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Abstract—This work attempts to improve the permselectivity of 

poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor 
applications on Pt microelectrode, using constant potential 
amperometry and cyclic voltammetry. Percentage permeability of the 
modified PPD microelectrode was carried out towards hydrogen 
peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity 
represents the percentage interference by AA in H2O2 detection. The 
50-µm diameter Pt disk microelectrode showed a good permeability 
value toward H2O2 (95%) and selectivity against AA (0.01%) 
compared to other sizes of electrode studied here. The electrode was 
further modified with glutamate oxidase (GluOx) that was 
immobilized and cross linked with glutaraldehyde (GA, 0.125%), 
resulting in Pt/PPD/GluOx-GA electrode design. The maximum 
current density Jmax and apparent Michaelis constant, KM, obtained on 
Pt/PPD/GluOx-GA electrodes were 48 µA cm-2 and 50 µM, 
respectively. The linear region slope (LRS) was 0.96 µA cm-2 mM-1. 
The detection limit (LOD) for glutamate was 3.0 ± 0.6 µM. This 
study shows a promising glutamate microbiosensor for brain 
glutamate detection.  

 
Keywords—Brain, Glutamate, Microbiosensor. 

I. INTRODUCTION 
LUTAMATE (Glu) is an important neurotransmitter in 
the mammalian brain. The neurotransmitter plays a main 

role in development of brain, neurotransmission, synaptic 
plasticity, neurotoxicity and is involved in neurological 
disorders: ischemia [1], [2] schizophrenia [3], epilepsy [4], 
[5], Alzheimer’s disease (AD) [6], [7], and Parkinson’s 
disease (PD) [8]. A motivation for a better understanding 
about the function of glutamate as a neurotransmitter in brain 
it is crucial for the observation of extracellular glutamate 
levels released from neurons and glial cells [9]. 

Recent discoveries have revealed that glutamatergic 
neurotransmission in the central nervous system (CNS) is 
mediated by a dynamic interaction between neurons and 
astrocytes which is most abundance of glutamate level in 
hippocampus where the glutamate receptor is the major 
excitatory receptor [10], [11], [31]. There are several methods 
applied for brain glutamate detection such as magnetic 
resonance [6], capillary electrophoresis [12], [13], high 
performance liquid chromatography (HPLC) [14] and on-line 
microdialysis [15], [16]. The interest of electroanalytical 
neuroscientists in brain glutamate detection using modified 
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electrodes is due to their advantage in term of high sensitivity 
and selectivity, reproducibility, low cost, and fast and accurate 
results. Biosensors are particularly helpful in the 
understanding of brain neurotransmitter physiology especially 
in vivo [17]-[19]. A key design criterion for implantation of 
in-vivo biosensors is the need to minimize the size without 
compromising H2O2 permeability and AA selectivity and 
sensitivity, thus reducing brain tissues damage. In this study, 
we focused on comparing different electrode sizes and several 
electrode architectures. 

II.  MATERIALS AND METHODS 
L-Glutamate (Glu), glutamate oxidase from Streptomyces 

sp. (GluOx), glutaraldehyde (GA), o-phenylenediamine (o-
PD), L-ascorbic acid (AA), and H2O2 (30% w/w, aqueous 
solution) were obtained from Sigma Aldrich, without further 
purification. The background electrolyte used for both PPD 
electropolymerization and calibration before and after PPD 
modification was a phosphate-buffered saline (PBS). PBS 
buffer was prepared of 300 mM, pH 7.46 consisting of NaCl 
(Merck, 150 mM), NaOH (Sigma, 40 mM) and NaH2PO4 
(Sigma, 40 mM). All solutions were freshly prepared on the 
day the experiments were carried out. 

