
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

777

Abstract—This paper discusses the development of a qualitative

simulator (abbreviated QRiOM) for predicting the behaviour of
organic chemical reactions. The simulation technique is based on the
qualitative process theory (QPT) ontology. The modelling constructs
of QPT embody notions of causality which can be used to explain the
behaviour of a chemical system. The major theme of this work is
that, in a qualitative simulation environment, students are able to
articulate his/her knowledge through the inspection of explanations
generated by software. The implementation languages are Java and
Prolog. The software produces explanation in various forms that
stresses on the causal theories in the chemical system which can be
effectively used to support learning.

Keywords—Chemical reactions, explanation, qualitative process
theory, simulation

I. INTRODUCTION
N organic chemical reactions, one has to understand the
many cognitive steps (the “mechanisms”) involved before a

stable product is formed. Understanding these cognitive steps
is among the many difficulties faced by chemistry students.
Traditional chemistry educational software is inadequate in
promoting understanding such as why and how things happen.
These programs do not “explain” simply because the results
are obtained through chaining of rules or by searching the
reaction routes that have been pre-coded in software.
Consequently, some students, particularly weak learners
would require additional learning aids such as a software tool
to assist them in their learning. In conventional approach,
reaction prediction is performed by finding a route through
searching the entire state space. Explanation generation is also
a great challenge to this type of programming paradigm.
Traditional chemistry software is therefore inadequate to
promote understanding or explain toward its results because
traditional method does not link “reasoning” to problems. This
paper describes the development of a qualitative simulator for
the simulation of organic chemical reactions. The simulator is
based on the qualitative reasoning framework described in [1].
QRiOM (Qualitative Reasoning in Organic Mechanism) is the

A. Y. C. Tang is with the University of Tenaga Nasional, Selangor,

Malaysia (phone: 603-8921-2336; e-mail: aliciat@uniten.edu.my).
R. Abdullah is with the Department of Artificial Intelligence, Malaya

University, Kuala Lumpur, Malaysia (email: rukaini@um.edu.my)
S. M. Zain is with the Department of Chemistry, Malaya University, Kuala

Lumpur, Malaysia (e-mail: smzain@um.edu.my).

product of the implementation of the framework. Qualitative
process theory (QPT) [2] is used for the representation of
chemical theories and chemical facts. QPT is well-known
ontology for qualitative reasoning (QR). The development of
QRiOM was motivated by a number of QR related systems
reported in [3]-[11].

II. PREVIOUS WORK
 This work combines qualitative reasoning and ontologies in
a simulation system, and generates explanations for learners
from the system. In [12], “make-bond” and “break-bond”
chemical bonding have been identified as two generic
processes in the simulation of organic chemical reactions.
From the analysis of various chemical reactions occurring
under SN1 and SN2 mechanisms, the common set of chemical
theories and behaviour for the generic processes have been
identified, from which the model automation procedures are
formulated. A set of QR algorithms used for the simulation of
reactions have also been developed. The algorithms can cater
for “select and sequence” ability, with the aid of the OntoRM
ontology [13]. This paper will provide a few simulation
results that serve as “explanation” to chemical phenomena
related to organic reactions. Our approach for answer
justification is based on causal reasoning. Overall, the issue of
lack of explanation in chemistry software is addressed by
embedding a causal explanation generator that produces
explanation in various forms.

III. SOFTWARE ARCHITECTURE OF QRIOM
Fig. 1 depicts the software modules implemented in

QRiOM. Table 1 describes the role of the main modules in the
simulator. The knowledge-base has a two layer structure. The
purpose of the lower layer is to provide chemical facts to the
simulator. This layer is called chemical instances (or basic
facts). Instances refer to chemical elements and their chemical
properties that do not change over time. The upper layer is the
chemistry ontology for reaction mechanisms simulation. This
tier is called OntoRM. The ontology defines the requirements
and constraints when suggesting a reaction mechanism for a
chemical equation simulation.

