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Abstract—This paper presents an integrated model that 

automatically measures the change of rivers, damage area of bridge 
surroundings, and change of vegetation. The proposed model is on the 
basis of a neurofuzzy mechanism enhanced by SOM optimization 
algorithm, and also includes three functions to deal with river imagery. 
High resolution imagery from FORMOSAT-2 satellite taken before 
and after the invasion period is adopted. By randomly selecting a 
bridge out of 129 destroyed bridges, the recognition results show that 
the average width has increased 66%. The ruined segment of the 
bridge is located exactly at the most scour region. The vegetation 
coverage has also reduced to nearly 90% of the original. The results 
yielded from the proposed model demonstrate a pinpoint accuracy rate 
at 99.94%. This study brings up a successful tool not only for 
large-scale damage assessment but for precise measurement to 
disasters. 
 

Keywords—remote sensing image, damage assessment, typhoon 
disaster, bridge, ANN, fuzzy, SOM, optimization. 

I. INTRODUCTION 

AIWAN is an eco-rich island but severe stricken by natural 
forces every year. Among nature strikes to Taiwan, the 

earthquake and typhoon are the majority, resulting in severe 
damage to residents and economic activities. Catastrophic 
earthquake may claim hundreds of lives and billions of 
economic losses such as Chi-chi earthquake in 2001. 
Fortunately, the frequency of such quake occurring in Taiwan 
is relatively low, that is, once in decades. On the other hand, 
disasters caused by typhoon strikes are much more devastated. 
There are 383 typhoons directly striking the Taiwan Island in 
the past century, excluding those which passed by but still 
claimed loss of lives and economic activities. The average 
annual loss due to typhoon strikes reaches approximately $1 
billion US dollars [1]. Losses due to typhoon invasions have 
always been one of major issues to the Taiwan society. Among 
them, destruction of bridges can easily bring in such enormous 
losses.The bridge is one of important infrastructures connecting 
social groups and economic activities.  
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Brides usually have long period of useful lives and are 

designed to stand for intensive use. They do not deteriorate 
sharply unless destructive power comes. Destructive power 
such as floods brought by tremendous precipitation of typhoon 
can easily exceed bridge limits. Bridges usually stand no 
chance to resist such awesome power of nature. For example, 
the Typhoon Morakot ruined a total of 129 bridges, which is the 
record high number of destroyed bridges by a single cause of 
the nature force. To assure safety and to pursue better site 
selection for rebuilt structures, the surroundings of damaged 
bridges that may cause potential secondary influence to 
occupants and structure should be measured and estimated. The 
research objectives are to present an integrated model that 
automatically measures the change of rivers, damage area of 
bridge surroundings, and change of vegetation and, then to 
provide site-selecting information for bridge reconstruction. 
The scope limits to the suppositions of  the acquisition of 
remote sensing images from a single satellite (FORMOSAT-2), 
the use of remote sensing RGB images that have already been 
calibrated and fine-tuned, and manual recognition by experts 
and field observations that are involved as the final validation 
for pattern classification. 

