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Abstract—This paper discusses the development of a qualitative 

simulator (abbreviated QRiOM) for predicting the behaviour of 
organic chemical reactions. The simulation technique is based on the 
qualitative process theory (QPT) ontology. The modelling constructs 
of QPT embody notions of causality which can be used to explain the 
behaviour of a chemical system.  The major theme of this work is 
that, in a qualitative simulation environment, students are able to 
articulate his/her knowledge through the inspection of explanations 
generated by software. The implementation languages are Java and 
Prolog. The software produces explanation in various forms that 
stresses on the causal theories in the chemical system which can be 
effectively used to support learning. 
 
 

Keywords—Chemical reactions, explanation, qualitative process 
theory, simulation 

I. INTRODUCTION 
N organic chemical reactions, one has to understand the 
many cognitive steps (the “mechanisms”) involved before a 

stable product is formed. Understanding these cognitive steps 
is among the many difficulties faced by chemistry students. 
Traditional chemistry educational software is inadequate in 
promoting understanding such as why and how things happen. 
These programs do not “explain” simply because the results 
are obtained through chaining of rules or by searching the 
reaction routes that have been pre-coded in software. 
Consequently, some students, particularly weak learners 
would require additional learning aids such as a software tool 
to assist them in their learning. In conventional approach, 
reaction prediction is performed by finding a route through 
searching the entire state space. Explanation generation is also 
a great challenge to this type of programming paradigm. 
Traditional chemistry software is therefore inadequate to 
promote understanding or explain toward its results because 
traditional method does not link “reasoning” to problems. This 
paper describes the development of a qualitative simulator for 
the simulation of organic chemical reactions. The simulator is 
based on the qualitative reasoning framework described in [1]. 
QRiOM (Qualitative Reasoning in Organic Mechanism) is the 
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product of the implementation of the framework. Qualitative 
process theory (QPT) [2] is used for the representation of 
chemical theories and chemical facts. QPT is well-known 
ontology for qualitative reasoning (QR). The development of 
QRiOM was motivated by a number of QR related systems 
reported in [3]-[11].   

II. PREVIOUS WORK 
 This work combines qualitative reasoning and ontologies in 
a simulation system, and generates explanations for learners 
from the system. In [12], “make-bond” and “break-bond” 
chemical bonding have been identified as two generic 
processes in the simulation of organic chemical reactions. 
From the analysis of various chemical reactions occurring 
under SN1 and SN2 mechanisms, the common set of chemical 
theories and behaviour for the generic processes have been 
identified, from which the model automation procedures are 
formulated. A set of QR algorithms used for the simulation of 
reactions have also been developed. The algorithms can cater 
for “select and sequence” ability, with the aid of the OntoRM 
ontology [13].  This paper will provide a few simulation 
results that serve as “explanation” to chemical phenomena 
related to organic reactions. Our approach for answer 
justification is based on causal reasoning. Overall, the issue of 
lack of explanation in chemistry software is addressed by 
embedding a causal explanation generator that produces 
explanation in various forms.  

III. SOFTWARE ARCHITECTURE OF QRIOM 
Fig. 1 depicts the software modules implemented in 

QRiOM. Table 1 describes the role of the main modules in the 
simulator. The knowledge-base has a two layer structure. The 
purpose of the lower layer is to provide chemical facts to the 
simulator. This layer is called chemical instances (or basic 
facts). Instances refer to chemical elements and their chemical 
properties that do not change over time. The upper layer is the 
chemistry ontology for reaction mechanisms simulation. This 
tier is called OntoRM. The ontology defines the requirements 
and constraints when suggesting a reaction mechanism for a 
chemical equation simulation. 
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Fig. 1 Main software modules in QRiOM simulator 

TABLE I   
ROLES OF EACH MODULE IN QRIOM 

 Roles 
Module 1 
 

This module checks user selection and returns the 
“type” of the input as either a nucleophile or an 
electrophile. From here on, an organic process 
may be determined. 

Module 2 
 

This module automates the construction of QPT 
models based on the identity of user inputs. 

Module 3 
 

This module does the actual reasoning and final 
product prediction.  

Module 5 
 

This module generates explanation on-the-fly 
based on causal reasoning. 