Development of a Simulator for Explaining
Organic Chemical Reactions Based on

Qualitative Process Theory
Alicia Y. C. Tang, Rukaini Hj. Abdullah, and Sharifuddin M. Zain

I

International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

778

 9

Knowledge
Validation

Routine

 5
Explanation

Generator

3
Qualitative

Simulator
(Reasoning engine)

 Qualitative 2
Model

Constructor

 Graphical User Interface 0

11

Chemical
Knowledge

Base

 6
 Causal
Model

Generator

 Substrate Recognizer 1

 4
Simulated Results

(Final products and the
mechanism used)

 7
Molecule
Update
Routine
(MUR)

Molecule
Patterns
Storage

10

OntoRM

 8

QPT
Process
Models

QSA

Various Types of Explanation

Fig. 1 Main software modules in QRiOM simulator

TABLE I
ROLES OF EACH MODULE IN QRIOM

 Roles
Module 1

This module checks user selection and returns the
“type” of the input as either a nucleophile or an
electrophile. From here on, an organic process
may be determined.

Module 2

This module automates the construction of QPT
models based on the identity of user inputs.

Module 3

This module does the actual reasoning and final
product prediction.

Module 5

This module generates explanation on-the-fly
based on causal reasoning.

Module 6

This module constructs causal graphs.

Module 7

This module keeps track of the structural change
(pattern) of the substrate, from one organic
reaction to another.

Module 9

The module validates the use of data during (to
ensure the right data is passed to the reasoning
engine) and after a simulation is completed (to
ensure the results are predicted correctly).

Module 10

The reaction mechanism ontology that defines the
basic chemical knowledge and chemical
commonsense for SN1 and SN2.

The chemical equation “(CH3)3C−OH + HCl →

(CH3)3C−Cl + H2O” will be used as the illustration example.
The “thought processes” for the chemical equation is depicted
in Fig. 2. It is necessary to build process models to describe
the “thought” before reasoning or simulation can be initiated.
Fig. 3 shows a process model represented in QPT. The QPT
model can be used to reproduce the behaviour of the first
reaction step for the “(CH3)3C–OH + HCl” reaction (refer to
part (a) of Fig. 2). Fig. 4 shows the simulation algorithm
implemented in QRiOM.

 O =nucleophilic centre H+=electrophile
 + ..
 (CH3)3C – O: + H – Cl: ↔ (CH3)3C–O–H + :Cl:

-

 | .. | ..
 H H
 tert-butyl alcohol hydrogen chloride tert-butyloxonium ion chloride ion

(a) Reaction step 1

 C = δ+ O = δ-

 ..+ ..
 (CH3)3C– O–H ↔ (CH3)3C+ + :O–H

 | |
 H H
 tert-butyloxonium tert-butyl cation water

(b) Reaction step 2

 C+ = electrophilic centre Cl−= nucleophile

 (CH3)3C+ + :Cl:
-
 → (CH3)3C–Cl:

 tert-butyl cation chloride ion tert-butyl chloride

(c) Reaction step 3

Name of the chemical process Reactant 1 Reactant 2
Protonation (= “make-bond”)

(CH3)3COH
(nucleophile)

H+

(electrophile)
Dissociation

(CH3)3C–OH2
+

Capturing of anion by carbocation

(CH3)3C+

(electrophile)
Cl−

(nucleophile)

(d) Reactants and their associated chemical processes
Fig. 2 The conversion of a tertiary alcohol to yield alkyl chloride can

be described as a series of three small steps

Process ‘Protonation’ (e.g. ((CH3)3COH) protonated by H+)
Individuals
; electrophile (charged)
1. H ;hydrogen ion
; nucleophile (neutral)
2. O ;alcohol oxygen that has extra pair of non-bonded electrons
Preconditions
3. Am [no-of-bond(O)] = TWO
4. is_reactive(R3COH)
5. leaving_group(OH, poor) ;check KB for good/poor leaving group
Quantity-Conditions
6. Am[lone-pair-electron(O)] >= ONE
7. charges(H, positive)
8. electrophile(H, charged)
9. nucleophile(O, neutral)
10. charges(O, neutral)
Relations
11. Ds[charges(H)]= -1
12. Ds[charges(O)]= 1

13. lone-pair-electron(O)
+
−P no-of-bond(O)

14. charges(O)
−
+P lone-pair-electron(O)

15. lone-pair-electron (H) P no-of-bond(H)

16. charges(H)
+
−P no-of-bond(H)

Influences
17. I+ (no-of-bond(O), Am[bond-activity])

