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Abstract—In Finite Element Technique nodal stresses are 

calculated through displacement as nodes. In this process, the 
displacement calculated at nodes is sufficiently good enough but 
stresses calculated at nodes are not sufficiently accurate. Therefore, 
the accuracy in the stress computation in FEM models based on the 
displacement technique is obviously matter of concern for 
computational time in shape optimization of engineering problems. In 
the present work same is focused to find out unique points within the 
element as well as the boundary of the element so, that good accuracy 
in stress computation can be achieved. Generally, major optimal 
stress points are located in domain of the element some points have 
been also located at boundary of the element where stresses are fairly 
accurate as compared to nodal values. Then, it is subsequently 
concluded that there is an existence of unique points within the 
element, where stresses have higher accuracy than other points in the 
elements. Therefore, it is main aim is to evolve a generalized 
procedure for the determination of the optimal stress location inside 
the element as well as at the boundaries of the element and verify the 
same with results from numerical experimentation. The results of 
quadratic 9 noded serendipity elements are presented and the location 
of distinct optimal stress points is determined inside the element, as 
well as at the boundaries. The theoretical results indicate various 
optimal stress locations are in local coordinates at origin and at a 
distance of 0.577 in both directions from origin. Also, at the 
boundaries optimal stress locations are at the midpoints of the 
element boundary and the locations are at a distance of 0.577 from 
the origin in both directions. The above findings were verified 
through experimentation and findings were authenticated. 
For numerical experimentation five engineering problems were 
identified and the numerical results of 9-noded element were 
compared to those obtained by using the same order of 25-noded 
quadratic Lagrangian elements, which are considered as standard. 
Then root mean square errors are plotted with respect to various 
locations within the elements as well as the boundaries and 
conclusions were drawn. After numerical verification it is noted that 
in a 9-noded element, origin and locations at a distance of 0.577 from 
origin in both directions are the best sampling points for the stresses. 
It was also noted that stresses calculated within line at boundary 
enclosed by 0.577 midpoints are also very good and the error found is 
very less. When sampling points move away from these points, then 
it causes line zone error to increase rapidly. Thus, it is established 
that there are unique points at boundary of element where stresses are 
accurate, which can be utilized in solving various engineering 
problems and are also useful in shape optimizations. 

 
Keywords—Finite element, Lagrangian, optimal stress location, 

serendipity. 

I. INRODUCTION 

N this paper we have tried to determine the optimal 
locations for stresses in the elements as well as at the 
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boundaries by using generalized procedure. Barlow noticed 
this phenomenon, when using simple structural elements in the 
representation of air frame structure [1], [2]. Similar 
phenomenon was also noticed by in more advanced elements 
[15]. The wider implication is given by Iron and Strang [7], 
[8], [14]. This concept is used by Moan to determine the 
optimal locations [9]. Further Barlow rationalized the concept 
of optimal stress points and outlined the methodology by 
which the location of such points can be determined [3]. 
Hinton & Owen also explained the similar procedure [6]. This 
phenomenon of existence of certain points of higher accuracy 
than would generally be expected to occur is known as super 
convergence. Sehgal showed that apart from  0.577 points, 
the origin of local axes is also a very good sampling point for 
quadratic rectangular element [12]. Barlow tried to address the 
relationship between optimal sampling points, reduced 
integration and geometric distortion [3]. Budkowska and Fu 
used and analytical procedure for determination of optimal 
stress points [4]. It was also noticed that at optimal location 
the stress magnitude is insensitive to the increased value of 
poison ratio. It was also indicated that the optimal stress 
location for various stress components may not be the same. 
Further, many researchers worked on stress computation with 
different approaches and formulations as published in [5], 
[10], [11] and [13] 

In most of the time engineers and designers are interested to 
calculate the stresses at the boundaries. The Barlow’s 
procedure fails to give idea about the best sampling point at 
the boundary for direct determination of stresses. Thus, a 
generalized procedure for the determination of the optimal 
stress location inside the element as well as the boundaries of 
the element has been evolved and to verify the same with 
numerical experimentation.  

