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Abstract—The overall objective of this paper is to retrieve soil 

surfaces parameters namely, roughness and soil moisture related to 
the dielectric constant by inverting the radar backscattered signal 
from natural soil surfaces.  

Because the classical description of roughness using statistical 
parameters like the correlation length doesn't lead to satisfactory 
results to predict radar backscattering, we used a multi-scale 
roughness description using the wavelet transform and the Mallat 
algorithm. In this description, the surface is considered as a 
superposition of a finite number of one-dimensional Gaussian 
processes each having a spatial scale. A second step in this study 
consisted in adapting a direct model simulating radar backscattering 
namely the small perturbation model to this multi-scale surface 
description. We investigated the impact of this description on radar 
backscattering through a sensitivity analysis of backscattering 
coefficient to the multi-scale roughness parameters.  

To perform the inversion of the small perturbation multi-scale 
scattering model (MLS SPM) we used a multi-layer neural network 
architecture trained by backpropagation learning rule. The inversion 
leads to satisfactory results with a relative uncertainty of 8%. 
 

Keywords—Remote sensing, rough surfaces, inverse problems, 
SAR, radar scattering, Neural networks and Fractals.  

I. INTRODUCTION 
HE retrieval of information related to physical surface 
parameters is a major objective of many studies in remote 

sensing investigations especially SAR(Synthetic Aperture 
Radar) applications. In that context, modeling radar 
backscattering through natural surfaces has become an 
important theme of research and active remote sensing has 
shown its utility for many applications in hydrology, geology 
and other fields.  

Most traditional electromagnetic models [1][2] consider 
natural surfaces as single scale zero mean stationary Gaussian 
random processes. Roughness behavior is characterized by 
statistical parameters like the rms height s and the correlation 
length l. 

Recent studies have shown that in natural conditions the 
agreement between experimental measurements and 
theoretical values is usually poor due to the large variability of 
the correlation function. As a consequence, backscattering 
models have often failed to predict correctly backscattering 
 

  

[3,4].  Many mathematical works dealing with natural surfaces 
description have shown that they are better described as self-
affine random processes than as stationary processes.  

In the context of SAR applications, Mattia et al. [1][2][4] 
have described one dimensional rough surfaces as band 
limited fractal random processes and studied the impact of this 
multi-scale description on radar backscattering. However, 
natural surface roughness changes from one direction to 
another and one-dimensional profiles are then insufficient. 
Thus, bi-dimensional profiles are required to describe more 
adequately natural surfaces. In this paper, we propose a 
theoretical modeling approach using the small perturbation 
model to describe radar backscattering on multi-scale bi-
dimensional surfaces. 

Although significant progress has been made in the ability 
to acquire remotely sensed data, extracting soil moisture and 
roughness parameters of natural surfaces has been problematic 
for many reasons. In fact, many previous studies have dealt 
with model-based retrieval algorithm and have encountered 
many problems like the lack of information about the 
characteristics of natural surface roughness as well as the 
range of roughness parameters to use. In another hand, the 
uncertainties concerning the validity of the scattering models 
when applied to natural roughness conditions reduces the 
accuracy of the retrieval procedure. In addition, the relation-
ship between the backscattering coefficient and soil 
parameters is non linear and the problem of retrieving 
parameters may be ill-posed and it may be not possible to 
separate the contributions from different mechanisms, making 
necessary the retrieval of several parameters simultaneously. 

We propose in this paper a neural network based inversion 
procedure using a multi-layer neural network (NN) 
architecture trained by a backpropagation learning rule.  

In the first section, we present the multi-scale surface 
description and study the impact of this multi-scale roughness 
description on radar backscattering using the small 
perturbation model by investigating the sensitivity of 
backscattering to the new surface parameters and to the 
dielectric constant. 

In the second section, the neural network based inversion 
procedure is presented. The results and their accuracy are 
given in the last section. 
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II. CHARACTERISTICS OF NATURAL SURFACE ROUGHNESS 
AND THEIR EFFECTS ON RADAR BACKSCATTERING 

The weakness of the classical description of natural 
surfaces is the large spatial variability which affects the 
correlation function and makes classical roughness parameters 
very variable [1][2]. In that context, many previous works 
suggested that natural surfaces are better described as self 
affine random processes (1/f processes) than as stationary 
processes. The statistical properties of 1/f processes are 
invariant for scale transformation so that phenomena 
described by 1/f random processes occur at every spatial scale. 
The self-affine property of 1/f processes is well represented by 
orthonormal wavelet decomposition [6] in the same way as 
stationary processes (single scale processes) are very well 
described by  the Fourier decomposition.  

