International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:9, No:12, 2015

Development of a Serial Signal Monitoring Program
for Educational Purposes

Jungho Moon, Lae-Jeong Park

Abstract—This paper introduces a signal monitoring program
developed with a view to helping electrical engineering students get
familiar with sensors with digital output. Because the output of digital
sensors cannot be simply monitored by a measuring instrument such as
an oscilloscope, students tend to have a hard time dealing with digital
sensors. The monitoring program runs on a PC and communicates with
an MCU that reads the output of digital sensors via an asynchronous
communication interface. Receiving the sensor data from the MCU,
the monitoring program shows time and/or frequency domain plots of
the data in real time. In addition, the monitoring program provides a
serial terminal that enables the user to exchange text information with
the MCU while the received data is plotted. The user can easily
observe the output of digital sensors and configure the digital sensors
in real time, which helps students who do not have enough experiences
with digital sensors. Though the monitoring program was programmed
in the Matlab programming language, it runs without the Matlab since
it was compiled as a standalone executable.

Keywords—Digital sensor, MATLAB, MCU, signal monitoring
program.

[. INTRODUCTION

NCREASINGLY, many sensors come with a digital output

interface such as I’C or SPI. Unlike analog sensors, digital
sensors output data in 1's and 0's that can be directly read by an
MCU without the need for analog-to-digital conversions. The
feature makes hardware design simpler and more efficient. On
the other hand, engineers who do not have enough experiences
with digital sensors may have a difficulty in visualizing sensor
outputs since digital sensor data cannot be simply monitored by
an instrument such as an oscilloscope. The sensor outputs can
only be viewed after being read by an MCU. If the system in
which the MCU is incorporated has a display device, the sensor
data could be plotted on the device. This is, however, not the
case in most embedded systems.

Almost all commercial MCUSs are equipped with at least one
UART (Universal Asynchronous Receiver/Transmitter), which
facilitates asynchronous serial communication [1]-[3]. Once an
asynchronous serial communication channel is established
between an MCU and a PC, the MCU can easily transmit sensor
data read from one or more digital sensors to the PC. The sensor
data received from an MCU are binary values. To plot the data
in real time, a special monitoring program running on the PC is
required. Whereas serial communication is conducted
byte-wise, the digital sensors may have a resolution higher than
8 bits. As a result, the output of a sensor needs to be transmitted

J. Moon and L.-J. Park are with the Department of Electrical Engineering,
Gangneung- Wonju National University, 7 Jukhun-gil, Gangneung 210-702
South Korea, (e-mail: itsmoon@gwnu.ac.kr and ljpark@gwnu.ac.kr).

after being divided into two bytes and then reassembled into the
original value on the PC side. Additionally, the number of
sensors that the MCU reads may vary depending on situations
and requirements. To deal with the problems, a communication
protocol needs to be defined and to be shared between the
firmware running on the MCU and the monitoring program
running on the PC.

This paper introduces a monitoring program running on a PC
developed for plotting digital data transmitted by an MCU in
real time. The data is usually, but not necessarily, the output of
digital sensors read by the MCU. The received data can be
plotted in both the time domain and the frequency domain. The
program also includes a serial terminal via which text data can
be exchanged between the PC and the MCU while the received
data is plotted. In addition, the program allows users to
start/stop the transmission of data by issuing control commands
to the MCU. The monitoring program is programmed with the
C and Matlab programming languages. The developed program
allows digital sensor data to be easily observed in graphical
forms, thereby helping inexperienced students or engineers to
get familiarized with sensors with a digital interface.

II. FUNCTIONS OF THE PROGRAM

The developed monitoring program includes the following

functions:

e Selection of the communication baud rate,

e Selection of the signal sampling rate,

* Individual configuration of channel properties including
signal name, signal gain, and signal unit,

* Real-time plot of sensor data of up to 8 channels in both the
time and the frequency domains,

* Text terminal for transmitting/receiving text information,

e Transmission/reception of a set of 6 floating-point
numbers that could be possibly used to configure
parameters of digital sensors or filters implemented on the
MCU.

Fig. 1 shows a snapshot of the monitoring program, where
the output of two 3-axis accelerometers are plotted in the time
domain and some text messages received from an MCU are
displayed in the serial terminal. The monitoring program has
four tabs: time tab, spectrum tab, time+spectrum tab, and
channel setup tab. Each tab except for the channel setup tab has
pulldown menus on the left side and plotting areas on the right
side. The pulldown menus are for selecting signals to monitor

and for setting some plotting parameters like the time-axis limit.