Module 6 
 

This module constructs causal graphs.  

Module 7 
 

This module keeps track of the structural change 
(pattern) of the substrate, from one organic 
reaction to another.  

Module 9 
 

The module validates the use of data during (to 
ensure the right data is passed to the reasoning 
engine) and after a simulation is completed (to 
ensure the results are predicted correctly). 

Module 10 
 

The reaction mechanism ontology that defines the 
basic chemical knowledge and chemical 
commonsense for SN1 and SN2. 

 
The chemical equation “(CH3)3C−OH + HCl → 

(CH3)3C−Cl + H2O” will be used as the illustration example.  
The “thought processes” for the chemical equation is depicted 
in Fig. 2. It is necessary to build process models to describe 
the “thought” before reasoning or simulation can be initiated.  
Fig. 3 shows a process model represented in QPT. The QPT 
model can be used to reproduce the behaviour of the first 
reaction step for the “(CH3)3C–OH + HCl” reaction (refer to 
part (a) of Fig. 2).  Fig. 4 shows the simulation algorithm 
implemented in QRiOM. 

  O =nucleophilic centre H+=electrophile 
        ..                     ..                                          ..+          .. 
 (CH3)3C – O:    +    H – Cl:        ↔           (CH3)3C–O–H   +   :Cl:

-
 

        |                      ..      |         .. 
       H       H 
 tert-butyl alcohol         hydrogen chloride         tert-butyloxonium ion       chloride ion 
 

(a) Reaction step 1 
 

                        C = δ+   O = δ-  
 
         ..+                        .. 
          (CH3)3C– O–H   ↔        (CH3)3C+       +     :O–H                              

           |                 |          
     H                H    
 tert-butyloxonium  tert-butyl cation        water 
 

(b) Reaction step 2 
 
   C+ = electrophilic centre     Cl−= nucleophile 
          ..        .. 

 (CH3)3C+       +    :Cl:
-
  → (CH3)3C–Cl:  

        ..        .. 
 tert-butyl cation   chloride ion  tert-butyl chloride 
 

(c) Reaction step 3 
 
Name of the chemical process Reactant 1 Reactant 2 
Protonation (= “make-bond”) 
 

(CH3)3COH 
(nucleophile)  

H+ 

(electrophile) 
Dissociation 
 

(CH3)3C–OH2
+

Capturing of anion by carbocation 
 

(CH3)3C+ 

(electrophile) 
Cl− 

(nucleophile) 

(d) Reactants and their associated chemical processes  
Fig. 2 The conversion of a tertiary alcohol to yield alkyl chloride can 

be described as a series of three small steps 
 

Process ‘Protonation’ (e.g. ((CH3)3COH) protonated by H+)   
Individuals 
; electrophile (charged) 
1. H ;hydrogen ion 
; nucleophile (neutral) 
2. O ;alcohol oxygen that has extra pair of non-bonded electrons 
Preconditions 
3. Am [no-of-bond(O)] = TWO 
4. is_reactive(R3COH)  
5. leaving_group(OH, poor)  ;check KB for good/poor leaving group 
Quantity-Conditions 
6. Am[lone-pair-electron(O)] >= ONE 
7. charges(H, positive)  
8. electrophile(H, charged)  
9. nucleophile(O, neutral)  
10. charges(O, neutral)  
Relations 
11. Ds[charges(H)]= -1 
12. Ds[charges(O)]= 1 

13. lone-pair-electron(O) 
+
−P  no-of-bond(O)   

14. charges(O) 
−
+P  lone-pair-electron(O)    

15. lone-pair-electron (H) P  no-of-bond(H)   

16. charges(H) 
+
−P  no-of-bond(H)  

    
Influences 
17. I+  (no-of-bond(O),  Am[bond-activity])    

 

Determined by Module 1 

Checked by Module 9
during simulation 

Determined by 
the View‐Pairing 

approach 

Used by QSA (Module 3)
during simulation

Validated by Module 10 

 
Fig. 3 QPT model for the “make-bond” process that links the proton 

to the oxygen atom in the tertiary alcohol substrate 

 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

779

 

 