Previous works [1][2] have described one-dimensional 
surfaces by means of wavelet transform. In this paper, we 
model natural roughness as a multi-scale process having an 1/f 
spectrum with a finite range of spatial scales going from a few 
millimeters b (b⎠λ/10) to several meters (B⎠resolution cell) 
[1][2]. The surface is considered as a superposition of a finite 
number of one-dimensional gaussian processes each having a 
spatial scale [1]. 

Wornell has demonstrated that 1/f processes can be 
synthesized by exploiting a Karhunen-Loève expansion in 
terms of orthonormal wavelet functions [16]. 

One-dimensional natural surfaces description can be 
obtained by using an approximation of this expansion: 
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where 
m
nz  is a collection of gaussian random independent 

variables with variance  g22-mn, x a normalized distance with 

respect to an arbitrary length L=2bb and 
m
nψ  a collection of 

orthonormal wavelet. In this work, we have used 4thorder 
Daubechies wavelets.  In this model, zp(x) is a superposition 
of a finite number of random gaussian processes, each 
characterized by an increasing spatial scale. 

As natural roughness changes from one direction to 
another, one-dimensional profiles are insufficient. Thus, bi-
dimensional profiles are required to describe more adequately 
natural surfaces. Wavelet theory can be extended from one-
dimensional to two-dimensional case using the separable 
dyadic multi-resolution analysis introduced by Mallat [7] [8]. 
The bi-dimensional wavelet transform gives us respectively 
the vertical wavelet component (2), the horizontal wavelet (3) 
component and the diagonal wavelet component (4) of the 
height z considered as a 1/f process over a finite range of 
spatial scales going from an inner spatial scale b of a few 
millimeters to an outer spatial scale B of several meters. 
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 are a collection of uncorrelated zero 

mean Gaussian random variables. 
Their associated autocorrelation function (ACF) is given by 

the following equations: 
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where  i=V, H or D. 
The stationary parts of ρH , ρV and ρD  are respectively given 

by : 
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where ξ  and η  are the spatial horizontal and vertical 
extension 
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The mean variance of zi
p for i=D, H or V in (2), (3) and (4) 

is: 
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Fig. 1, Fig. 2, and Fig. 3 represent the height of three 
simulated multi-scale three-dimensional surfaces.  We have 
studied the impact of the multi-scale surface parameters 
namely ν (Fig. 1) and P (Fig. 2 and Fig. 3). 

It can be seen in Fig. 1 that for ν=1.1 the surface is rougher 
with a maximum height of 3.7 cm whereas for ν=2 the surface 
is smoother with a maximum height of 2.3 cm. 

 

 
Fig. 1 3D representation of the height for a multi-scale two-

dimensional surface with νx=νy=1.1; γx=γ1 =0.2 cm; γy=γ2 =0.3 cm 
and Zmax = 3.7cm 

 
In Figs. 2 and 3 we have varied the number of spatial scales 

respectively from P=5 to P=10. We can notice that the surface 
with a larger number of spatial scales is more complex.   
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Fig. 2 3D representation of the height for a multi-scale two-

dimensional surface with νx=νy=1.3; γy=γx =0.3 cm and P=5 
 

 
Fig. 3 3D representation of the height for a multi-scale two 

dimensional surface with νx=νy=1.3; γy=γx =0.3 cm and P=10 
 

III. IMPACT OF MULTI-SCALE DESCRIPTION OF TWO-
DIMENSIONAL NATURAL ROUGH SURFACES ON RADAR 

BACKSCATTERING 

A. The Multi-Scale Small Perturbations Model (MLS 
SPM) 

The main purpose of the present study is to develop an 
inversion model for soil moisture and multi-scale roughness 
parameters retrieval over bare soil surfaces using remotely 
sensed data. 

The retrieval of roughness and soil moisture soil surfaces 
parameters from backscattered data can be carried out by 
using analytical models like the Integral Equation Model 
[9][10], the Physical Optics or the Small perturbation model, 
empirical models like the Oh model or semi-empirical [11]-
[12]. The complexity of analytical models makes the inversion 
procedure difficult. The theoretical model used in this paper is 
the small perturbations model.  

Thus, before applying the inversion procedure, the 
sensitivity of the backscattering coefficient to surface and 
radar parameters is established by using the SPM model. 