The plotting area is positioned in the middle portion of the
program and the type of displayed plots varies depending upon
the currently chosen tab. The rightmost part of the program has

1420

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:9, No:12, 2015

three panels: a panel for configuring serial communication
parameters such as the serial port number and baud rate, a panel

for editing and transmitting a set of 6 floating-point parameters,
and a text terminal for exchanging text information.

0 Serial Signal Monitor v.2.0 (with Matlab 2015a) -0 n
File Graph Data Graph Options Help &
Time p Time+Spe: Channel Setup
Serial Connection
Signais | Link ¥ axes ¥ Scale: (@) utol () Manual Start Comm Port
. Disconnect
ACCOX e P
ar - 15
ACCO_Y Y] 3 ol Thte
ACCOZ w 2 0+ v {4 {,j e C Parameters
= e A \TH -
o I 0 X Y z
NONE 5] Sl) o
— g 2 "] A 2.34 3.288 a.109
Presets _‘ ! 5 B .238 -6.4778 7.32
ACCO v] - -1
J Send
Signals (Aux) w’ T Ifih >
WA \, 40 . Terminal
ACCIX w g
v = || | HELP ==sccccccscacaas 0
ACCLY w i Type one of the following commands
1 h: Show this screen
ACC1Z w 10 ¢ 5 i: .\‘P\,;m information
: Set MPUGRRR scale
NONE_ = _ A — : Set MPUGOR® LPF bandwidth
25 / O || P RS
WENA A o N
a tar I't1 1+ MY
Fresets (Aw) S \/\] | '\ 3| | MPUGBOR INFOrmation --------
< A 1 | i = Samnle rate: 1888 uz
ACCO v \V | Accelerometer bandwidth: 94 Wz
5 B A A L I s \ 5 Accelerometer scale: 8 g
End Teme (s) 1 11
2
051 105
v
D L A i ' A ' ' 0 < >
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s) Send
Connected

Fig. 1 A snapshot of the monitoring program

Fig. 2 shows the channel setup tab composed of two panels.
The upper panel sets channel properties. The signal name,
signal gain, and signal unit of each channel can be individually
configured. The signal names edited in this panel will appear in
the pulldown menus of each graph tab, thereby allowing the
user to select signals to monitor using the user-defined signal
names. The signal gains are used when converting binary data
received from the MCU into corresponding physical quantities
such as voltages or deg/s. Signals of up to 8 channels selected
among 20 channels can be monitored at the same time. If
necessary, the user can prevent some unnecessary signals from
appearing in the pulldown menus by unchecking the box in the
rightmost side of each column. As mentioned before, the
maximum number of signals that can be monitored at the same
time is 8. If the number of signals to be monitored exceeds the
maximum number, 8 signals need to be chosen one by one,
which might be inconvenient. The lower panel of the channel
setup tab allows the user to edit presets, each of which defines a
group of signals to monitor at the same time. The user can
choose signals of up to 4 channels simultaneously simply by
selecting a user-defined preset. The configuration and preset
data can be stored in a file. The configuration file is reloaded

automatically when the monitoring program is loaded.

III. IMPLEMENTATION OF THE PROGRAM

The length of sensor data is assumed to be 16-bit long but the
serial communication is performed byte-wise. In addition, the

number of sensor channels varies depending on the user’s input.

As a result, the sensor data cannot be transmitted to the PC in
the form of raw data because the monitoring program cannot
distinguish between lower and upper bytes. To deal with this
problem, the sensor data are packetized before transmission and
the monitoring program and the MCU exchanges packets. A
packet is composed of a start of packet delimiter, a payload, and
an end of packet delimiter. The size of a payload depends on the
types of packets.

The first byte of the payload of a packet is indicative of the
type of the packet. The MCU transmits to the PC data packets,
text packets, and parameter packets. A data packet carries a set
of sensor data read from one or more sensors. A text packet
carries text information to be displayed on the text terminal of
the monitoring program. A parameter packet carries a set of 6
floating-point parameters stored in the MCU. The program
transmits to the MCU command packets, text packets, and

1421

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438
Vol:9, No:12, 2015

parameter packets. A command packet carries one of the
following commands: the start of data transmission, the end of
data transmission, and querying for the 6 parameters stored in

the MCU. A text packet carries text information that the user
enters in the terminal. A parameter packet carries a set of 6
floating-point parameters to be stored in the MCU.