Determined by Module 1

Checked by Module 9
during simulation

Determined by
the View‐Pairing

approach

Used by QSA (Module 3)
during simulation

Validated by Module 10

Fig. 3 QPT model for the “make-bond” process that links the proton

to the oxygen atom in the tertiary alcohol substrate

International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

779

 QPT-BASED SIMULATION ALGORITHM
Q_Simulation(QPT_model, OUTPUT)
1. Perform qualitative reasoning on the constructed QPT model
 1.1 Store the process’s entry conditions
 1.2 Store the directly influenced process quantity
 1.3 Keep track of the state transition (handled by the QSA module)
2. IF process_stopping_condition = true THEN
 Store propagated effects in special purpose data structures
 Store new individuals in the VIS
 Update the VIS
 END_IF
3. Update the substrate’s molecular structure (handled by the MUR module)
4. IF VIS contains reactive individuals THEN
 Determine a suitable chemical process

Go to step 1
 ELSE
 Retrieve final product from the VIS
 Call OntoRM to check for validity of the predicted product

 Call OntoRM to check for the possible order of process execution
 Write the final product and the proposed mechanism to OUTPUT

 END_IF
5. Return OUTPUT

Fig. 4 The QPT-based simulation algorithm for chemical process
reasoning

IV. PROTOTYPE DEVELOPMENT
Fig. 5 shows the problem solving model of QRiOM (i.e. the

protocol to interact with the software tool) while Fig. 6 gives
the main interface of the qualitative simulator. QRiOM
development is fully event-driven and object-oriented.

Select substrate and
reagent

Build process model
(Automate QPT model

construction)

Run simulation

View final products and the
reaction mechanism used

Examine the entire
reaction route

Inspect qualitative model
(QPT models)

Analyze causal graphs in
explanation page

Study changes in atoms’
chemical parameters

Corresponds
to A

Corresponds
to B

Corresponds to
C, D & E

Corresponds
to F

Corresponds
to G

Corresponds
to H

Corresponds
to H

Fig. 5 Problem solving model (Labels A – H are in Fig. 6)

A

B

C

D

E

F G IH

Fig. 6 The main interface of the simulator prototype

Apart from the final products, the simulator will produce
the following results to explicate a phenomenon being asked:
(1) qualitative model for organic processes, (2) view pairs
used in the simulation, (3) causal graphs, (4) parameter state
history for each atom that is involved in a reaction, and (5)
overall structural change of the substrate. All of which are
derived from the process model directly. As shall be shown,
describing the domain knowledge in qualitative terms (via the
modelling constructs of QPT) is sufficient to explain organic
chemical phenomena. The following subsections present a few
simulation outcomes (QPT model, view pairs, and causal
graph) and the Java code for implementing them.

A. Java Snippets for the Construction of QPT Models
QPT model serves the educational objective of

“knowledge articulation” of various aspects of a chemical
reaction. When inspecting a QPT process model, students
have to articulate relationships between entities and
dependencies. Fig. 7 shows the Java code that retrieves the
chemical facts from the chemical KB in order to construct a
QPT model while a screenshot of model inspection page is
shown in Fig. 8.

International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

780

public void viewModel_actionPerformed(ActionEvent e) {

 amzi.ls.LogicServer ls = new amzi.ls.LogicServer();
 :
 String pn = gd.ProName;
 String ind1 = gd.View1;
 String Ind1Type = gd.Type1;
 String Ind2Type = gd.Type2;
 String ind2 = gd.View2;
 :
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12));
 jTextArea2.append("Process Activated: " + gd.ProNameList[0] + "\n");
 jTextArea2.append("\n" + "Individuals (The reacting units in this process/step)" + "\n");
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10));
 jTextArea2.append(" " + gd.ViewList1_sn2[0] + "\t" + gd.ViewList2_sn2[0] + "\n");
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12));
 jTextArea2.append("\n" + "Quantity-Condition (Entry requirements to activate the process)" + "\n");
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10));
 :
 ls.Load("bondKB.xpl");
 term1 = ls.CallStr("qty_cond("+gd.ProNameList[0]+", "+gd.TypeList1[0]+", X, Y, Z).");

:
 do
 {
 jTextArea2.append(" " + ls.GetStrArg(term1, 3) + "(" + ls.GetStrArg(term1, 4) + ") "