 
Validity of the Small Perturbations Model 

The SPM model is used when the surface height standard 
deviation is much smaller than wavelength and the rms slope s 
is not high (ks<<0.3). 

 

Radar Backscattering Coefficient Expression: 
The backscattering coefficient according to the SPM leads 

to: 
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kx is the  x component of the incident wave number and  ri
c 

is respectively the horizontal, the vertical and the diagonal 
autocorrelation function for i =H,V and D. 
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To study the impact of the multi-scale roughness 

description, dielectric parameters and radar parameters on the 
backscattering coefficient we have varied each parameter of 
interest and analysed its impact on radar backscattering.  

B. Final Stage Sensitivity to MLS Roughness Parameters 
We have studied the sensitivity of the backscattering 

coefficient to MLS roughness parameters. We have 
represented the angular trends from 20 to 80 degrees. In the 
first step, we kept γ0 at 0.2 cm (Fig. 4 and Fig. 5) and varied 
the fractal parameter ν1 de 1.1 à 2.1 in both HH and VV 
polarizations for ten spatial scales. Surfaces with ν between 
1.7 and 2.1 can be considered as smooth where as surfaces 
with ν1=1.1 are quite rough. For all the simulations, the 
backscattering coefficient decreases with the incident angle. 
We notice that the backscattering coefficient decreases when 
ν increases which corresponds to a decreasing fractal 
dimension D corresponding to a smoother surface whose 
diffusion properties are dominated by specular reflection.  

In a following step, we kept ν at 1.1(Fig. 6 and Fig. 7) and 
at 2.1 and varied γ0 from 0.2 cm to 0.6 cm in both HH and VV 
polarization In both cases, we notice that the backscattering 
coefficient increases with γ0. 

 

 
Fig. 4  Backscattering angular trends in HH polarization for γ0 kept at 

0.2 cm and ν varied from 1.1 to 2.1and f=5.3 Ghz 
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Fig. 5 Backscattering angular trends in VV polarization for γ0   kept at 

0.2 cm and ν varied from 1.1 to 2.1; f=5.3 Ghz and P=10 
 

 
Fig. 6 Backscattering angular trends in HH polarization for ν kept at 

1.1 and γ0  varied from 0.2cm to 0.6cm; f=5.3Ghz and P=10 
 

 
Fig. 7 Backscattering angular trends in VV polarization for ν kept 
at 1.1 and γ0 varied from 0.2cm to 0.6cm; f=5.3 GHz and P=10 

 
C. Sensitivity to the Number of Spatial Scales 
We have studied the impact of the number of spatial scales 

P on radar backscattering for the same surfaces with the same 
multi-scales roughness parameters ν and γ0 for HH and VV 
polarization. (Fig. 8 and Fig. 9). 

These curves show that surfaces with the same roughness 
characteristics having a different number of spatial scales 
produce different backscattering coefficients. It can be seen 
that when P increases the backscattering coefficient decreases. 
In fact, surfaces with a higher number of spatial scales are 
more sensitive to roughness variations and specular reflection 
become more important. 

D. Document Modification Sensitivity to Soil Moisture 
Soil moisture is related to the complex dielectric constant ε. 

We have studied the impact of the real part of the dielectric 
constant ε1 and the imaginary part ε2 separately. Figs 10 and 
11 show the behavior of the backscattering coefficient when ε1 

is varied from 1 to 5 and ε2 kept at 1. We notice that the 
backscattering coefficient σ0 increases when ε1 increases but 
the variation is not very important. 

 

 
Fig. 8 Backscattering angular trends in HH polarization for P 

varied from 7 to 11 and f=5.35 Ghz 

 
Fig. 9 Backscattering angular trends in VV polarization for P 

varied from 7 to 11 and f=5.35 Ghz 
 

E.  Sensitivity to Radar Polarization 
We have studied the Impact of radar polarization on radar 

backscattering (Fig. 12).We notice that the signal in VV 
polarization is higher than in HH polarization.  

F.  Sensitivity to Radar Frequency 
We have studied the impact of radar frequency on the 

backscattering coefficient. 

 

 
Fig. 10   Backscattering coefficient angular trends for ε2 =1   

and ε1  from  1 to 5 for HH polarization 
 

Fig. 13 and Fig. 14 show the SPM MLS behavior when the 
frequency is varied from 3 to 6.2 GHz for different incident 
angles. We notice an increasing trend of the backscattering 
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coefficient with the radar frequency.  
 