II. DETERMINATION OF OPTIMAL LOCATION FOR NINE-NODED 

LAGRANGIAN RECTANGULAR ELEMENT 

For nine nodded rectangular element the basic approximate 
displacement function øas is assumed as 

 
∅ 𝛼 𝛼 𝜉 𝛼 𝜉𝜂 𝛼 𝜉 𝛼 𝜂 𝛼 𝜉 𝜂 𝛼 𝜉𝜂

𝛼 𝜉 𝜂  (1) 
 
 In the proposed generalised procedure, we assumed that the 

exact displacement function is of much higher order, 
containing 27 terms, i.e. with full quartic polynomial plus 2 
extra quantic order terms as under: 
 

𝜙 𝛽 𝛽 𝜉 𝛽 𝜂 𝛽 𝜉𝜂 𝛽 𝜉 𝛽 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉𝜂
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𝛽 𝜉 𝜂 𝛽 𝜉 𝛽 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉𝜂 𝛽 𝜉 𝜂
𝛽 𝜉 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉 𝛽 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉𝜂

𝛽 𝜉 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉 𝜂 𝛽 𝜉
𝛽 𝜂  (2) 

 
Then it is assumed that at nodes  
 

𝜙 𝜙           (3) 
 

where N = 1,2,3,4,5………9     
Now putting the values of the local coordinates (ξ, η) at 

node which are combination of -1.0, 0.0, 1.0 of all the nine 
nodes and solving them in terms of α we get: 

 
𝛼 𝛽                              𝛼 𝛽 𝛽 𝛽  

𝛼 𝛽 𝛽 𝛽                      𝛼 𝛽 𝛽 𝛽 𝛽  
𝛼 𝛽 𝛽                              𝛼 𝛽 𝛽  

 𝛼 𝛽 𝛽 𝛽 𝛽           𝛼 𝛽 𝛽 𝛽 𝛽  (4) 
 
For equality of derivatives we have 
 

  

  

 

 𝛼 𝛼 𝜂 2𝛼 𝜉 2𝛼 𝜉𝜂 𝛼 𝜂 2𝛼 𝜉𝜂   (5) 

                                                                  

𝛽 𝛽 𝜂 2𝛽 𝜉 2𝛽 𝜉𝜂 𝛽 𝜂 2𝛽 𝜉𝜂 3𝛽 𝜂

3𝛽 𝜉 𝜂 𝛽 𝜂 3𝛽 𝜉 𝜂 2𝛽 𝜉𝜂 3𝛽 𝜉 𝜂 4𝛽 𝜉
4𝛽 𝜉 𝜂 𝛽 𝜂 4𝛽 𝜉 𝜂 2𝛽 𝜉𝜂 𝛽 𝜉 𝜂 3𝛽 𝜉 𝜂

4𝛽 𝜉 𝜂 5𝛽 𝜉   (6) 
 

Substituting the values of α2….. α9 from (4) in (5) and for 
(6) rearranging the equations after eliminating similar terms, 
we get: - 

 
𝛽 3𝜉 1 𝛽 𝜂 3𝜉 1 𝛽 𝜂 𝜂 1 𝛽 𝜂 3𝜉

1 2𝛽 𝜉𝜂 𝜂 1 𝛽 𝜂 3𝜂𝜉 1 2𝛽 𝜉 2𝜉 1
2𝛽 𝜉𝜂 2𝜉 1 𝛽 𝜂 𝜂 1 2𝛽 𝜉𝜂 2𝜉 1

2𝛽 𝜉𝜂 𝜂 1 2𝛽 𝜉𝜂 2𝜉 𝜂 1 𝛽 𝜂 3𝜉 𝜂 1
2𝛽 𝜉𝜂 2𝜉 𝜂 1 𝛽 5𝜉 1 0.0 (7) 

 
The above equality is valid only when 
 

3𝜉 1 0.0 ⇒  𝜉
√

  

𝜂 3𝜉 1 0.0 ⇒  𝜂 0.0 𝑜𝑟 𝜉
√

  

𝜂 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜂 1.0 

𝜂 3𝜉 1 0.0 ⇒  𝜂 0.0 𝑜𝑟 𝜉
√

  

2𝜉𝜂 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜉 0.0 𝑜𝑟 𝜂 1.0 

𝜂 3𝜉 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜉𝜂
√

  

2𝜉 2𝜉 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜉
√

  

2𝜉𝜂 2𝜉 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉
√

  

𝜂 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜂 1.0 

2𝜉𝜂 2𝜉 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉
√

  

𝜉𝜂 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜂 1.0 

2ξη 2ξ η 1 0.0 ⇒  ξ 0.0 or η 0.0 or ξη
√

  

η 3ξ η 1 0.0 ⇒ η 0.0 or ξη
√

  

2𝜉𝜂 2𝜉 𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉𝜂
√

  

5𝜉 1 0.0 ⇈⇒ 𝜉
√

  

 
Similarly, for equality of derivatives with respect to η we 

have 
 

  

 

 𝛼 𝛼 𝜉 2𝛼 𝜂 2𝛼 𝜉 𝛼 𝜉𝜂 2𝛼 𝜉 𝜂 (8) 

 