+ ls.GetStrArg(term1, 5) + "\n");

 } while (ls.Redo());

 term2 = ls.CallStr("qty_cond("+gd.ProNameList[0]+", "+gd.TypeList2[0]+", X, Y, Z).");
 :
 do{
 jTextArea2.append(" " + ls.GetStrArg(term2, 3) + "(" + ls.GetStrArg(term2, 4) + ") "
 + ls.GetStrArg(term2, 5)+ "\n");
 } while (ls.Redo());

 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12));
 jTextArea2.append("\n" + "Infuences (Direct effect caused by the process)" + "\n");
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10));

 if (gd.ProNameList[0].equals("make_bond"))
 jTextArea2.append(" " + "A covalent bond is added (formed)" + "\n");
 else jTextArea2.append(" " + "A covalent bond is removed (cleaved)" + "\n");

 jTextArea2.setFont(new java.awt.Font("Dialog", Font.BOLD, 12));
 jTextArea2.append("\n" + "Parameters dependency (Effects propagation)");
 jTextArea2.setFont(new java.awt.Font("Dialog", Font.PLAIN, 10));
 :
 do{

 jTextArea2.append(" " + ls.GetStrArg(term3, 3) + "(" + ls.GetStrArg(term3, 5) + ") followed by " +
 ls.GetStrArg(term3, 4) + "(" + ls.GetStrArg(term3, 6) + ")" + "\n");
 } while (ls.Redo());

 jTextArea2.append("\n" + gd.ViewList2[0] + " [" + gd.TypeList2[0] +"]" + ":" + "\n");
 term3 = ls.CallStr("process_relations(make_bond, "+gd.TypeList2[0]+", P, Q, R, S).");
 :
 do{

 jTextArea2.append(" " + ls.GetStrArg(term3, 3) + "(" + ls.GetStrArg(term3, 5) + ") followed by " +
 ls.GetStrArg(term3, 4) + "(" + ls.GetStrArg(term3, 6) + ")" + "\n");
 } while (ls.Redo());
 :
}

Get ready the
individuals for the
chemical process

Based on the
view’s type,

general set of
chemical

theories are
retrieved from

the KB

Display the
effect

propagation
caused by the
process. These
are the indirect
influences of a

QPT model

Prepare the
headings for the
QPT model, and

the direct
influence of the

process

Prepare the
individuals for the
chemical process

Fig. 7 The Java code for retrieving chemical theories of reacting

species for constructing QPT model

Fig. 8 The QPT model inspection page of QRiOM

B. Java Snippets for Implementing the Reasoning Engine
Quantity Space Analyzer (QSA) is one the important

software modules in QRiOM. This module performs tasks
such as updating and maintaining multiple data structures
whenever an organic process is activated. Since the majority
of chemistry students have difficulties identifying the right
reacting units for processes activation, the tool will generate
the whole set of reacting units (called “view pairs” in QPT)

used in the entire simulation thus informing the learner of the
types of reacting species that activated a given chemical
process (Fig. 9). The Java code for “view structure updating”
is presented in Fig. 10. These results can then be used to
generate the necessary reaction route for the entire simulation
of a chemical equation.

Fig. 9 The choice of reacting units for each reaction step and the
intermediates produced are displayed for further inspection

:

 if (Subst_1_ChargedHistory[4].equals("pos"))
 { appendedCharge1 = StartMaterialTable[0].concat("+"); // Check its charge’s state
 theStr1 = "CH3CH3CH3".concat(appendedCharge1);}
 else if (Subst_1_ChargedHistory[4].equals("neg"))
 { appendedCharge1 = StartMaterialTable[0].concat("-");
 theStr1 = "CH3CH3CH3".concat(appendedCharge1);}
 else theStr1 = "CH3CH3CH3".concat(StartMaterialTable[0]);

 if (Agent_2_ChargedHistory[4].equals("pos"))
 { appendedCharge1 = StartMaterialTable[1].concat("+");
 theStr2 = theStr1.concat(appendedCharge1);}
 else if (Agent_2_ChargedHistory[4].equals("neg"))
 { appendedCharge1 = StartMaterialTable[1].concat("-");
 theStr2 = theStr1.concat(appendedCharge1);}
 else theStr2 = theStr1.concat(StartMaterialTable[1]);

 ViewStructureArr[0] = theStr2; // Update the contents of VIS

:
Fig. 10 The Java statements for updating the VIS in order to suggest
the next organic process in the qualitative simulation environment

Fig. 11 gives the Java snippets for updating changes in

parameters’ states. The values assigned to the chemical
parameters during simulation are recorded in special purpose
data structures for future retrieval. One such structure is the
atom property table (Fig. 12).