 QPT-BASED SIMULATION ALGORITHM     
Q_Simulation(QPT_model, OUTPUT) 
1.  Perform qualitative reasoning on the constructed QPT model  
     1.1   Store the process’s entry conditions  
     1.2   Store the directly influenced process quantity   
     1.3   Keep track of the state transition (handled by the QSA module)  
2.  IF process_stopping_condition = true THEN 
         Store propagated effects in special purpose data structures 
         Store new individuals in the VIS 
         Update the VIS 
     END_IF  
3.  Update the substrate’s molecular structure (handled by the MUR module)
4.  IF VIS contains reactive individuals THEN 
 Determine a suitable chemical process  

Go to step 1 
     ELSE 
  Retrieve final product from the VIS 
  Call OntoRM to check for validity of the predicted product  

 Call OntoRM to check for the possible order of process execution
 Write the final product and the proposed mechanism to OUTPUT  

     END_IF 
5. Return OUTPUT  

 
Fig. 4 The QPT-based simulation algorithm for chemical process 
reasoning  

IV. PROTOTYPE DEVELOPMENT 
Fig. 5 shows the problem solving model of QRiOM (i.e. the 

protocol to interact with the software tool) while Fig. 6 gives 
the main interface of the qualitative simulator. QRiOM 
development is fully event-driven and object-oriented.  
 

 

Select substrate and 
reagent 

Build process model
(Automate QPT model 

construction) 

Run simulation 

View final products and the 
reaction mechanism used 

Examine the entire 
reaction route 

Inspect qualitative model 
(QPT models) 

Analyze causal graphs in 
explanation page 

Study changes in atoms’ 
chemical parameters 

Corresponds 
to A

Corresponds 
to B 

Corresponds to 
C, D & E 

Corresponds 
to F 

Corresponds 
to G 

Corresponds 
to H 

Corresponds 
to H 

 
Fig. 5 Problem solving model (Labels A – H are in Fig. 6) 

 

A

B

C

D

E

F G IH 

 
 

Fig. 6 The main interface of the simulator prototype 
 

Apart from the final products, the simulator will produce 
the following results to explicate a phenomenon being asked: 
(1) qualitative model for organic processes, (2) view pairs 
used in the simulation, (3) causal graphs, (4) parameter state 
history for each atom that is involved in a reaction, and (5) 
overall structural change of the substrate. All of which are 
derived from the process model directly. As shall be shown, 
describing the domain knowledge in qualitative terms (via the 
modelling constructs of QPT) is sufficient to explain organic 
chemical phenomena. The following subsections present a few 
simulation outcomes (QPT model, view pairs, and causal 
graph) and the Java code for implementing them.  

 

A. Java Snippets for the Construction of QPT Models 
QPT model serves the educational objective of 

“knowledge articulation” of various aspects of a chemical 
reaction. When inspecting a QPT process model, students 
have to articulate relationships between entities and 
dependencies. Fig. 7 shows the Java code that retrieves the 
chemical facts from the chemical KB in order to construct a 
QPT model while a screenshot of model inspection page is 
shown in Fig. 8.  
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public void viewModel_actionPerformed(ActionEvent e) {
 
  amzi.ls.LogicServer ls = new amzi.ls.LogicServer(); 
   : 
  String pn = gd.ProName; 
  String ind1 = gd.View1; 
  String Ind1Type = gd.Type1; 
  String Ind2Type = gd.Type2; 
  String ind2 = gd.View2; 
 : 
   jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12)); 
   jTextArea2.append("Process Activated: " + gd.ProNameList[0] + "\n"); 
   jTextArea2.append("\n" + "Individuals (The reacting units in this process/step)" + "\n"); 
   jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10)); 
   jTextArea2.append("  " + gd.ViewList1_sn2[0] + "\t" + gd.ViewList2_sn2[0] + "\n"); 
   jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12)); 
   jTextArea2.append("\n" + "Quantity-Condition (Entry requirements to activate the process)" + "\n"); 
   jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10)); 
 : 
   ls.Load("bondKB.xpl"); 
   term1 = ls.CallStr("qty_cond("+gd.ProNameList[0]+", "+gd.TypeList1[0]+", X, Y, Z)."); 

: 
    do 
    { 
       jTextArea2.append("  " + ls.GetStrArg(term1, 3) + "(" + ls.GetStrArg(term1, 4) + ") "  

