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Abstract—This paper presents the determination of the proper 

quality costs parameters which provide the optimum return. The 
system dynamics simulation was applied. The simulation model was 
constructed by the real data from a case of the electronic devices 
manufacturer in Thailand. The Steepest Descent algorithm was 
employed to optimise. The experimental results show that the 
company should spend on prevention and appraisal activities for 850 
and 10 Baht/day respectively. It provides minimum cumulative total 
quality cost, which is 258,000 Baht in twelve months. The effect of 
the step size in the stage of improving the variables to the optimum 
was also investigated. It can be stated that the smaller step size 
provided a better result with more experimental runs. However, the 
different yield in this case is not significant in practice. Therefore, the 
greater step size is recommended because the region of optima could 
be reached more easily and rapidly. 
 

Keywords—Quality costs, Steepest Descent Algorithm, Step 
Size, System Dynamics Simulation 

I. INTRODUCTION 

ISTORICALLY, many researchers have attempted to 
determine the optima for prevention and appraisal 

spending which provide the optimum return from the quality 
improvement. Some works such as [1] – [6] determined an 
economic quality level by balancing the quality costs which 
consist of prevention cost, appraisal cost, internal failure cost, 
and external failure cost. The conceptual models which 
illustrate the relationship between the total quality cost and the 
quality level were proposed. The economic quality level is 
presented at the minimum point of the total quality cost curve 
in those models.Reference [2] proposed an investigation of the 
economic quality level by using the mathematics. In that work, 
the quality costs equation was formulated. The optimum 
spending on prevention and appraisal which provide the 
minimum total quality cost was determined by using the 
mathematics. Nevertheless, this method can be misleading if 
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the turning points of the yield are more than one, and this 
method is not able to provide continuous monitoring of the 
process at the stage of moving toward the optimal. 

References [7] – [9] employed the Factorial design as a 
technique to optimise the quality costs of a case study in 
automotive industry. This technique is the method of Steepest 
Ascent / Descent suggested by [10]. It is a process of variable 
development by moving sequentially from the operating 
condition to the optimal in the response surface with linear 
regression analysis. In those works, the prevention and 
appraisal spending were defined as the independent variables, 
whereas the profit was a yield to optimise. It can be stated that 
the optimisation with this technique can be explained by 
statistical theory or the context of response surface 
methodology, so the results have a high reliability, and the 
useful information in building up process knowledge toward 
the optimal can be also displayed. 

However, for finding the optimum yield in the response 
surface precisely, economically, and efficiently by using the 
combination of factorial design and the first-order model with 
various levels of the step size for moving sequentially along 
the part of Steepest Descent or Steepest Ascent to the 
optimum response may influence. Normally, the step size 
always base on process knowledge or practical consideration. 
A greater step size regularly reaches the region of the 
optimum rapidly and simply, but roughly. This paper 
describes a quantitative investigation of an effect of the step 
size in a stage of moving from the current operating condition 
to the optimum. The rapidity and the accuracy between the 
different step sizes were considered.  

Response Surface Methodology (RSM) is a bundle of 
statistical and mathematical strategies that are very helpful for 
modeling and analysing industrial problems. A system 
response is affected by several variables. An objective is to 
optimise this system response. For example, suppose that a 
process engineer wishes to find the levels of pressure (x1) and 
temperature (x2) that minimise the yield (y) of a process. The 
process yield is a function of levels of pressure and 
temperature; y = ƒ(x1, x2) + ε as in [11]. Where ε represents 
the level of signal noise (standard deviation) or error observed 
in the system response y. If we denote the expected system 
response by E(y) = ƒ (x1, x2) = η, then the surface represented 
by; η = ƒ (x1, x2). So, it is named as a response surface. 