 

 
Fig. 11 Backscattering coefficient angular trends for ε2 =1  

 ε1 varied from 1 to 5 for VV polarization 

 

 
Fig. 12 Backscattering angular trends for HH and VV polarizations 

for the same multi-scale surface 

IV. METHODOLOGY OF THE RETREIVAL PROCEDURE 

A. Inversion Procedure  
In this section, an algorithm to retrieve multi-scale 

roughness parameters and soil moisture parameter is 
illustrated. The method consists of inverting the SPM direct 
model using a multi-layer perceptron architecture [10] and 
[17] (Fig. 27).  

The inversion consists in retrieving roughness and soil 
moisture parameters γ1, γ2, ν1, ν2, ε1 and ε2 by using as input 
parameters the radar backscattering coefficients σHH,, σVV  and 
varying the incident angle θ from 30 to 60 degrees. The NN is 
trained by learning rules using the backpropagation method. 

Simulated data sets based on the SPM surface scattering 
model are used to train the neural network. 

Before the training of the neural network for the parameters 
retrieval some considerations concerning the information 
content of the training data need to be made. If the training 
data are not sensitive to some of the parameters of interest the 
inversion for these parameters would be ineffective [10]. 

In this study, the direct problem is represented by the SPM 
model. Thus, a sensitivity analysis of the SPM model has been 
performed and presented in the second section to examine the 
dependence of the output of the scattering model to the inputs 
parameters. When the outputs of the scattering model became 
saturated or insensitive to a parameter, the parameter inversion 
range was narrowed. The range of parameters used in this 
inversion method is given in Table I. 

 

 
Fig. 13 Backscattering coefficient angular trends in HH polarization 

for 5 different frequencies from 3 to 6.2 KHz 
 

 

 
Fig. 14 Backscattering coefficient angular in VV polarization for 5 

different radar frequencies from 3 to 6.2 Ghz 
 

TABLE I 
RANGE OF PARAMETERS 

Range Lower bound Upper bound 

Vertical roughness γ0  0.2 cm 0.8 cm 

horizontal roughness  ν 1.1 2.1 

Complex dielectric   
constant: ε1 -j ε2 

1-j 8-5 j 

 
B. Neural Network Training 
The first step in the inversion procedure is the generation of 

a set of training patterns. In this study, a total of 320 training 
patterns were generated by using each of the signal models σ 
(Ξ) of the SPM backscattering coefficient. The parameters of 
interest Ξ used to generate the training patterns were randomly 
selected from within the range of parameters given by the 
sensitivity analysis.  

Fig. 15 represents the inversion process configuration. We 
have a total of 8 inputs corresponding to the backscattering 
coefficients σHH,, σVV for 4 incident angles and 6 outputs.  We 
have used 2 hidden layers containing 40 neurons after several 
tests. 

C. Inversion Algorithm Results 
To illustrate the inversion techniques described in the 

previous section we apply them to data simulated by the SPM. 
Before using the NN for the inversion we have to calculate 

the mean rms error of the network. We found that it converges 
well to a value smaller than 0.05 after 18000 iterations so that 
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Backscattering coefficient versus 
 incident angular with nu=1.3 

Backscattering coefficient versus 
 incident angular with nu=1.3 

the NN is ready for the inversion procedure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table II and Table III present respectively the original and 

the retrieved data for three sets of data, S1 S2 and S3.  
 
 

TABLE II 
ORIGINAL VALUES 

 S1 S2 S3 
ε1 2.0000 4.0000 6.0000 
ε2 2.0000 1.0000 3.0000 
ν1 1.3000 1.3000 1.8000 
ν2 1.3000 2.1000 1.1000 
γ1 (cm) 0.2000 0.3000 0.1000 
γ2 (cm) 0.2000 0.3000 0.5000 

 
TABLE III 

RETRIEVED VALUES AFTER THE INVERSION BY THE NN 
 S1 S2 S3 
ε1 2.3611 3.9045 5.9694 

ε2 1.9111 0.7259 3.0217 
ν1 1.2800 1.3152 1.7843 
ν2 1.3875 1.9710 1.1493 

γ1 (cm) 0.2130 0.2771 0.1093 
γ2 (cm) 0.2079 0.2861 0.4997 

 
We can notice that the inversion has given quite satisfactory 

results as the original values were retrieved with an error of 
8%. 