+ ls.GetStrArg(term1, 5) + "\n" ); 
 
    } while (ls.Redo()); 
 
    term2 = ls.CallStr("qty_cond("+gd.ProNameList[0]+", "+gd.TypeList2[0]+", X, Y, Z)."); 
 : 
    do{ 
          jTextArea2.append("  " + ls.GetStrArg(term2, 3) + "(" + ls.GetStrArg(term2, 4) + ") "  
         + ls.GetStrArg(term2, 5)+ "\n" ); 
      } while (ls.Redo()); 
 
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12)); 
 jTextArea2.append("\n" + "Infuences (Direct effect caused by the process)" + "\n"); 
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10)); 
 
 if (gd.ProNameList[0].equals("make_bond")) 
         jTextArea2.append("  " + "A covalent bond is added (formed)" + "\n"); 
 else jTextArea2.append("  " + "A covalent bond is removed (cleaved)" + "\n"); 
 
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12)); 
 jTextArea2.append("\n" + "Parameters dependency (Effects propagation)"); 
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10)); 
 : 
  do{ 
 
     jTextArea2.append("  " + ls.GetStrArg(term3, 3) + "(" + ls.GetStrArg(term3, 5) + ")  followed by  " + 
     ls.GetStrArg(term3, 4) + "(" + ls.GetStrArg(term3, 6) + ")" + "\n"); 
    } while (ls.Redo()); 
 
 
  jTextArea2.append("\n" + gd.ViewList2[0] + "  [" + gd.TypeList2[0] +"]" + ":" + "\n"); 
  term3 = ls.CallStr("process_relations(make_bond, "+gd.TypeList2[0]+", P, Q, R, S)."); 
 : 
  do{ 
 
     jTextArea2.append("  " + ls.GetStrArg(term3, 3) + "(" + ls.GetStrArg(term3, 5) + ")  followed by  " + 
     ls.GetStrArg(term3, 4) + "(" + ls.GetStrArg(term3, 6) + ")" + "\n"); 
    } while (ls.Redo()); 
 : 
} 

Get ready the 
individuals for the 
chemical process 

Based on the 
view’s type, 

general set of 
chemical 

theories are 
retrieved from 

the KB 

Display the 
effect 

propagation 
caused by the 
process. These 
are the indirect 
influences of a 

QPT model 

Prepare the 
headings for the 
QPT model, and 

the direct 
influence of the 

process 

Prepare the 
individuals for the 
chemical process 

 
Fig. 7 The Java code for retrieving chemical theories of reacting 

species for constructing QPT model 

 

 
Fig. 8 The QPT model inspection page of QRiOM 

B. Java Snippets for Implementing the Reasoning Engine 
Quantity Space Analyzer (QSA) is one the important 

software modules in QRiOM. This module performs tasks 
such as updating and maintaining multiple data structures 
whenever an organic process is activated. Since the majority 
of chemistry students have difficulties identifying the right 
reacting units for processes activation, the tool will generate 
the whole set of reacting units (called “view pairs” in QPT) 

used in the entire simulation thus informing the learner of the 
types of reacting species that activated a given chemical 
process (Fig. 9). The Java code for “view structure updating” 
is presented in Fig. 10. These results can then be used to 
generate the necessary reaction route for the entire simulation 
of a chemical equation.   

 

Fig. 9 The choice of reacting units for each reaction step and the 
intermediates produced are displayed for further inspection 

 
: 

   if (Subst_1_ChargedHistory[4].equals("pos")) 
        {  appendedCharge1 = StartMaterialTable[0].concat("+");   // Check its charge’s state 
             theStr1 = "CH3CH3CH3".concat(appendedCharge1);} 
   else if (Subst_1_ChargedHistory[4].equals("neg")) 
             {   appendedCharge1 = StartMaterialTable[0].concat("-"); 
                  theStr1 = "CH3CH3CH3".concat(appendedCharge1);} 
   else theStr1 = "CH3CH3CH3".concat(StartMaterialTable[0]); 
 
   if (Agent_2_ChargedHistory[4].equals("pos")) 
             {  appendedCharge1 = StartMaterialTable[1].concat("+"); 
                theStr2 = theStr1.concat(appendedCharge1);} 
   else if (Agent_2_ChargedHistory[4].equals("neg")) 
              {  appendedCharge1 = StartMaterialTable[1].concat("-"); 
                 theStr2 = theStr1.concat(appendedCharge1);} 
    else  theStr2 = theStr1.concat(StartMaterialTable[1]);  
 