A response surface above explains how the process yield 
varies with changes in k independent variables. Estimation of 
such surfaces, and hence identification of near optimal settings 
for variables is a practical issue with interesting theoretical 
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aspects. Many iterative processes for making an efficient 
empirical investigation of such surfaces have been proposed in 
the last fifty years. These are generally referred to as 
evolutionary operation (EVOP). RSM is used to enhance the 
current operating conditions until the optimal conditions are 
satisfied. In most RSM problems, a form of the relationship 
between the system response and the variables are unknown. 
Thus, the first step in RSM is to find a proper approximation 
for the true functional relationship between the system 
response of y and the set of its variables via design of 
experiments. Usually, a low-order polynomial in some region 
of the variables is applied [12]. If the system response is well 
modeled by a linear function of the variables, then the 
approximating function is the first-order model. 

This paper is organised as follows. Section II describes the 
system dynamics simulation in this experiment. Sections III 
and IV are briefing about algorithms of a conventional design 
of experiment and steepest descent algorithm, respectively. 
Section V illustrates computational results and analysis. The 
conclusions and discussions are also summarised and it is 
followed by the references. 

II. SYSTEM DYNAMICS 
The experiment in this study employed the system 

dynamics simulation as an approach because it is able to 
display the relationships and impacts between each variable in 
the form of digraph and the behavior of all variables over time 
can be examined with quantitative analysis. Fig. 1 shows a 
system dynamics quality costs model of a case study company 
which is the leading electronic device manufacturer in 
Thailand. The real data was gathered to construct the model 
which the operation process and the occurrence of the quality 
costs are described.In the model, the products are produced for 
33,000 pieces per day in average. The proportion of 
nonconformance (D) depends on the spending on prevention 
activities (P) whereas the capability of the quality inspection 
process to detect the nonconformance (DD) depends on the 
spending on appraisal activities (A). These relationships were 
constructed by using real data gathered from a case study 
company. The internal failure cost can be determined from the 
repairing cost of the detectable nonconformance, whereas the 
external failure cost are determined from the cost when then 
undetectable nonconformance are found by the customer. 
Finally, the total quality cost is the summation of the 
prevention cost, appraisal cost, internal failure cost, and 
external failure cost.The experiment was based on a 
simulation of a quality improvement scenario which spent on 
prevention and appraisal activities for 100 and 1,000 Baht per 
day respectively as a current operating condition. The outcome 
from the simulation along twelve months time scale was 
considered in term of the cumulative total quality cost. An 
optimisation technique, the method of Steepest Descent was 
applied to improve the prevention and appraisal spending 
sequentially along the direction of the maximum decrease in 
the response from the current operating condition to the region 
of the minimum yield. The different step sizes in the stage of 
moving toward the optimum were experimented. Finally, the 

proper quality costs parameters were determined, and the 
effect of step size in the process of optimisation could be 
investigated.  

III. CONVENTIONAL DESIGN OF EXPERIMENTS (DOE) 
Design of Experiment (DOE) is an organized, and 

structured process that is used to determine the relationship 
between the different variables affecting a process and the 
output of that process or system response. This method was 
first proposed in the 1920s and 1930, by Sir Ronald A. Fisher, 
the renowned mathematician and geneticist. DOE involves 
designing a set of ten to twenty experiments, in which all 
relevant variables are systematically varied. When the results 
of these factorial experiments are analysed, they help to 
identify optimal process conditions, the variables that most 
influence the results, and those that do not, as well as details 
such as the existence of interactions and synergies between 
variables.DOE strategies require well-structured data matrices. 
When applied to a well-structured matrix, analysis of variance 
delivers accurate results, even when the matrix that is analysed 
is quite small. Today, Fisher's methods of design and analysis 
are international standards in applied science and also 
business. Design of experimental is a strategy to gather 
empirical knowledge, i.e. knowledge based on the analysis of 
experimental data and not on theoretical models. It can be 
carried out whenever you intend to investigate a phenomenon 
in order to gain understanding or improve performance. 
Building a design means, carefully choosing a small number 
of factorial experiments that are to be performed under 
controlled operating conditions. There are four interrelated 
steps in building a design: 
1. Define an objective to the investigation, e.g. better 

understand or sort out important variables or find the 
optimum.  

