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Abstract—Static and dynamic balance are essential in daily and 

sports life. Many factors have been identified as influencing static 

balance control. Therefore, the aim of this study was to apply the 

(XCoM) method and other relevant variables (CoP, CoM, Fh, KE, P, 

Q, and, AI) to investigate sport related activities such as hopping and 

jumping. Many studies have represented the CoP data without 

mentioning its accuracy so several experiments were done to 

establish the agreement between the CoP and the projected CoM in a 

static condition. 5 healthy male were participated in this study (Mean 

± SD:- age 24.6 years ±4.5, height 177cm ± 6.3, body mass 72.8kg ± 

6.6). Results found that the implementation of the XCoM method 

was found to be practical for evaluating both static and dynamic 

balance. The general findings were that the CoP, the CoM, the 

XCoM, Fh, and Q were more informative than the other variables 

(e.g. KE, P, and AI) during static and dynamic balance. The XCoM 

method was found to be applicable to dynamic balance as well as 

static balance. 

Keywords—Centre of Mass, static balance, Dynamic balance, 

extrapolated Centre of Mass.  

I. INTRODUCTION

URING upright standing, the body sways in the anterior-

posterior (AP) and medio-lateral (ML) directions. This 

sway is characterized by the excursions of the Centre of 

Pressure (CoP, when using a force platform) and the Centre of 

Mass (CoM when calculated from motion analysis). In steady 

standing, both CoP and CoM must be within the Base of 

Support (BoS) this is defined as the ability to maintain the 

body's CoM over its BoS [1] and occurred when the CoM “the 

balancing point of the body which in static standing 

circumstances means all torques are average to zero” [2] and 

CoP “the point of application of force within the BoS that a 

subject applies to the support surface while attempting to stand 

still”. Hof et al. [3] introduced a novel referred to it as the 

“extrapolated Centre of Mass” (XCoM) method for estimating 

dynamic balance such as hopping or jumping. The velocity of 

the CoM can influence balance behavior. Hof et al. referred to 

it as the XCoM method and this takes into account the velocity 

of the CoM with the subject modeled are as an inverted 

pendulum. The XCoM defined as the position of the vertical 

projection of the CoM plus a velocity correction factor which 

together should lie within the BoS [3]. 

Other mechanical variables may be related to balance [such 

as Kinetic Energy (KE), momentum (P), impulse (I) and

angular momentum (H)] and these need to be quantified and 
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evaluated in terms of whether they can provide further 

information about balance.  

In addition, it is of interest to establish whether the XCoM 

method commonly used for static balance can be extended to 

evaluate dynamic balance in sport activities such as hopping, 

and in jumping. Therefore, this study aims to develop methods 

to evaluate these mechanical variables that are most suited to 

investigate dynamic balance. In addition to develop a suitable 

methods for studying static and dynamic balance in a sport 

context, apply the XCoM method to a range of sport activities 

such as hopping and jumping, and investigate which 

mechanical variables are most suited to investigate dynamic 

balance. 

II. METHOD 

Few pilot experiments were made to examine the 

apparatus’s functions such as testing the comprehensive 

synchronization between systems e.g. kinematic system 

(Vicon), kinetic system (kistler force platforms) and pressure 

mat (RS scan).  

A. Participants 

Participants in this study were 5 healthy male (Mean ± SD:- 

age 24.6 years ±4.5, height 177cm ± 6.3, body mass 72.8kg ± 

6.6). They had no history of problems of postural instability. 

The main requirement was to perform normal in a set of 

different balance tests. Each participant signed the consent 

form that complied with the testing information sheet  

B. Equipment 

The ground reaction force (GRF) during various static and 

dynamic balance activities was evaluated by using 2 force 

platforms, the first (Kistler 9281B11, Kistler, Switzerland, 

dimensions 400 x 600mm) was level with the floor of the 

laboratory. The participant was required either to stand on this 

platform during standing tests or to land on it in hopping and 

jumping tests. The second Kistler force platform (9287B, 

Kistler, Switzerland, dimensions 600 x 900mm), was 20 cm 

higher than floor level and positioned next to the built-in 

platform. It was used for take-off in the hopping and jumping 

movements. Both force platforms recorded ground reaction 

forces and CoP at 1000 Hz sampling rate (12 bit A/D 

conversion).  