Channel Properties
| Name | Gain | Unit | Monitored |
| CHO ACCR_X 2.4414e-04 £ M A
—
CH1 ACCO_Y 2.44158.04 g M
| CH2 Acce_z 2.4414e-04 £ M
P — .
CH3 Temp@ 3.8518e-84 [4 %)
CH4 GYROB_X 3.8518e-84 deg/s M
||
CH5 GYROB_Y 3.8518e-84 deg/s M
CH6 | evroe_z 3.8518e-84 deg/s M
CH7 ACC1_X 2.44142-04 E M
CHS8 ACCLY 2.4414e-04 g M
CHY ACCL Z 2.4414e-04 g M
| cH10 Templ 3.8518¢.84 e M
CH11 GYRO1_X 3.8518e.84 deg/s M
CH12 GYROL_Y 3.8518e-04 deg/s M
L esaan | ovOOl T 2 Acita o~ Aanlc o V.
Presets
Name Signal 1 Signal 2 Signal 3 Signal 4
Acce ACCOX ~ |ACCOLY v ACCOZ v | NONE_
ACCL ACC1 X ~ |ACCLY | ACCL Z we | |_NONE_
GYROQ GYROO_X w |GYROOY | |GYROO_Z | | _NONE_
GYRO1 GROIX ~ GYROLY | |GYRO1Z | | NONE_
ACC_XZ ACCOX » (ACCOZ & ACCLX | ACC1Z

Sigrals
ACCOX
ACCO_Y ~
_-IICCO_Z ~
NONE_ ~
Presets

ACCO ~
Signals (Aux)
ACC1 X ~
ACCLY ~
ACLz &
NONE_ «
Presets (Aux)
ACCL v

GYRO_XZ GYROOX ~ |GYROO_Z | GYROLX | GYRO12Z
ACCO_X w | | _NONE v| NONE w | |_NONE
ACCO_X w | | _NONE | [NONE_ » | |_NONE

Fig. 2 The channel setup tab

[FunkYaxes ¥Scale: (@) Auto (O) Manual Start
2T Ava: : = 15
vg: -0.70 Vpp: 653 Max: 202 Min: -4.51
- ’x | .
= . I] [I =
s ANVAZUAA ARAAA A AT C
v i v\
- \ \\ |[. =
] iR W S PN WA d o]
=) A v s <
i L 5
g T e 231 Mk 15
vg: -0.43 Vpp: 512 Max: 211 Min: -3.02
) C,
: NVVWVVN VT
=1 % —
o
g | J RV VA
-5 : ~ 5
5Ma = . 3nc 15
vg: -0.59 Vpp: 6.02 Max: 297 Min: -3.05
) c
N :,
g 8]
[}
< <

Fig. 3 Plots shown in the time tab

1422

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:9, No:12, 2015

Signals [Munkyaxes YScae: (@ Auto (O)Manual Start
ACCO_X v
#FFTpoints: 2048 # Averages: 10 Overlap (%): 90
ACCOY v
ACCO_Z 21 1at:59 Hz (1.986289) 2nd: 0.0 Hz (0.748]54) 3rd: 6.3 Hz (0.686447 12
NONE w 2 1 o
> 1 >
o lr 1 11 A
o)
Presets :.:J ’g V. g
ACCO 3 Rl B, PY i
0 . 0
2r S0 Ha {1 SREBTEY | Ik £ H mas - 12
1st: 5.9 Hz (1.506875) 2nd: 5.4 Hz (0.524990) 3rd: 0.0 Hz (0.471306
Signals (Aux) c G
ACC1I X ~ ;, 1k 11 i'
) (&)
ACCLY & ", { =
et p Y ‘\-ﬂh‘
ACC1Z ~ 0 =& 0
Fig. 4 Plots shown in the spectrum tab
ACCD_X - Avg: -0.490 ACCO_Y - Avg: -0.70
ACCO_Z - Avg: -0.66 []FixY scale
2 -
1 n* '
) S W
E‘ J‘\ |) I| I.|' :\ \‘*\
S 0F '1 ;\\ 1 ['.r, TN
ve ,i)J« :MU AR IA
g-l i \ '.l- -4 Hﬁ NG
S j . v | 4
eV ¥ v ol
2P . [
v ‘U
3)))))
0 0.2 0.4 0.6 0.8 1 1.2 1.4 L6 1.8 2
time (s)
ACCOX - 1st: 49Hz ACCOY - ist: 4.9Hz
ACCO_Z - ist: 0.0Hz CJFicY scale
08
w 06
B oal f
=1
g
|
AR
, g ,-.i-(‘r \'.*:&“
10! 10° 10" 10?
freq (Hz)