2. Define the variables that will be controlled during the 
experiment (design variables), and their feasible levels or 
ranges of variation.  

3. Define the variables that will be measured to describe the 
outcome of the experimental runs (system responses), and 
examine their precision.  

4. Among the available standard factorial designs, choose the 
one that is compatible with the objective, number of design 
variables and precision of measurements, and has a 
reasonable related cost. 

Standard designs are well-known classes of experimental 
designs. They can be generated automatically as soon as you 
have decided on the objective, the number and nature of 
design variables, the nature of the system responses and the 
number of experimental runs you can afford. Generating such 
a design will provide you with a list of all experiments you 
must perform, to gather enough purposed information. DOE is 
widely used in study, research and development, where a large 
proportion of the resources go towards solving optimisation 
problems. The key to minimising optimisation costs is to 
perform as few experiments as possible. DOE requires only a 
small set of factorial experiments and thus helps to reduce 
related costs.  
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Fig. 1 System dynamics quality costs model 

IV. STEEPEST DESCENT ALGORITHM (SDA)  
The procedure of SDA is that a hyperplane is fitted to the 

initial 2k factorial design points. The data from these points are 
then analysed. If there is an evidence of main effect(s), at 
some preset level of statistical significance and no curvature 
evidence, at the same level of significance, the direction of 
steepest descent on the hyperplane ( ŷ ) is then determined by 
using the least square principle. It is possible, although rather 
unlikely, that this design point is the centre preceding factorial 
design. If there is no evidence curvature or of a main effect the 
factorial design is replicated. The process repeats until the 
stopping rule is at the preset state. Whilst continually checking 
stopping criteria, following steps below would be performed: 
1. Random starting factorial design points. 
2. Calculate a system response (y) for each point of the 

factorial design which compose of a center and peripheral 
point. Then measure a first order model. 

3. Determine β0, β1, β2, …, βk by the least square method 
from the first order model or a linear multiple regression. 
  Y = β0 + β1X1 + …+ βkXk   

4. Review the significance of the first order model by 
looking at each of linear regression coefficient (βi). If 
none of linear regression coefficient is zero, all factors are 
significant to the model. 

5. Redo the same process; otherwise determine a quadratic 
effect, in case of an improper equation. 

6. 6.1 If model is appropriate, move a center coordinate (x1, 
x2, …, xk) to a new coordinate (x1

N, x2
N, ….xk

N) by 
calculating a step size (ΔXi) which is related to the 
following equation: 

  ΔXi = βi / (βLargest / ΔXLargest)  

 Then calculate a new condition from Xi
N = Xi + ΔXi 

  6.2 Scale with a multiplication of ‘n’ where n = 1, 2, … 
until a system response (Yn) could not achieve a better 
value then termination.  

  Yn = Origin + nΔ 
7. Repeat 3-6 to calculate the system responses. 
8. Compare each iterative responses and keep the best so far 

value for a solution. 
9. End the algorithm when the stopping criteria is met. 

V. COMPUTATIONAL RESULTS AND ANALYSES 
In this paper, the study was conducted by applying the SDA 

to determine the proper levels of quality costs parameters. For 
the computational procedures described above a computer 
simulation was implemented in a System Dynamics program. 
The relationship of the parameters on the model was 
determined. Scatter plots in Fig. 2 and Fig. 3 show the natures 
of the D versus P and DD versus A, respectively.  
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Fig. 2 Scatter Plot of D versus P 
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Fig. 3 Scatter Plot of DD versus A 
The first order model or a linear regression is then 

calculated via the least square method. If none of linear 
regression coefficients, categorized by D and DD, are equal to 
zero, all factors are significant to the model (Tables 1 and 2).   