 𝛽 𝛽 𝜉 2𝛽 𝜂 𝛽 𝜉 2𝛽 𝜉𝜂 2𝛽 𝜉 𝜂 3𝛽 𝜂

3𝛽 𝜉 3𝛽 𝜉𝜂 2𝛽 𝜉 𝜂 2𝛽 𝜉 𝜂 3𝛽 𝜉 𝜂 4𝛽 𝜂
𝛽 𝜉 4𝛽 𝜉𝜂 4𝛽 4𝛽 𝜉 𝜂 4𝛽 𝜉 𝜂 5𝛽 𝜂  (9) 

               
Again, similarly putting the values α2…α9 from (4) in terms 

of β in (9) & (10) and for (6) rearranging the equation after 
eliminating similar terms, we get: - 
 
𝛽 3𝜂 1 𝛽 𝜉 𝜉 1 𝛽 𝜉 3𝜂 1 𝛽 2𝜉 𝜉 1

2𝛽 𝜉 3𝜂 1 𝛽 𝜉 3𝜉 𝜂 1 2𝛽 𝜂 2𝜂 1
2𝛽 𝜉 𝜉 1 𝛽 2𝜉𝜂 2𝜂 1 2𝛽 𝜉 𝜂 𝜉 1

2𝛽 𝜉 𝜂 2𝜂 1 𝛽 𝜉 3𝜉 𝜂 1 𝛽 2𝜉𝜂 2𝜉 𝜂 1
𝛽 2𝜉 𝜂 2𝜉 𝜂 1 𝛽 5𝜂 1 0.0 (10) 

  
This equality holds good only when 
 

3𝜂 1 0.0 ⇒  𝜂
√

  

𝜉 3𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂
√

  

𝜉 𝜉 1 0.0 ⇒ 𝜉 0.0 𝑜𝑟 𝜉 1.0 

𝜉 3𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂
√

  

2𝜉𝜂 𝜉 1 0.0 ⇒ 𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉 1.0 

𝜉 3𝜉 𝜂 1 0.0 ⇒ 𝜂 0.0 𝑜𝑟 𝜉𝜂
√

  

2𝜂 2𝜂 1 0.0 ⇒  𝜂 0.0 𝑜𝑟 𝜂
√

  

2𝜉𝜂 2𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜂
√

  

𝜉 𝜉 1 0.0 ⇒ 𝜉 0.0 𝑜𝑟 𝜉 1.0 

2𝜉 𝜂 2𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜂
√

  

𝜉 𝜂 𝜉 1 0.0 ⇒ 𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉 1.0 

2ξη 2ξ η 1 0.0 ⇒  ξ 0.0 or η 0.0 or ξη
√

  

ξ 3ξ η 1 0.0 ⇒ ξ 0.0 or ξη
√

  

𝜉 𝜂 2𝜉 𝜂 1 0.0 ⇒  𝜉 0.0 𝑜𝑟 𝜂 0.0 𝑜𝑟 𝜉𝜂
√

  

5𝜂 1 0.0 ⇈⇒ 𝜂
√

  

 
The derived results have been given in Table I which are 

optimal stress locations for derivatives with respect to ξ and η. 
Now theoretically we have obtained optimal stress locations 
for derivatives with respect to ξ and η in local co-ordinates. 

III. DETAILS OF OPTIMAL STRESS LOCATIONS 

From Table I optimal stress location whichever occurs 
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frequently with derivatives ξ and η are tabulated below in 
local co-ordinates shown in Table II. 