II. APPLICATIONS AND ALGORITHMS FOR DAMAGE ASSESSMENT 

Applications and algorithms utilized for damage assessment 
are numerous. Studies adopted various types of images to deal 
with damage assessment. These include, for example, 
ultrasound spectroscopy, laser imagery, remote sensing image, 
synthetic aperture radar image, and thermal image [2]-[6]. For 
large scale damage assessment, analysis or assessment based on 
remote sensing imagery is the majority. Scholars developed a 
rapid damage assessment of built-up structures. Applications 
can be found in its succeeding studies[7],[8]. The concept of 
earthquake damage map based on analysis of remote sensing 
images has brought attention to rescuers[9]. A preparation map 
for earthquake damage assessment was proposed to assist 
rescuers in outlining rescue plans [10].  Large scale disasters 
also occur as tsunami invades. Scholars integrated remote 
sensing imagery with GIS techniques to facilitate damage 
assessment for the tsunami invasion in the southern Asia, 2004 
[11]. Other studies pointed out the benefits of using remote 
sensing images to estimate tsunami impact [12]-[16] 
Destruction brought by typhoons as well as that of 
above-mentioned nature calamities usually covers sizable area. 
Related work showed that remote sensing is an effective 
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technique to determine quantities of damage areas[17],[18]. 
Vegetation damage can be measured using remote sensing 
analysis. Estimating crop damage traditionally follows the 
technique of field observations, which results in a 
time-consuming task. An attempt to exploit remote sensing 
images imparted promising feasibility[19]. Another related 
study identifying cotton injury through the use of remote 
sensing images seconded that multispectral imaging is a viable 
tool[20]. Forest management is one of research fields that 
frequently require remote sensing techniques to deal with 
recognition. Such studies can be found in wood resource 
investigation, forest fire, carbon emissions, forest damage, and 
so on[21],[22],[18],[23]. An investigation presented a high 
accuracy rate of image-based damage assessment, compared to 
field inventory estimates. It suggested that the satellite 
image-based assessment should not require pre-disturbance 
field inventory data. The use of remote sensing image has no 
doubt in saving efforts and providing high accuracy for 
large-scale damage assessment.Past studies have introduced 
various techniques that are capable of handling different 
demands of image recognition. Over two decades ago, 
scientists started to track contamination for forest using remote 
sensing techniques[24]. Bernstein and Di Gesù in 1999 
developed an object recognition system to extract shape 
information from remote sensing images. The unsupervised 
change-detection methods achieved a better estimate of the 
optimal threshold value[25]. A clustering technique was 
adopted to detect deterioration of structures for damage 
assessment[26]. Wang et al. performed a comparison among 
four algorithms employed to detect forest change due to 
hurricane invasion. These algorithms were univariate image 
differencing (UID), selective principal component analysis 
(PCA), change vector analysis (CVA), and post-classification 
comparison (PCC). The last one along with the composite 
image yielded the best results but all four algorithms are still 
subject to some restrictions[27]. A probabilistic classification 
framework was developed to provide posterior probabilities for 
regional urban. The approach classified damage levels that 
deterministic approaches would not solve[28]. With remote 
sensing information, techniques adopted to measure the change 
of rivers are rare but can be found such as k nearest neighbor 
(KNN), objective-oriented supervised classification, 
raster-based classification [29],[30]. However, they claimed 
that the methods would not resolve river damage by floods. A 
novel technique is imperative to overcome the aforementioned 
shortcoming.  

III.  ACQUISITION AND ANALYSIS OF REMOTE SENSING IMAGES 

All remote sensing images for this research are acquired 
based on geometry-calibrated imagery of FORMOSAT-2 
satellite. The FORMOSAT-2 imagery is a high resolution 
image with characteristics of: (1) multispectral resolution of 
8m, (2) RGB wavelength from 0.45 to 0.69 µm, and (3) image 
swath of 24km with limb view angle ±45°. The geometric 
calibration for the images is carried out to eliminate spatial 
errors as precision ground control points and digital terrain 
model are available. However, most acquired images are 
regarding those distroyed bridges and their surroundings 
located in mountain or remote districts. It is difficult to have 

precision ground control points and digital terrain model ready 
for the calibration. To eliminate these errors, we apply linear 
deformation as an affine transformation plus manually digitized 
image control points [31].There are 129 bridges being 
destroyed during the Typhoon Morakot invasion in the August 
of 2009. Over a half of which are located in remote districts and 
serve for relatively less population. The priority to recover 
damaged bridges is mainly on the basis of bridge service 
capacity, that is, population. The selection of destroyed bridges 
follows such demand and, thus, considers those located in the 
midstream or downstream of rivers. Randomly choosing one 
out of the total 36 destroyed bridges located in the midstream or 
downstream of rivers, we present the FORMOSAT-2 satellite 
images (Figure 1) taken 10 days before and after the typhoon 
strike, respectively. The circled part in Figure 2 shows the 
ruined segment of the bridge. In the left hand side of Figure 1, 
there is nearly no landslide occurring in the river headstream. It 
is also clear that the bridge is not located in the scour side of the 
river. The record-high amount of precipitation did cause 
significant change of the river shown in Figure 2. The 
rectangular highlights a smashed segment of embankment by 
serious scour during the floods.  