TABLE I 
ANALYSIS OF VARIANCE (ANOVA) AND REGRESSION COEFFICIENTS AND 

THEIR SIGNIFICANCE FOR D  

Source DF SS MS F P-
value 

Regression 1 0.00010465   0.00010465   5251 0.000 
Residual 
Error 298 0.00000594   0.00000002   

Total 299  0.00011059    
 

Parameters Coef T-Stat P-value 
Constant    0.00460519   85.05   0.000 
A       -0.00600106   -72.47   0.000 

TABLE II 
ANALYSIS OF VARIANCE (ANOVA) AND REGRESSION COEFFICIENTS AND 

THEIR SIGNIFICANCE FOR DD  

Source DF SS MS F P-
value 

Regression 1 0.00061965   0.00061965  49655 0.000 
Residual 
Error 298 0.00000372 0.00000001   

Total 299  0.00062337    
 

Parameters Coef T-Stat P-value 
Constant    -0.0269770 -93.10     0.000 
A       0.0460557    222.83   0.000 
 

The next experimental procedures to determine the proper 
levels of quality costs parameters are presents as follow. 
1. At the current operating condition, it could be extended to 

four points around it by changing + 5% of prevention and 
appraisal spending in the simulation. Table 3 shows the 
simulation result which is the cumulative total quality cost 
in twelve months. 

 
TABLE III 

SIMULATION RESULTS AROUND THE CURRENT OPERATING CONDITION 

  P = 100 Baht/day 

  P + 5% = 105 
Baht/day 

P - 5% = 95 
Baht/day 

A = 1000 
Baht/day 

A + 5% = 1050 
Baht/day 

11,093,590 
Baht 

11,373,660 
Baht 

A - 5% = 950 
Baht/day 

7,419,240 
Baht 

7,693,600 
Baht 

 
From these four points of yield, a first-order model can be 
formulated as 

∑
=

+=
k

i
ii xy

1
0

ˆˆˆ ββ   

 
2. Employing a partial statistical t test with the following 

hypotheses. 
        0H : 1β  = 0 

        1H : 1β  ≠ 0 
   and 
        0H  : 2β  = 0 

        1H  : 2β  ≠ 0 
 

     
TABLE IV 

ANALYSIS OF VARIANCE (ANOVA) AND REGRESSION COEFFICIENTS AND 
THEIR SIGNIFICANCE  

Source DF SS MS F P-value 
Regression 2 13598684 6799342 834170 0.0007 
Residual 
Error 1 8.151025 8   
Total 3 13598692       

 
Parameters Coef T-Stat P-value 

Constant    -24604.8775 -609.0161819 0.001045324 
P -27721.5 -97.09807356 0.00655623 
A 36772.05 1287.987741 0.000494275 

 
3. Improving the variables, the step of moving along a part of 

Steepest Descent to the optimum point were determined, a 
ratio between the coefficients of variables in a first order 
model was calculated as D. It represents a slope of a part 
of the Steepest Descent. For the step for climbing to a new 
potential optimum point, the step size for this case was 
0.05 as show in table 5. This step size should be identified 
as an amount of spending which is a suitable for a 
company’s consideration, and it can provide a significantly 
different profit. 
 

For the variable 1x , the step is  

    
1xD = 1 

 
Whereas for the variable 2x , the step is 

    
2xD = coefficient of 2x / coefficient of 1x  
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  TABLE X 
IMPROVING THE VARIABLES ALONG A PART OF STEEPEST DESCENT 

Steps 
Prevention cost  Appraisal cost Cumulative Total 

Quality Cost 

(1,000 Baht) (1,000 Baht) (1,000 Baht) 

Origin 0.10 1.00  

D = 0.05 0.05 -0.07  

Origin + D 0.15 0.93 564.60 

Origin + 2D 0.20 0.87 523.42 

Origin + 3D 0.25 0.80 499.52 

Origin + 4D 0.30 0.73 475.92 

Origin + 5D 0.35 0.67 452.27 

Origin + 6D 0.40 0.60 428.79 

Origin + 7D 0.45 0.54 405.46 

Origin + 8D 0.50 0.47 382.15 

Origin + 9D 0.55 0.40 359.26 

Origin + 10D 0.60 0.34 336.26 

Origin + 11D 0.65 0.27 313.35 

Origin + 12D 0.70 0.20 290.21 

Origin + 13D 0.75 0.14 267.00 

Origin + 14D 0.80 0.07 261.00 

Origin + 15D 0.85 0.01 258.00 

Origin + 16D 0.90 -0.06 270.00 

Origin + 17D 0.95 -0.13 285.00 

 
  The table 5 shows that the response decreases along the 

path of Steepest Descent until an increase in response is 
noted.  