V. CONCLUSION 
In this study, we have used a multi-scale roughness 

description using the wavelet transform and the Mallat 
algorithm to describe natural surface roughness and 
investigated the impact of this description on radar 
backscattering through a sensitivity analysis of backscattering 
coefficient to the multi-scale roughness parameters. This 
sensitivity study allowed us to determine the range of 
parameters to use in the training of the network. 

To perform the inversion of the small perturbation multi-
scale scattering model (MLS SPM) we used a multi-layer 
neural network trained by a backpropagation learning rule.  

The inversion procedure has given quite satisfactory results 
with a mean error of 8 %. 

Future work will be dedicated to the inversion of real data. 
 

REFERENCES   
[1] F. Mattia, and T. Le Toan, “Backscattering properties of multi-scale 

rough surfaces”. Journal of Electromagnetic Waves and Applications, 
13: 493-528, 1999. 

[2] F. Mattia, and T. Le Toan, “ An analytical, numerical, and experimental 
study of backscattering from multi-scale soil surfaces.” Radio Science, 
Volume 36, Number 1 : 119-135, 2001. 

[3] L.E. Church,. “Fractal surface finish.” Applied Optics, vol.27, n.8, 1998. 
[4] M. Davidson, T. Le Toan, F. Mattia, G. Satalino, T. Manninen, and M. 

Borgeaud,. “On the characterisation of agricultural soil roughness for 
radar sensing studies.” IEEE Trans. Geosc.Rem.Sens., 38: 630-640, 
2000. 

[5] C.A. Guerin, M. Holschneider, and M. Saillard, “Electromagnetic 
scattering from multi-scale rough surfaces.”  Waves Random Media, 7: 
331-349, 1997. 

[6] I. Daubechies, “Ten lectures on Wavelet”. CBMS-NFS Lecture Notes, 
NR.61, SIAM, 1992. 

[7] S.G. Mallat, “Theory of multi-resolution signal decomposition: The 
Wavelet representation”, IEEE Trans.Pattern analysis and machine 
intelligence, vol II., 7, 1989. 

[8] L. Bennaceur, Z. Belhadj, and M. R. Boussema. "A study of radar 
backscattering multi-scale bi dimensional surface", The 2002 IEEE 
International  Geoscience and Remote Sensing Symposium and the 24 th 
Canadian Symposium on Remote Sensing, Toronto, Canada,  June 2002. 

[9] A.K. Fung, Z. Li, and K.S. Chen, ”Backscattering from a randomly 
rough dielectric surface”. IEEE Trans.Geosc.Rem.Sensing, 30 : 356-363, 
1992. 

[10] A.K. Fung, Microwave scattering and emission models and their 
applications Artech House, 1994. 

[11] R. M. Axline, and A.K. Fung,  “Numerical computation from a perfectly 
conducting random surface”, IEEE, Trans.Antennas Propagat., 26 : 488-
582, 1978. 

[12] T. K. Chan, Y. Kuga, A. Ishimaru, and C.T.C. Le, “Experimental studies 
of bistatic scattering from two-dimensional conducting random rough 
surfaces”. IEEE Trans.On Geosc. And Remote sensing, Vol. 34, No.3, 
1996. 

[13] R.T Shin, Theory of Microwave Remote Sensing, John Wiley, New 
York, 1985. 

[14] B.B., Mandelbrot, and J.W. Van Ness,1968. “Fractional Brownian 
motions, fractal noises and applications”. Siam Rev., 10. 

[15] T., Feder, Fractals, Plenum Press, 1988. 
[16] G.W.,Wornell, “ Wavelet-based representation for the 1/f family of 

fractal process”, Proc IEEE, vol. 81, October 1993. 
[17] M., Dawson, A.K Fung. “A robust statistical based estimator for soil 

moisutre retrieval from radar measurments. ” 
[18] L. Bennaceur, R. Bennaceur, Z. Belhadj, and M. R. Boussema, A 

sensitivity analysis of radar backscattering coefficient to multi-scale 
roughness description and radar parameters using the small perturbation 
model. Proceedings of ICTTA 04, Damascus, Sirius, April 2004. 

Multi-angle data of σHH 
and σVV 

Neural Network data    
σHH(30°) σHH(40°) σVV(50°) σVV(60°)  

40 neurons 

40 neurons 
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                                                γ1    γ2    ν1     ν2      ε1      ε2 

                      
Fig. 15 Inversion process configuration 
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