Fig. 5 Plots shown in the time+spectrum tab

The packet delimiters and the packet type information are an
inevitable overhead entailed in the packetization. The packet
delimiters indicative of the start and end of a packet must be
unique in the sense that the delimiters must not occur in the
payload of a packet. In the case where one or more delimiters
are contained in the payload of a packet, the values should be
replaced with different ones, which cause an additional
overhead. The probabilistic overhead is 3/256 bytes per a byte
of data. To send a data packet containing n bytes of sensor data,

the MCU needs to send (1)n + 3 bytes probabilistically.

256

The maximum number of data packets that the MCU can send
per second, i.e., the maximum transfer rate, can be calculated
based on the information. The maximum data transfer rate is
dependent upon the number of sensor channels contained in a
data packet and the baud rate. Table I summarizes the
maximum data transfer rates that can be achieved at several
common baud rates. It should be noted that the maximum data
transfer rate is obtained based on the probabilistic calculation;
therefore it may not be achieved depending on the contents of
payloads. In addition, the data rate when transmitting 2

1423

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:9, No:12, 2015

channels of sensor data in a packet is not twice the data rate
when transmitting 4 channels of sensor data in a packet since
each packet requires two delimiters and a byte of the type of the
packet without regard to the payload size.

Parameters
X ¥ Z
A 2.345 3.285 3.1e9
B | .5.234 -6.4778 7.32

Fig. 6 The panel for editing floating-point parameters
Terminal

................. 1 1 e ———
Type one of the following commands

h: show this screen

i: mpuceee information

g: Set MPUGeee scale

f: Set MPUGE@@ LPF bandwidth

sensor Calibration
Sensor Calibration Completed

Fig. 7 The text terminal

TABLEI
MAXIMUM DATA TRANSFER RATES

The number of sensor channels contained in a packet

baud rate
2 4 6 8
38400 544.9 Hz 346.1 Hz 253.6 Hz 200.1 Hz
57600 817.4 Hz 519.2 Hz 380.4 Hz 300.2 Hz
115200 1.63 KHz 1.04 KHz 760.9 Hz 600.4 Hz
230400 3.27 KHz 2.08 KHz 1.52 KHz 1.20 KHz
250000 3.55 KHz 2.25 KHz 1.65 KHz 1.30 KHz

The main task of the monitoring program is to plot received
data in several graphical formats and to perform mathematical
operations on the received data set such as FFT (Fast Fourier
Transform). The Matlab provides a variety of useful plot
functions and allows easy data manipulation and mathematical
operations [4]; therefore, the Matlab programming language
was chosen to implement the monitoring program. It is,
however, inconvenient and inefficient to deal with packet
encoding and decoding with the Matlab language because
packet handling requires many arithmetic and logical

operations on byte arrays. It is more efficient to write the packet
handling functions in other programming languages like C that
run faster inherently than the Matlab language. As a result,
most of the program was written in the Matlab language and
only the functions for manipulating packets were written in C.
MEX functions written in C can be called by the Matlab code
just like other Matlab functions [5]. Despite the fact that the
monitoring program was written in the Matlab language, it runs
without the Matlab as it was compiled as a standalone
application.

IV. CONCLUSION

This paper gave a brief introduction to a monitoring program
developed for real-time plotting of sensor data received from an
MCU via an asynchronous serial communication interface. The
received data can be plotted in both the time and the frequency
domains. Also, the monitoring program can send commands to
the MCU to control the data transmission from the MCU and
can send a set of 6 floating-point numbers. The developed
program can be effectively used in educating students who are
not familiar with sensors with a digital interface in that the
outputs of digital sensors can be easily visualized using the
program.

REFERENCES

1 Atmel ATmegal28 Datasheet. Atmel, 2014.

1 STM32F10xxx Reference Manual. STMicroelectronics, 2014.
[3] STM32F40xxx Reference Manual. STMicroelectronics, 2014.

] MathWorks, Matlab Creating Graphical User Interfaces. MathWoks,
2015.
[5] MathWorks, Matlab C/C++, Fortran, and Python API Reference.
MathWoks, 2015.

1424