 
TABLE I  

OPTIMAL STRESS LOCATIONS FOR RESPECTIVE DERIVATIVES 
For terms 

Having the 
Following β 
coefficients 

For derivatives with respect to ξ For derivatives with 
respect to η 

β9 ξ = 0.0 or η = 0.0 ξ = 0.0 or η = 0.0 

β10 ξ = ± 1/√3  

β11  η = ± 1/√3 

β12 ξ = ± 1/√3 or η = 0.0 ξ = 0.0 or ξ = ± 1 

β13 η = 0.0 or η = ± 1 ξ = 0.0 or η = ± 1/√3 

β14 η = 0.0 or ξ = ± 1/√3 ξ = 0.0 or η = 0.0 or ξ = ± 1

β15 η = 0.0 or ξ = 0.0 or η = ± 1 ξ = 0.0 or η = ± 1/√3 

β16 η = 0.0 or ξ η = ± 1/√3 ξ = 0.0 or ξ η = ± 1/√3 

β17 ξ = 0.0 or ξ = ± 1/√2  

β18  η = 0.0 or η = ± 1/√2 

β19 ξ = 0.0 or η = 0.0 or ξ = ± 1/√2 ξ = 0.0 or ξ = ± 1 

β20 η = 0.0 or η = ± 1 η = 0.0 or ξ = 0.0 or η = ± 
1/√2 

β21 ξ = 0.0 or η = 0.0 or ξ = ± 1/√2 ξ = 0.0 or η = 0.0 or ξ = ± 1

β22 ξ = 0.0 or η = 0.0 or ξ = ± 1 η = 0.0 or ξ = 0.0 or η = ± 
1/√2 

β23 ξ = 0.0 or η = 0.0 or ξ η = ± 1/√2 ξ = 0.0 or ξ η = ± 1/√3 

β24 η = 0.0 or ξ η = ± 1/√3 ξ = 0.0 or η = 0.0 or ξ η = 
± 1/√2 

β25 ξ = 0.0 or η = 0.0 or ξ η = ± 1/√2 ξ = 0.0 or η = 0.0 or  ξ η = 
± 1/√2 

β26 
ξ = 

4 5

1
  

 

β26  
ξ = 

4 5

1
  

 
TABLE II 

OPTIMAL STRESS LOCATIONS 
x(𝜉) y(𝜂  

0.0 0.0 

± 1.0 ± 1.0 

± 1/√3 ± 1/√3 

0.0 & ± 1.0 0.0 & ± 1.0 

0.0 & ± 1/√3 0.0 & ± 1/√3 

± 1.0 & ± 1/√3 ± 1.0 & ± 1/√3 

± 1/√2 ± 1/√2 

± 1/4√5 ± 1/4√5 

IV. DISCUSSION ABOUT THE RESULTS 

Using Barlow’s criteria, the locations which satisfy fully the 
ξ2 and η3 terms are ± 1/√3. However, 0.0 location fails to 
satisfy ξ2 and η3 terms but repeats many times. Other very 
good locations are (0.0 & ± 1/√3) within the elements and on 
the boundary (0.0 & ± 1.0) and (± 1.0 & ± 1/√3). 

V. CONCLUSION 

From above theoretical calculations it is quite clear that 
assuming very high order polynomials, we get number of 
optimal locations at our disposal for selecting the best ones. 
For this purpose, numerical experimentation proposed to be 
performed on number of structural engineering problems to 
verify the same and arrive at final conclusion. 

VI. NUMERICAL VERIFICATION 

For numerical verification purpose, one engineering stress 
analysis problem chosen is thick beam. The thick beam was 
solved for Lagrangian 9 noded elements and the stresses were 
found at number of selected locations, further to verify the 
same stresses are also calculated at number of same locations 
(Sets in Figs. 1-3) by using quartic order 25 noded Lagrangian 
elements (Fig. 4) for the same mesh configuration. Here 
assumption has been made that higher order element as 
standard and will yield accurate results being a higher order 
element.                                                                                                                     

 

 

Fig. 1 25- Noded Element 
 

 

Fig. 2 Set 1 
 

 

Fig. 3 Set 2 
 
A thick cantilever beam of length 48 cm height 12 cm and 

thickness 1.0 cm is shown in Fig. 5 (a). The elastic modulus E 
taken as 2000000 kg/m2 for beam is assumed to be 
homogeneous and isotropic and same is discretised in to 16 
elements as shown in Fig. 5 (b). Then root mean square 
(RMS) stress errors are found and results are plotted with 
respect to error and distance of location in element in local co-
ordinates.   
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Fig. 4 Set 3 
 

 

Fig. 5 (a) A Thick cantilever Beam 
 

 

Fig. 5 (b) Discretised Thick Cantilever Beam  

VII. NUMERICAL RESULTS OF THICK BEAM 

For Lagrangian elements, plot of errors as shown in Fig. 6 
where along the set 1 points the minimum error is 0.12 at 
location ± 1/√3 (0.57) from origin along diagonal axis. At 
origin error is 0.44 and the maximum error is 1.05 at the 
corner nodes. Along set 2, the minimum error is 0.19 at ± 
0.745 locations, at origin error is 0.44 and maximum error is 
0.45 at mid side points. Further along set 3, the minimum error 
is 0.45 at mid side points and maximum error is 1.05 at corner 
nodes. 

 

 
Fig. 6 Error plot for thick beam (9noded) 

VIII. FINAL CONCLUSION 

It is clear from above numerical case study that ξ = η = ± 
1/√3 i.e. ± 0.577 are the best optimal location within the 
element apart from other various locations derived above. If 
we wish to calculate stresses at the boundary then mid-side 
nodes (0.0, ± 1), are the best locations and along the local 
coordinate axes, locations at (0.0, ± 0.577) are the best one. 
Thus, we can very well draw the conclusion that theoretically 
arrived optimal stress locations exist in the element as well as 
at the boundary where researchers can calculate stress in their 
optimisation problems. Also, location can be verified in 
laboratory with various standard problems using stress sensors 
or strain gauges which can also be another research area.  
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