 
Fig.1 Baolai-2 Bridge and its surroundings before and after Typhoon 

Morakot strike 
 

 
Fig.2 Distroyed bridge segment and flooded area 

IV.  DEVELOPMENT OF RECOGNITION MODEL 

The proposed model is founded on the work by Su et al. in 
2011; yet, it is modified with fuzzy and optimization algorithms 
so as to handle imagery of the flooded areas that particularly 
mixes with the river courses and landslide areas. Given a 
typical artificial neural network, to make sure a full training, the 
supervised decision directed learning algorithm is used: 
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where Mji and mij � R are the weights of the j th neuron of the 
hidden layer, x = (x1, …, xp)

T stands for training data, p is the 
dimension of the input variable, η� R, and the output is Out(x): 
Rp →{0,1}. To overcome possible difficulty of recognizing 
hazy areas, the neural network needs to embrace the fuzzy 
approach. Therefore, mj(x) is employed to replace (4) as 
follows: 
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where wj is the weight of the j th neuron of the hidden layer, sj is 
the sensitivity, and θ indicates an adjustable value. At this stage 
the proposed model is ready for pattern recognition; 
nevertheless, the parameter settings may fail to reach 
optimization so that the accuracy rate of recognition cannot be 
optimal. Since the practicability of the self-organizing map 
optimization (SOMO) algorithm in dealing with optimization 
problems has been demonstrated [32]-[34], let each parameter 
set of the network have a corresponding vector in 
[l 1,h1]×…×[l n,hn]. After initializing, the winner neuron j*  can 
be expressed by: 
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represents the kth input pattern; ) ,( ⋅⋅jϕ  is for the activation 

function of neuron j; and ⋅  is the Euclidean norm. To assure 

optimization for settings, we need to fine-tune the weighs of j* 
and its neighbors using: 
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vector for the new weight vector. Next the proposed approach is 
applied to the imagery provided by FORMOSAT-2 which 
belongs to the RGB image type. Figure 3 shows the 
pre-selected training fields. Starting with the threshold settings 
of RGB pixels from 0 to 255, we determine the settings for 
forest, for instance, by the following expression: 

I′�x, y� � 	 I�x, y�, if 140 � B�� � 255     and if 50 � R�� � 255  0, else                                                                               �(11) 

where I’(x,y) is the labeled RGB value of the pixel I at (x,y) 
coordination, I (x,y) is the original RGB value for the pixel I, 
and Bxy and Rxy represent the blue and red values of the pixel I. 
Figure 4 illustrates the result for labeled forest in black color. 
Comparing these two images, we are able to obtain the 
assessment of damaged forest area. The illustration of Figure 5 
demonstrates how the comparison works. Similarly the built-up 
area can be also estimated following the process.  
 

 
Fig. 3 Pre-selected training fields 

 
Fig. 4 Labeled forest area before and after the typhoon invasion 
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Before disaster  After disaster  Differene 

Fig. 5 Illustration for comparison of before and after disaster images 
 
For river image recognition, there are additional two steps — 

dilation and erosion — to compute change of rivers. The 
dilation step is to find any pixel in the river with its I’ =  0 and 
then to identify its neighbors’ I’  values in a smallest area (3 by 
3). Once any neighbor with I’ ≠ 0 is spotted, the proposed 
model resets its value to 0. Through certain iterations 
determined by a pre-specified number or no more pixel I’ ≠ 0 
found, the dilation stops and the next step of erosion kicks in. 
The erosion step is similar to a reversed process of the dilation 
step so as to restore the original river pixels without noise. In 
this step the proposed model seeks those pixels being “dilated” 
in the last step. Finding  a “dilated” pixel with I’ ≠ 0, the 
proposed model sets all I’ = 1 when spotting any I’ = 0 in the 
smallest neighbor area. This step repeats till the pre-specified 
number of iteration is reached or no more pixel I’ = 0 found. Up 
to now, the river width can be calculated.  The proposed model 
also measures change of rivers. Heavy precipitation may trigger 
landslide and floods presenting similar imagery, which cause 
difficulty for recognition. The additional function of 
skeletonization provided by the proposal model outlines the 
main river course, detects new stream courses, and 
differentiates flooded or landslide area. These tasks can be done 
through the determination of river “skeleton”. Assuming that in 
an M by N neighbor pixel area, we define )��� �∑ +�!�,-;!,/�, ;!, �1�  and 0��� � ∑ +�!�,-;!,/�, ;!, �0�  illustrated in 
Figure 6. To facilitate computation, M and N are usually set to a 
smallest neighbor area (3 by 3). All pixels in the area are 
removed if satisfying: 