 ViewStructureArr[0] = theStr2;                                              // Update the contents of VIS 

:  
Fig. 10 The Java statements for updating the VIS in order to suggest 
the next organic process in the qualitative simulation environment 
 
Fig. 11 gives the Java snippets for updating changes in 

parameters’ states. The values assigned to the chemical 
parameters during simulation are recorded in special purpose 
data structures for future retrieval.  One such structure is the 
atom property table (Fig. 12).  
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: 
ls.Init(""); 
ls.Load("chemkb.xpl"); 
 
t1 = ls.CallStr("qpropAPTable(make_bond, chargedElec, P3, Q3, R3, S3);   // Prepare to retrieve chemical theories 
if (t1 == 0) 
   { : 
        ls.Close(); 
        return; 
    } 
 
do{ 
         if (n1 == 1){ 
                qtyArrTemp[0] = ls.GetStrArg(t1, 3);     qtyArrTemp[1] = ls.GetStrArg(t1, 4); 
                signArrTemp[0] = ls.GetStrArg(t1, 5);   signArrTemp[1] = ls.GetStrArg(t1, 6);} 
         if (n1 == 2){ 
                qtyArrTemp[2] = ls.GetStrArg(t1, 3);     qtyArrTemp[3] = ls.GetStrArg(t1, 4); 
                signArrTemp[2] = ls.GetStrArg(t1, 5);   signArrTemp[3] = ls.GetStrArg(t1, 6);} 
                 n1++; 
       } while (ls.Redo()); 
 
if ((individual_2_type.equals("chargedElec")) && (bActivity.equals("make_bond"))) 
  { 
        if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("charge"))) 
         {  for (int t=0; t<=2; t++) 
                if (charge[t].equals(smt_0_ChargeVal)) index = t; 
                       gdat.Sub_1_ChargedHistory[4] = Subst_1_ChargedHistory[4]  
                       = charge[++index];  smt_0_ChargeVal = Subst_1_ChargedHistory[4];} 
                else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("charge"))) 
                    {  for (int t=0; t<=2; t++) 
                            if (charge[t].equals(smt_0_ChargeVal)) index = t; 
                               gdat.Sub_1_ChargedHistory[4] = Subst_1_ChargedHistory[4] = charge[--index]; 
                               smt_0_ChargeVal = Subst_1_ChargedHistory[4];} 
 
        if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("lone_pair_electron"))) 
           {  for (int t=0; t<=4; t++) 
                 if (String.valueOf(lone_pair[t]).equals(smt_0_LPVal)) index = t; 
                       gdat.Sub_1_LonePairHistory[4] = Subst_1_LonePairHistory[4] =  
                              String.valueOf(lone_pair[++index]); 
                       smt_0_LPVal = Subst_1_LonePairHistory[4];} 
                 else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("lone_pair_electron"))) 
                     {  for (int t=0; t<=4; t++) 
                            if (String.valueOf(lone_pair[t]).equals(smt_0_LPVal)) index = t; 
                               gdat.Sub_1_LonePairHistory[4] = Subst_1_LonePairHistory[4] =  
                                          String.valueOf(lone_pair[--index]); 
                               smt_0_LPVal = Subst_1_LonePairHistory[4];} 
 
       if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("no_of_bond"))) 
           {  for (int t=0; t<=4; t++) 
                  if (String.valueOf(bond[t]).equals(smt_0_BondVal)) index = t; 
                        gdat.Sub_1_BondHistory[3] = Subst_1_BondHistory[3] = String.valueOf(bond[++index]); 
                        smt_1_BondVal = Subst_2_BondHistory[4];} 
                  else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("no_of_bond"))) 
                        {  for (int t=0; t<=4; t++) 
                              if (String.valueOf(bond[t]).equals(smt_0_BondVal)) index = t; 
                              gdat.Sub_2_BondHistory[4] = Subst_2_BondHistory[4] = String.valueOf(bond[--index]); 
                       smt_0_BondVal = Subst_1_BondHistory[4];} 
 
   : 
   : 
    }  

The chemical 
theories (stored 
as qprop) for the 
identified organic 

process in the 
chemical KB are 

retrieved and 
stored in 

temporary arrays 

The states of 
the chemical 

parameter are 
updated based 

on the 
qualitative 

proportionalities 
retrieved earlier. 