International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

781

:
ls.Init("");
ls.Load("chemkb.xpl");

t1 = ls.CallStr("qpropAPTable(make_bond, chargedElec, P3, Q3, R3, S3); // Prepare to retrieve chemical theories
if (t1 == 0)
 { :
 ls.Close();
 return;
 }

do{
 if (n1 == 1){
 qtyArrTemp[0] = ls.GetStrArg(t1, 3); qtyArrTemp[1] = ls.GetStrArg(t1, 4);
 signArrTemp[0] = ls.GetStrArg(t1, 5); signArrTemp[1] = ls.GetStrArg(t1, 6);}
 if (n1 == 2){
 qtyArrTemp[2] = ls.GetStrArg(t1, 3); qtyArrTemp[3] = ls.GetStrArg(t1, 4);
 signArrTemp[2] = ls.GetStrArg(t1, 5); signArrTemp[3] = ls.GetStrArg(t1, 6);}
 n1++;
 } while (ls.Redo());

if ((individual_2_type.equals("chargedElec")) && (bActivity.equals("make_bond")))
 {
 if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("charge")))
 { for (int t=0; t<=2; t++)
 if (charge[t].equals(smt_0_ChargeVal)) index = t;
 gdat.Sub_1_ChargedHistory[4] = Subst_1_ChargedHistory[4]
 = charge[++index]; smt_0_ChargeVal = Subst_1_ChargedHistory[4];}
 else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("charge")))
 { for (int t=0; t<=2; t++)
 if (charge[t].equals(smt_0_ChargeVal)) index = t;
 gdat.Sub_1_ChargedHistory[4] = Subst_1_ChargedHistory[4] = charge[--index];
 smt_0_ChargeVal = Subst_1_ChargedHistory[4];}

 if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("lone_pair_electron")))
 { for (int t=0; t<=4; t++)
 if (String.valueOf(lone_pair[t]).equals(smt_0_LPVal)) index = t;
 gdat.Sub_1_LonePairHistory[4] = Subst_1_LonePairHistory[4] =
 String.valueOf(lone_pair[++index]);
 smt_0_LPVal = Subst_1_LonePairHistory[4];}
 else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("lone_pair_electron")))
 { for (int t=0; t<=4; t++)
 if (String.valueOf(lone_pair[t]).equals(smt_0_LPVal)) index = t;
 gdat.Sub_1_LonePairHistory[4] = Subst_1_LonePairHistory[4] =
 String.valueOf(lone_pair[--index]);
 smt_0_LPVal = Subst_1_LonePairHistory[4];}

 if ((signArrTemp[0].equals("plus")) && (qtyArrTemp[0].equals("no_of_bond")))
 { for (int t=0; t<=4; t++)
 if (String.valueOf(bond[t]).equals(smt_0_BondVal)) index = t;
 gdat.Sub_1_BondHistory[3] = Subst_1_BondHistory[3] = String.valueOf(bond[++index]);
 smt_1_BondVal = Subst_2_BondHistory[4];}
 else if ((signArrTemp[0].equals("minus")) && (qtyArrTemp[0].equals("no_of_bond")))
 { for (int t=0; t<=4; t++)
 if (String.valueOf(bond[t]).equals(smt_0_BondVal)) index = t;
 gdat.Sub_2_BondHistory[4] = Subst_2_BondHistory[4] = String.valueOf(bond[--index]);
 smt_0_BondVal = Subst_1_BondHistory[4];}

 :
 :
 }

The chemical
theories (stored
as qprop) for the
identified organic

process in the
chemical KB are

retrieved and
stored in

temporary arrays

The states of
the chemical

parameter are
updated based

on the
qualitative

proportionalities
retrieved earlier.