The effective BoS was measured by a pressure mat: 

Dimensions (1 x 0.4 x 0.008m) with active sensor surface 

(0.98 x 0.32m), the number of sensors is 8192, the sensitivity 

0.27 - 127 (N/sq.cm) and the maximum sample frequency 500 

(Hz). The model used was a Footscan® 3D Balance mat 

(RSscan International, The Belgium).  
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In static balance, both the medio-lateral (FML) and anterior-

posterior (FAP) forces fluctuate around a constant level 

(nominally zero). These force values are lower in static 

balance than in dynamic balance. The FML and FAP charts are 

similar for the static balance but are different in profile and in 

values for the dynamic balance. During take-off (solid arrow) 

and landing (dotted arrow) stages in this activity the FML and 

FAP change their shape. The FML curve increases during take-

off to shift body weight above the preferred take-off foot for 

landing. After landing, there is a marked oscillation from 

positive to negative values before settling down, indicating a 

period of instability. The FAP curve increases as body weight is 

shifted forward during take-off with a reverse force created 

during landing to maintain balance. The FAP force values are 

also higher during dynamic balance particularly during the 

take-off and landing phases. The values for FML and FAP are 

given in Table I show that the FAP is greater than the FML in 

both static and dynamic activities. The static forces are 

considerably lower than the dynamic forces. The landing 

forces are greater than the take-off forces.  

In static balance (2-feet flat eyes open), the mean of the 

RMS values for FML and FAP are given in Table I and show 

that event tough the values are small the FAP is larger than FML

for the static activity. 

In dynamic balance test (Jumping on tip toes), the peaks 

values for FML and FAP are also given in Table II and show that 

the FAP is larger than FML for in both take-off and landing 

phases due to the nature of the event (direction of the jump) 

CoPML and the CoPAP change their shape. The CoPML curve 

fluctuates during the take-off due to shifting body weight 

between feet (dotted line). At landing, the other foot absorbs 

the impact (solid line) before settling down. The CoPAP curve 

increases while shifting the body weight forward during take-

off and show a reverse in direction during landing to maintain 

balance. The mean of the RMS values for CoPML and CoPAP

are given in Table II and show that the CoPAP is a bit larger 

than the CoPML for the static activity. While in dynamic 

activity, the mean of range for CoPML and CoPAP which are 

also given in Table II show that the CoPML is larger than 

CoPAP during take-off when shifting body weight over the 

dominant foot for jumping as the available BoS is larger in 

ML direction, during landing the CoPML is a bit larger than 

CoPAP as the available BoS is larger in ML direction and 

individual use this obtainable BoS to maintain balance. 

TABLE I

MEAN OF RMS OF 3 TRIALS (N = 5) OF FORCES IN BOTH MEDIO-LATERAL 

(ML) AND ANTERIOR-POSTERIOR (AP) DIRECTIONS FOR STATIC BALANCE (2-

FEET FLAT EYES OPEN) AND THE MEAN OF PEAKS OF FML AND FAP FOR 

DYNAMIC BALANCE (JUMPING ON TIPTOES)

SUBJECTS

STATIC (RMS) DYNAMIC (PEAK) 

FML(N) 
FAP

(N) 

Take-off LANDING 

FML

(N) 
FAP (N) 

FML

(N) 

FAP

(N) 

SUBJECT 1 0.32 3.121 43.07 175.9 86.66 245.8 

SUBJECT 2 0.37 2.970 37.13 178.3 88.03 255.1 

SUBJECT 3 0.28 3.020 46.18 181.3 85.83 251.2 

SUBJECT 4 0.311 3.050 41.79 176.8 80.87 240.0 

SUBJECT 5 0.291 2.885 42.57 175.4 85.63 248.5 

GRAND 

MEAN
0.314 3.009 42.15 177.5 85.40 248.1 

SD 0.035 0.088 3.26 2.3 2.70 5.7 

2. Centre of Pressure (CoP) 

Fig. 6 illustrates the Centre of Pressure in both mideo-

lateral (CoPML) and in anterior-posterior (CoPAP) directions 

during static balance (2 feet flat eyes open) and dynamic 

balance (jumping on 2 feet tiptoes) in relation to the functional 

BoS (straight dotted lines). 
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TABLE IV 

MEAN OF RMS OF 3 TRIALS (N = 5) OF THE COMAP AND THE XCOMAP IN THE 

ANTERIOR-POSTERIOR (AP) DIRECTION FOR STATIC BALANCE (2-FEET FLAT 

EYES OPEN), AND THE MEAN OF RANGE OF COMAP AND THE XCOMAP FOR 

DYNAMIC BALANCE (JUMPING ON TIP TOES). (UNITS = M) *NOTE: THE 

LANDING LOCATIONS ARE VARIED FROM TAKE-OFF

SUBJEC

T

STATIC (RMS) DYNAMIC (RANGE) 