A.  Fabrication of Working Electrode 
The platinum–iridium (Pt-Ir) (90:10) working electrodes 

used throughout this study were fabricated using stress 
relieved Teflon® insulated wire, of internal diameter 125 µm 
(5T), 25 µm and pure platinum (99.99) of internal diameter 50 
µm. Pt electrodes were prepared from 4 cm length of Teflon 
coated wire. At one end of the wire, approximately 3 mm of 
Teflon was stripped away using scalpel to expose the bare 
wire and was soldered into gold connectors. The other end of 
the electrode was cut again to get a fresh cut disk. The bare Pt 
electrodes were then modified using various methods.  

B. Electropolymerization: Poly (o-Phenylenediamine) 
(PPD) Preparation 

In this study PPD was coated on top of Pt wire using either 
amperometric or cyclic voltammetry (CV) scan technique. A 
fresh PBS stock (pH 7.46) was prepared to produce 300 mM 
of o-PD. A 25 ml of stock solution of o-PD was prepared by 
dissolving 0.811 g approximately in a 25 ml volumetric flask 
with nitrogen (N2) saturated PBS with the aid of a sonicator 
until it dissolved. Electropolymerization of o-PD in 
amperometric technique was carried out at a constant potential 
of +700 mV vs. Ag/AgCl for 30 min. Electropolymerization 
with CV was carried out by scanning the potential from 0 to 
+700 mV with scan rate 20 mV s-1 over 60 cycles [24]. The 
modified electrode is abbreviated as Pt/PPD. 
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C.  Enzyme Immobilization 
Pt/PPD was dipped in the GluOx solution (200 U ml–1) 

which was diluted in 1.0 ml of distilled water in an Eppendorf 
tube five times (~0.5 s); electrodes were air dried for 5 min 
between each dip. The number of GluOx dips on 
Pt/PPD/GluOx was investigated in this work.  

D.  Glutaraldehyde (GA, 1%)  
After GluOx immobilization on Pt/PPD, electrodes were 

then dipped in 1% GA by dipping the electrodes (~0.5 s) once 
and air dried for 5 min to produce Pt/PPD/GluOx-GA. Effects 
of GA concentration on Pt/PPD/GluOx-GA were studied. 

E. Instrumentation and Software 
Electropolymerizations and calibrations were performed in 

a standard three-electrode electrochemical cell. An Ag/AgCl 
with 3 M KCl was used as reference electrode and a stainless 
steel needle served as an auxiliary electrode. Constant 
potential amperometry was performed at +700 mV applied 
potential using Autolab (Netherland) controlled by software 
1.7 NOVA. +700 mV vs. Ag/AgCl with a scan rate of 20 mV  
s-1 over 60 cycles. Meanwhile, the different modification of Pt 
electrodes served as the working electrode. 

F. Amperometric calibrations 
All hydrogen peroxide (H2O2) and ascorbic acid (AA) 

calibrations were performed in 20 ml PBS using amperometry. 
After a stable current was achieved approximately after 45 
min, aliquots of AA interference were administered and 
followed by administration of Glu (10, 20, 40, 100, 200 µL 
giving a final concentration of 1 mM). H2O2 calibrations 
ranged from 0 to 0.1 mM and AA calibrations in the range 0–1 
mM were performed on all electrodes before and after 
modification in nitrogen saturated PBS. All experiments were 
carried out at room temperature. The sensitivity of the various 
coated electrodes was determined by calculating the slope of 
the analyte calibration curve by linear regression analysis. 
Selectivity value was calculated as a ratio of sensitivity of 
each interfering species to H2O2 sensitivity on a molar basis. 
The steady-state AA calibration at Pt/PPD is distinctively non-
linear, forming a flat plateau of response. This non-linear 
calibration has been interpreted in terms of self-blocking by 
AA or its oxidation products, trapped in the polymer matrix 
[20]. The values are reported are mean of current density ± 
standard deviation (SD) with n being the number of sensors. 

III. RESULTS AND DISCUSSION  
An important approach in recent biosensor development is 

modification of the electrode so that it is suitable for 
implantation in brain tissue, especially for glutamate 
monitoring. In this investigation, electrode diameters 
determine the area of tissue damage caused by the insertion of 
the probe. The implantable biosensor must be able to reject 
electrochemical species by incorporation of a permselective 
membrane coating on the surface of the electrode, such as 
electropolymerization of PPD [21], [22] which also facilitates 
enzyme immobilization [23].  