 12 3"4/�5�46; 7�5�, ;589:;·58=:9·589:=,>;58=:9·589:=·58;:9,>"4/�5�46;7�5�, ; 589:;·58=:9·58;:9,>; 589:;·589:=·58;:9,>?(12) @ABC DEE +1FBEG DHB HBIJKBL. 
However, no pixel is removed when satisfying N(P) = 0, N(P) 
= 1, N(P) > 6, or S(P) = 0 where the pixel represents the edge 
point. The establishment for the proposed model is complete 
and Figure 7 demonstrates the model interface by using C++ 
language. 
 

■ □ □  +� !  (1) +�"!  (0) +�#!  (0) 

■ ■ ■ → +� !" (1) +$%&'%( (1) +�#!" (1) 
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Fig. 6 Illustration for river skeletonization 

 
Fig. 7 Model interface 

V. IMPLEMENTATION AND DISCUSSION 

After opening the before- and after-disaster images, we can 
measure the change of landslide, river width, flooded area, and 
vegetation coverage. The model is designed to yield results 
automatically or semi-automatically. Since RGB values are all 
set based on the default ranges, i.e. in Equation (11), the model 
performs automatically and discovers that the vegetation 
coverage has reduced to 89.95% of the original because of the 
typhoon invasion. The loss of most vegetation is due to massive 
landslide beside the river and its branches. For the river 
increment, Figure 8 illustrates the results yielded from the 
proposed model. It is found that the ruined bridge segment is 
precisely located at one of scour sites during the typhoon 
invasion. Structure reinforcement or relocation for the bridge is 
strongly suggested. With the use of the dilation, erosion, and 
skeletonization functions, the changed river courses due to the 
typhoon strike can be distinguished in Figure 9.  

The proposed model also measures that the average river 
width has increased to 1.67 times of the original. Figure 10 
indicates a comparison for the change of river width. According 
to field observations, the original length of Baolai-2 Bridge and 
the shore-to-shore width were 158 and 160 meters, 
respectively. Observations conducted after the invasion reports 
that the shore-to-shore width of the river at the bridge location 
has increased to 195.44 meters [35]. The result yielded from the 
proposed model presents a pinpoint accuracy rate at 99.94%. 
The proposed model presents a successful tool not only for 
large-scale damage assessment but for precise measurement to 
disasters. 

 

 Before typhoon invasion    After typhoon invasion 
Fig. 8 Change of river course 
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Fig. 9 River skeleton and results 

 

 
Fig. 10 Comparison of river change 

VI.  CONCLUSION 

This paper develops a model to estimate post-typhoon 
damage around ruined bridges based on remote sensing 
imagery. The proposed model is designed to integrate 
computational intelligence with image process techniques and, 
therefore, provides quick and precise measurement for the 
change of vegetation, landslide, built-up area, river course, 
river width, and scouring site. By outlining the river skeleton 
and revealing the river courses, it is found that the broken 
segment is located exactly at one of the scour sides of the river. 
The pinpoint accuracy is also demonstrated in the example of 
measuring the river shore-to-shore width. Such information is 
critical for bridge rehabilitation or even site selection for bridge 
renewal. As a result, the major contributions can be 
summarized as (1) a novel technique that effectively deals with 
large-scale assessment at high accuracy, (2) determination of 
key information for bridge rehabilitation or renewal, and (3) 
notation for follow-up monitoring. 

Further utilizing the results from this research, the 
succeeding studies could gain more valuable information in 
practice. Examples can be expected in instant responses to 
rescue mission, hazard management, and management of 
natural recourses. The results may play a crucial role especially 
for those disasters occurring in inaccessible zones. Another 
potential follow-up studies would focus on detailed recognition 
of how bridges deteriorate due to river scour. Further analysis 
considering bridge deterioration and river courses may bring up 
comprehensive suggestions for building design and planning. A 
close-up detection for bridge themselves may be developed to 

identify possible damage that could take place during next 
severe strikes by nature force. Integrated with precipitation 
data, a warning system or a prediction model may be 
accordingly created to prevent losses of lives and economic 
activities. Moreover, the scope or feasibility of the proposed 
model can be extended to other research fields so as to benefit 
human beings.  
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