Take off LANDING 

CoMA

P

XCoMA

P

CoMA

P

XCoMA

P

CoMA

P

XCOMA

P

SUBJEC

T 1 

0.007 0.012 0.227 0.524 0.143 0.156 

SUBJEC

T 2 

0.008 0.014 0.228 0.535 0.145 0.159 

SUBJEC

T 3 

0.007 0.013 0.230 0.560 0.148 0.158 

SUBJEC

T 4 

0.01 0.016 0.233 0.551 0.147 0.157 

SUBJEC

T 5 

0.009 0.014 0.230 0.544 0.146 0.157 

GRAND 

MEAN

0.008 0.014 0.229 0.543 0.146 0.157 

SD 0.001 0.001 0.002 0.014 0.002 0.001 

Static balance 

Dynamic balance 

Fig.  8 The Ptotal and the PML-AP in both static balance (2-feet flat eyes open) and dynamic balance (jumping on 2 feet tiptoes). (Units= kg.m.s-1)

In static balance, the subject has a low velocity and so the 

total momentum is low. These values increase during the 

dynamic balance particularly during take-off and landing 

phases. In dynamic balance the Ptotal is high due to the subject 

needs for a high velocity during take-off. The PAP is much 

higher than the PML because subject’s velocity in anterior-

posterior direction is greater than in medio-lateral direction. 

The PML curve increases during the take-off when subjects 

accelerate their CoMML to shift body weight above the 

preferred take-off foot (dotted line, see Fig. 8) and at landing 

when absorbing the impact before settling to a steady value. 

The PAP curve increases while shifting body weight forward 

during landing (solid line, see Fig. 8) and in maintaining 

balance during landing.  

The mean of RMS of peaks values for PTotal, PML, PAP and 

PV directions are given in Table V and show that the Ptotal is 

greater than the PML and PV and nearly equals the PAP for the 

static activities as individuals apply momentum in AP 

direction.  
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TABLE V 

MEAN OF RMS OF 3 TRIALS (N = 5) OF THE PTOTAL, PML, PAP AND PV

DIRECTIONS FOR STATIC BALANCE (2-FEET FLAT EYES OPEN) VARIABLE =

PEAK. (UNITS= KG.M.S-1)

SUBJECTS STATIC (PEAK) 

PTotal  PML PAP PV

SUBJECT 1 1.068 0.377 1.050 0.0017 

SUBJECT 2 1.066 0.399 1.021 0.0018 

SUBJECT 3 1.068 0.370 1.041 0.0019 

SUBJECT 4 1.068 0.360 1.039 0.0020 

SUBJECT 5 1.069 0.380 1.061 0.0023 

GRAND MEAN 1.068 0.377 1.043 0.0019 

SD 0.001 0.014 0.015 0.0002 

The mean of range of peaks values for PTotal, PML PAP and PV

for the dynamic balance are given in Table V show that. The 

landing momentum values are larger than the take-off; in take-

off phase, the Ptotal is greater than the PML and the PAP and PV

are nearly equals to the Ptotal for the take-off phase as 

individuals apply large momentum in AP direction and in V 

direction due to the nature of event (jumping from higher 

force platform).  

In landing phase, the Ptotal is greater than the PML and the PAP

though it is higher than PML, while the PV are nearly equals to 

the Ptotal as individuals apply large momentum in V direction 

due to the nature of event (jumping from higher force 

platform). 

TABLE VI 

MEAN OF RANGE OF PEAKS OF 3 TRIALS (N = 5) OF THE PTOTAL, PML PAP AND PV DIRECTIONS FOR DYNAMIC BALANCE (JUMPING ON TIP TOES) VARIABLE =

PEAK. (UNITS= KG.M.S-1) 

SUBJECTS DYNAMIC (PEAK) 

Take-off  LANDING  

PTotal  PML PAP PV PTotal  PML PAP PV

SUBJECT 1 79.08 0.323 29.41 55.71 368.1 0.959 22.27 290.9 

SUBJECT 2 81.77 0.381 27.85 56.90 378.5 0.939 25.22 298.7 

SUBJECT 3 81.08 0.352 26.01 54.09 367.1 1.019 24.91 295.2 

SUBJECT 4 78.21 0.342 28.50 59.29 363.5 0.993 24.73 301.6 

SUBJECT 5 81.42 0.374 27.44 58.88 373.1 1.039 23.99 299.3 

GRAND MEAN 80.31 0.353 27.84 56.97 370.1 0.990 24.23 297.2 

SD 1.573 0.033 1.264 2.175 5.853 0.041 1.183 4.176 

5. Kinetic Energy (KE) 

Fig. 9 illustrates the KEtotal and its components the KEML

and the KEAP in both directions during static balance 

(Standing 2 feet flat eyes open) and dynamic balance (jumping 

on 2 feet tiptoes. 

Static balance. 