4. The graphs of simulating repetition to reach the region of 
the optimum were plotted for different step sizes e.g. 0.05, 
0.075, and 0.1 as show in fig. 4. The rapidity and the 
accuracy between the different step sizes were clarified.  
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Fig. 4 Simulating repetition to reach the region of the optimum 

VI. CONCLUSIONS AND DISCUSSIONS 
This work shows that the response surface methodology can 

be applied to improve the variables in this case which are the 
spending on prevention and appraisal activities to the optima 
which is the minimum quality cost systemically and gradually. 
The experiment shows that the method of Steepest Descent 
can be applied effectively through a first-order response 
surface analysis. This method is not too complicated and can 
be explained by statistical theory. It can also provide the 
useful information for the process analysis such as the trend, 
the effect, or the variance between the variables and the yield 
from the continuous monitoring. It was also investigated that 
the step size could affect the efficiency of the variable 
improving from the current operating condition to the optimal. 

The experimental results indicate as follows:- 
1. At the current operating condition which the case study 

company spends on prevention activities for 100 Baht/day 
and spends on appraisal activities for 1,000 Baht/day is not 
the optimum quality level. Therefore, these two variables 
are needed to be improved. The step size which is 0.05 
provided the optimum yield as 258,000 Baht. This point 
was reached at the fifteenth experimental run. 

2. The improvement of the variables along the direction of 
the maximum decrease in the response surface from the 
current operating condition with the greater step size, 
which are 0.075 and 0.10, they provided the optimum 
yields which are the minimum cumulative total quality cost 
in twelve months for 258,000 Baht and 261,000 Baht 
respectively. These optimum points were reached at the 
tenth experimental run when step size is 0.075, and 
reached at the seventh experimental run when the step size 
is 0.1. In this experiment, these three scenarios for testing 
the step size toward the optimum, each scenario ended 
when the new design point deteriorated when compared to 
the previous condition. The new factorial design to 
determine the path of steepest Descent had no significance 
on the regression model. The procedure ended and 
determined the operating condition from the best so far 
solution from the previous path. In the next phase, the 
second order design could be done to go further the study 
and detect the optimum. 

3. It can be stated that in this study the step size did affect the 
efficiency of reaching the optimum yield. The greater step 
size provided a worse optimum result rapidly, whereas the 
smaller step size provided a better result with more 
experimental runs. However, these could not be applied for 
other problems. In the context of response surface 
methodology, the response contour plot depends on its 
own system. The preliminary study could be carried out in 
each problem to guarantee the optimum or near optimum. 

4. In this case, the different step size provided a different 
yield for 3,000 Baht in a year. This amount of cost does 
not present a significant different yield in practice for a 
large company’s consideration.  Therefore, the greater step 
size is more suitable for this case because the region of 
optima could be reached easily and rapidly. However, the 
other case which the different step size provides a 
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significant different yield, or it is a very important 
difference to the company, the small step size seems to be 
recommended. The shorter step size does no serious 
problem when compared. It can be only the neighbourhood 
or close to current operating condition of the problem. The 
larger step size has more benefit when the current 
operating condition is very far from the optimum. 

5. In practice, if the optima of variables are needed to reach 
with a high accuracy, the greater step size should be 
applied for a rough yield in response surface. Focusing on 
this region of this rough optimal, a smaller step size can be 
then applied to reach the more precise optima, or the 
second-order analysis can be also employed for the exact 
result. These techniques are the shortcut to reach the 
optima with fewer experimental runs. 
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