Fig. 11 The Java code for updating the chemical parameters’ states of

each atom during simulation

Fig. 12 The chemical states possessed by each reacting unit during

simulation are stored in atom property table

C. Java Snippets for Causal Graph Generator

Algorithms determine what the behaviour is, not an
explanation of it. An explanation of system behaviour may

take many forms. An example is causal accounts (or
causality). Causal account is a kind of explanation that is
consistent with our intuitions of how systems function. The
explanation used by QRiOM is achieved by tracing the cause-
effect propagation through the modelling constructs of QPT.
For example, during each reaction simulation, a causal graph
(Fig. 13) is generated that shows the use of the qualitative
proportionality statements (or functional dependency) in the
QPT models. Fig. 14 shows the Java code that generates
causal graphs for explaining the cause-effect interaction
among all the parameters.

Fig. 13 A causal graph generated by QRiOM that enables learners to
examine the cause-effect relationships of chemical parameters during

reasoning

public void causalGraph_actionPerformed(ActionEvent e) {
 globalDataEG gd = new globalDataEG();

 jCG.setText(" ");
 jCG.append("\nThis is the causal diagram for the reaction formula you just selected\n");

 if (gd.procInvolved[0].equals("make_bond")){
 jCG.append("Step 1: Make-Bond Process\n");
 jCG.append("Nucleophile" + "(" + gd.smn + ")" + "\t\t\t" + "Electrophile" + "(" + gd.aat00 + ")" +"\n");

 for(int y=0; y<=2; y++){
 if(!(gd.par1[y].equals("nil")))
 if (y==1)
 jCG.append("\t\t" + gd.par1[y] + "(" + gd.sign1[y] + ")");
 else jCG.append("\t\t" + gd.par1[y] + "(" + gd.sign1[y] + ")");
 else jCG.append("\t\t\t\t");
 if(!(gd.par2[y].equals("no change")))
 { if (y==2)
 jCG.append("\t\t\t" + gd.par2[y] + "(" + "no change" + ")" + "\n");
 else if (y==1)
 jCG.append("\t" + gd.par2[y] + "(" + gd.sign2[y] + ")" + "\n");
 else jCG.append("\t\t" + gd.par2[y] + "(" + gd.sign2[y] + ")" + "\n");}
 else jCG.append("\n");

 }
 :
 :

 } // End Generate Causal Graph

These codes
prepare the values
taken by each main

parameter during the
entire reasoning and
simulation. The set
of values are then
formatted onto the
appropriate user

graphical interfaces

Fig. 14 The Java code that keeps track of the values assigned to each
parameter during reasoning. The set of values will be retrieved and

formatted to graphical user interface

International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:5, No:9, 2011

782

When the outputs of causal graph, QPT model, and atom
property table are examined together, the students are
expected to relate various aspects in a reaction such that they
are able to explain an organic reaction in a more elaborate
way. This will lead to an improvement in one’s conceptual
understanding of the subject.

V. CONCLUSION
A qualitative simulation environment that enables students

to articulate his/her knowledge through the inspection of
explanations generated by software has been described. The
implementation of the main modules in the reasoning engine
has also been presented as a collection of Java snippets.
QRiOM is the first chemistry education software that can
generate multiple forms of textual explanation via QPT-based
reasoning. QRiOM is viewed as useful and effective by
chemistry learners, consistent with the fact that students’
conceptual understanding is improved [14].

REFERENCES
[1] A.Y.C. Tang, S.M. Zain, and N.A. Rahman, “Design and Development

of a Qualitative Simulator for Learning Organic Reactions,”
International Journal of Computers, Vol. 3, Issue 1, pp. 96-103, 2009.

[2] K.D. Forbus, “Qualitative Process Theory,” Artificial Intelligence, 24:
85-168, 1984.

[3] A. Bouwer and B. Bredeweg, “VisiGarp: Graphical Representation of
Qualitative Simulation Models,” In Moore, J.D., Luckhardt Redfield,
G., Johnson, J.L. (eds.) Artificial Intelligence in Education: AI-ED in the
Wired and Wireless Future. IOS Press/Ohmsha, 2001, pp. 294-305,
Japan, Osaka.

[4] A. Bouwer and B. Bredeweg, “Generating Structured Explanations of
System Behaviour Using Qualitative Simulations,” Looi, C.K. McCalla,
G., Bredeweg, B. and Breuker, B. (Eds.), Artificial Intelligence in
Education: Supporting Learning through Intelligent and Socially
Informed Technology, 2005, pp. 756-758, IOS press, Amsterdam.