 
Fig. 11 The Java code for updating the chemical parameters’ states of 

each atom during simulation 

 

 
Fig. 12 The chemical states possessed by each reacting unit during 

simulation are stored in atom property table 

 

C. Java Snippets for Causal Graph Generator 

Algorithms determine what the behaviour is, not an 
explanation of it.  An explanation of system behaviour may 

take many forms.  An example is causal accounts (or 
causality). Causal account is a kind of explanation that is 
consistent with our intuitions of how systems function. The 
explanation used by QRiOM is achieved by tracing the cause-
effect propagation through the modelling constructs of QPT. 
For example, during each reaction simulation, a causal graph 
(Fig. 13) is generated that shows the use of the qualitative 
proportionality statements (or functional dependency) in the 
QPT models. Fig. 14 shows the Java code that generates 
causal graphs for explaining the cause-effect interaction 
among all the parameters. 
 

 
Fig. 13 A causal graph generated by QRiOM that enables learners to 
examine the cause-effect relationships of chemical parameters during 

reasoning 
 

public void causalGraph_actionPerformed(ActionEvent e) { 
   globalDataEG gd = new globalDataEG(); 
 
   jCG.setText(" "); 
   jCG.append("\nThis is the causal diagram for the reaction formula you just selected\n"); 
 
 if (gd.procInvolved[0].equals("make_bond")){ 
   jCG.append("Step 1: Make-Bond Process\n"); 
   jCG.append("Nucleophile"  + "(" + gd.smn + ")" + "\t\t\t" + "Electrophile" +  "(" + gd.aat00 + ")" +"\n" ); 
 
     for(int y=0; y<=2; y++){ 
        if(!(gd.par1[y].equals("nil"))) 
          if (y==1) 
              jCG.append("\t\t" + gd.par1[y] + "(" + gd.sign1[y] + ")" ); 
          else  jCG.append("\t\t" + gd.par1[y] + "(" + gd.sign1[y] + ")" ); 
        else   jCG.append("\t\t\t\t"); 
       if(!(gd.par2[y].equals("no change"))) 
           { if (y==2) 
                jCG.append("\t\t\t" + gd.par2[y] + "(" + "no change"  + ")" + "\n"); 
             else if (y==1) 
                 jCG.append("\t" + gd.par2[y] + "(" + gd.sign2[y]  + ")" + "\n"); 
             else jCG.append("\t\t" + gd.par2[y] + "(" + gd.sign2[y] + ")" + "\n");} 
       else  jCG.append("\n"); 
 
   } 
 : 
 : 
 
 } // End Generate Causal Graph 

These codes 
prepare the values 
taken by each main 

parameter during the 
entire reasoning and 
simulation. The set 
of values are then 
formatted onto the 
appropriate user 

graphical interfaces 

 
Fig. 14 The Java code that keeps track of the values assigned to each 
parameter during reasoning. The set of values will be retrieved and 

formatted to graphical user interface 
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When the outputs of causal graph, QPT model, and atom 
property table are examined together, the students are 
expected to relate various aspects in a reaction such that they 
are able to explain an organic reaction in a more elaborate 
way. This will lead to an improvement in one’s conceptual 
understanding of the subject. 

V. CONCLUSION 
A qualitative simulation environment that enables students 

to articulate his/her knowledge through the inspection of 
explanations generated by software has been described. The 
implementation of the main modules in the reasoning engine 
has also been presented as a collection of Java snippets. 
QRiOM is the first chemistry education software that can 
generate multiple forms of textual explanation via QPT-based 
reasoning.  QRiOM is viewed as useful and effective by 
chemistry learners, consistent with the fact that students’ 
conceptual understanding is improved [14]. 
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