Dynamic balance

Fig.  9 The KEtotal, KEML and KEAP in both static balance (2-feet flat eyes open) and dynamic balance (jumping on 2 feet tiptoes). (Units= J) 

0

0.002

0.004

0.006

0.008

0 500 1000 1500 2000 2500 3000

K
E
(J
)

Time (1/100 sec)

K.E

K.E (ML)

K.E (AP)

0

50

100

150

0 100 200 300 400 500 600 700 800 900 1000

K
E
(J
)

Time (1/100 sec)

K.E
K.E (ML)
K.E (AP)



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:7, No:12, 2013

849

In static balance, the velocity of the Centre of Mass in the 

medio-lateral and the anterior-posterior are effectively very 

small and so values for the KEtotal and for the KEML and the 

KEAP are also small and represent the state of stability in this 

condition. In dynamic balance the KEtotal is higher due to the 

subject’s velocity particularly in KEAP because the subject's 

velocity is higher in the anterior-posterior direction, 

particularly during take-off and landing phases. The KEML 

curve increases during the take-off when subjects accelerate 

their Centre of Mass in medio-lateral direction while shifting 

their body weight between feet (dotted line) and at the landing 

phase when absorbing the impact before settling to a steady 

value. The KEAP fluctuation increase when subjects shift their 

body weight forward during landing (solid line) and create a 

reverse force during landing to maintain balance. 

The mean of RMS of peaks values for KEtotal, KEML, KEAP

and KEV directions are given in and show that the KEtotal is

greater than the KEML and KEV and nearly equals the PAP for 

the static activities as individuals apply momentum in AP 

direction. 

The mean of range of peaks values for KETotal, KEML KEAP

and KEV for the dynamic balance are given in Table VII show 

that. The landing Kinetic Energy values are larger than the 

take-off; in take-off phase, the KEtotal is greater than the 

KEML, and the KEAP and KEV are nearly equals to the Ptotal 

for the take-off phase as individuals apply large Kinetic 

Energy in AP direction and in V directions due to the nature of 

event (jumping from higher force platform). In landing phase, 

the KEtotal is greater than the KEML and the KEAP though it is 

higher than KEML, while the KEV are nearly equals to the 

KEtotal as individuals apply large Kinetic Energy in V direction 

due to the nature of event (jumping from higher force 

platform) 

TABLE VII 

MEAN OF RMS PEAKS OF 3 TRIALS (N = 5) OF THE KETOTAL AND ITS

COMPONENTS (KEML, KEAP AND KEV) IN ML, AP AND V DIRECTIONS.

STATIC BALANCE (2-FEET FLAT EYES OPEN) VARIABLE = PEAK. (UNITS= J) 

SUBJECTS STATIC (PEAK) 

KE KEML KEAP KEV

SUBJECT

1

0.0080 0.0010 0.0075 0.0008 

SUBJECT

2

0.0079 0.0011 0.0080 0.0007 

SUBJECT

3

0.0078 0.0012 0.0077 0.0008 

SUBJECT

4

0.0077 0.0010 0.0079 0.0009 

SUBJECT

5

0.0078 0.0011 0.0078 0.0008 

GRAND 

MEAN

0.0078 0.0011 0.0078 0.0008 

SD 0.098× 10-3 0.085× 10-3 0.179× 10-3 0.051× 10-3

TABLE VIII 

MEAN OF RANGE OF PEAKS OF 3 TRIALS (N = 5) OF THE KETOTAL AND ITS COMPONENTS (KEML, KEAP AND KEV) IN ML, AP AND V DIRECTIONS. DYNAMIC 

BALANCE (JUMPING ON TIP TOES) (UNITS= J)

SUBJECTS

DYNAMIC (PEAK) 

Take-off LANDING 

KE KEML KEAP KEV KE KEML KEAP KEV

SUBJECT 1 79.08 0.32 29.41 63.25 156.6 0.496 12.14 148.5 

SUBJECT 2 81.77 0.38 27.85 62.28 157.9 0.563 11.14 145.7 

SUBJECT 3 81.08 0.35 26.01 65.25 157.4 0.470 11.62 151.2 

SUBJECT 4 78.21 0.34 28.50 64.28 161.6 0.481 12.70 155.5 

SUBJECT 5 81.42 0.37 27.44 67.00 161.5 0.566 11.99 115.5 

GRAND MEAN 80.31 0.35 27.84 64.41 159.0 0.515 11.92 143.3 

SD 1.57 0.03 1.26 1.82 2.4 0.046 0.58 16.0 

6. The Friction Torque (Q)

Fig. 10 illustrates the Friction Torque QML and the QAP

directions during static balance (standing 2 feet flat eyes open) 

and dynamic balance (jumping tip toes). 
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