A.  H2O2 and AA Calibration on Bare Electrodes 
The H2O2 sensitivity of a series of different diameters of 

disk electrode is compared in Table I. The sensitivity of bare 
Pt towards H2O2 and AA was calculated according to 
previously reported work [24], [25].  

 
TABLE I 

SENSITIVITY OF PT BARE ELECTRODES TOWARDS H2O2 AND AA 

The sensitivity of electrodes towards H2O2 and AA for different diameters 
of bare Pt disk. Mean of current density (µA cm-2 mM-1) ± standard deviation 
(SD).  

 
As exhibited in Table I, Pt25 bare electrodes have the 

highest current density with correlation coefficient, R2= 0.998 
followed by Pt50, R2= 0.999 and Pt125 with the lowest 
sensitivity, yet still having a high value of R2= 0.998. Thus 
there was a difference in signal response between the three 
different sizes of diameter, although they gave a linear plot in 
the range of concentration 0–0.1mM. Meanwhile the 
calibration for AA, Pt25 also showed the highest slope of 
current density compared to other sizes of electrode. There 
was no significant difference between H2O2 and AA slopes for 
Pt125 and Pt50. Therefore, Pt25 could be the most suitable for the 
development of biosensors since it is a smaller size among the 
other electrodes and gave a better performance in terms of 
measuring H2O2 and AA. 

B. H2O2 and AA Calibration on Pt/PPD Electrodes 
Among the advantages of Pt/PPD in biosensor design are 

the high permeability to the oxidase transduction molecule 
H2O2 [23] and its ultra-thin dimension on the electrode surface 
that enables enzyme immobilization adequately without any 
reaction activity [22]. In addition, for in vivo neurochemical 
monitoring, the PPD membrane is stable over a period of 
continuous measurement [26]. Furthermore, the ability of PPD 
to reject AA is an important property that enables the 
detection of neurochemicals in vivo [27]-[29]. 

We observed that bare Pt25 showed a better measured H2O2 
and AA sensitivity. However, after the electropolymerization 
of PPD on the electrode surface, Pt50/PPD (302 ± 28µA cm-2 

mM-1, R2= 0.999) showed a higher current for calibration of 
H2O2, followed by Pt125/PPD (180 ± 27µA cm-2 mM-1, R2= 
0.999).  

The response in AA calibrations for PPD modified 
electrodes formed a flat plateau (graph not shown). Both 
Pt50/PPD (1.7 ± 0.7µA cm-2 for 1mM) and Pt125/PPD (1.2 ± 3.6 
µA cm-2 for 1mM) showed a small difference in value. This 
indicated that the PPD layer deposited on the electrode surface 
acted as barrier to AA which is an interference species in brain 
extracellular fluid (ECF). Thus, H2O2 gave a higher response 
compared to AA in terms of current density for Pt/PPD. 
Meanwhile, Pt25/PPD showed a high current density of AA 

Pt bare 
electrode diameter 

n=3 

Sensitivity 
(µA cm-2 mM-1) ± SD 

H2O2 AA 
125 µm (Pt125) 181 ± 11 188 ± 48 
50 µm (Pt50) 319 ± 16 207 ± 56 
25 µm (Pt25) 732 ± 110 342 ± 16 
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Fig. 2 The Glu response at Pt50/PPD/GluOx-GA (0.125% GA) 

biosensor, showing the Michaelis-Menten calibration curve. The 
Jmax=48 µA cm-2and KM=50 µM were obtained 

IV. CONCLUSION 
The purpose of this work was to develop a glutamate 

biosensor; Pt50/PPD/GluOx-GA was chosen because of its low 
permeability and high selectivity against AA, the main 
interference species in brain analysis. This rejection of 
electroactive interference was due to the electropolymerized 
PPD which formed an ultra-thin layer with good sensitivity to 
both exogenous and enzyme-generated H2O2.  
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