[5] T. Horiguchi and T. Hirashima, “Robust Simulator, a Method of
Simulating Learners' Erroneous Equations for Making Error-Based
Simulation,” in Proceedings of the Intelligent Tutoring Systems, 2006,
pp. 655-665.

[6] T. Horiguchi, T. Hirashima, and M. Okamoto, “Conceptual Changes in
Learning Mechanics by Error-based Simulation,” in Proceedings of the
International Conference on Computers in Education (ICCE), 2005,
Singapore, pp. 138-145.

[7] T. Hirashima, T. Horiguchi, A. Kashihara, and J. Toyoda, “Error-based
Simulation for Error-visualization and its Management,” International
Journal of Artificial Intelligence in Education, vol. 9, pp. 17-31, 1998.

[8] K.D. Forbus, J. Everett, L. Ureel, M. Brokowski, J. Baher, and S.
Kuehne, “Distributed Coaching for an Intelligent Learning
Environment,” in Proceedings of International Workshop on Qualitative
Reasoning, 1998, Cape Cod.

[9] K.D. Forbus, P. Whalley, J. Everett, L. Ureel, M. Brokowski, J. Baher,
and S. Kuehne, “CyclePad: An Articulate Virtual Laboratory for
Engineering Thermodynamics,” Artificial Intelligence Journal, 114: 297-
347, 1999.

[10] K.D. Forbus, “Articulate Software for Science and Engineering
Education,” in Forbus, K.D., Feltovich, P., Canas, A. (eds.) Smart
Machines in Education: The Coming Revolution in Educational
Technology, 2001, AAAI Press.

[11] S.M.F.D. Syed Mustapha, J.S. Pang, and S.M. Zain, “QALSIC: Towards
Building an Articulate Educational Software using Qualitative Process
Theory Approach in Inorganic Chemistry for High School Level,” Intl. J.
of AIED, 15(3): 229-257, 2005.

[12] A.Y.C. Tang, S.M.F.D. Syed Mustapha, R. Abdullah, S.M. Zain, and N.
A. Rahman, “Towards automating QPT model construction for reaction
mechanism simulation,” in the 21st International Workshop on

Qualitative Reasoning, C. Price and N. Snooke (Eds), June 2007,
Aberystwyth, United Kingdom, pp. 27-29.

[13] A.Y.C. Tang and S.M. Zain, “OntoRM: Ontology for Supporting the
Simulation of Organic Reactions in a Qualitative Reasoning
Environment,” in the proceedings of the 2nd International Conference on
Research Challenges in Computer Science, December 2010, Shanghai,
China.

[14] A.Y.C. Tang, S.M. Zain, and R. Abdullah, “Development and
Evaluation of Chemistry Educational Software for Learning Organic
Reactions Using Qualitative Reasoning,” Intl. J. of Education and
Information Technologies, Issue 3, Vol. 4, pp. 9-138, 2010.

Alicia Y.C. Tang is a senior lecturer at the University of Tenaga Nasional,
Malaysia. She obtained her Ph.D. from University of Malaya in 2011. Her

research fields include Qualitative Reasoning, Agent
Technology, Data Mining, and AI in Education. Alicia is
a member of APSCE, IEEE, and AIED Society.

Rukaini Hj. Abdullah received her Ph.D. from
University of Leeds, United Kingdom. She is attached to

the Faculty of Computer Science and IT, University of Malaya. Her research
interests are Natural Language Processing, AI in
Education, Information Retrieval, and Computer Based
Learning.

Sharifuddin Mohd. Zain received his Ph.D. in 1995
from Imperial College, London, United Kingdom. He is

an Associate Professor in the Department of Chemistry at University of
Malaya, Malaysia. His research interests include
Computational Chemistry, Application of Computers in
Chemical Research and Education, Artificial Intelligence
in Chemistry, Molecular Spectroscopy, and
Environmental Modelling. Sharifuddin is leading several
projects supported by the Ministry of Science,
Technology and Innovation (MOSTI), Malaysia. He is
also a Regional Editor for the Journal of Global

Environmental Engineering.

