparison of lift coefficient (CL) at different angles of attack 
without and with winglet at four different cant angles 

 

 

Fig. 7 Comparison of drag coefficient (CD) at different angles of 
attack without and with winglet at four different cant angles 

 

 

Fig. 8 Comparison of aerodynamic performance (CL/CD) at different 
angles of attack without and with winglet at different cant angles 
   
Fig. 6 shows the comparison of lift coefficient (CL) at 

different angles of attack without and with winglet orienting at 
four different cant angles viz., 150, 300, 450 and 600. It is 
evident from Fig. 6 that a case with cant angle 600 is giving the 
highest coefficient of lift at various angles of attack (0-14). 
Nevertheless, as evident in Fig. 7, this trend is not seen while 
comparing the drag coefficient (CD) at different angles of 
attack. One can discern from Fig. 7 that a case with 600 cant 
angle CD is relatively high up to 2.80 than a case with 150 cant 
angle and further it diminishes up to 120 angle of attack and 
again it increases due to change in flow features. These 
variations are corroborated with CL/CD curves, which are 
shown in Fig. 8. It is evident from Fig. 8 that aerodynamic 
performance of an aircraft with winglet at a cant angle of 150 
is giving better performance up to an angle of attack 2.80 and 
further a case with winglet cant angle of 600 is giving better 
performance due to the change in overall flow features and the 
corresponding drag coefficient variation as discussed in the 
previous session. Fig. 9 shows the reference plane taken for 
generating numerical results for comparison. Figs. 10-17 show 
the pressure and velocity contours corresponding to the 
reference plane shown in Fig. 9 at two different cant angles 
and various angles of attack.  

In the parametric analytical studies NACA series of airfoils 
are selected. Basic design of the winglet is selected from the 
literature and flow features of the entire wing including the tip 
effects have been examined with different cant angles varying 
from 150 to 600 at different angles of attack up to 140. We have 
observed, among the cases considered in this study that a case 
with 150 cant angle the aerodynamics performance of the 
subsonic aircraft during takeoff was found better up to 2.80 
angles of attack and further its performance got diminished at 
higher angles of attack. Analyses further revealed that 
increasing the winglet cant angle from 150 to 600 at higher 
angles of attack could negate the performance deterioration 
and additionally it could enhance the peak value of CL/CD on 
the order of 3.5 %. A winglet’s main purpose is to improve 
performance by reducing drag. To understand how this is 
done, it is first necessary to understand the distinction between 
profile drag and induced drag. Profile drags is a consequence 
of the viscosity, or stickiness, of the air moving along the 
surface of the airfoil, as well as due to pressure drag (pressure 
forces acting over the front of a body not being balanced by 
those acting over its rear). As a wing moves through viscous 
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(d) Angle of attack = 60 
 

 

 

(e) Angle of attack = 80 

Fig. 14 (a)-(e) Velocity contours (meters per second) at cant angle 
150 at symmetry plane with different angles of attack 
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Fig. 15 (a)-(e) Velocity contours (meters per second) at cant angle 
150 at reference plane with different angles of attack 
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