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Abstract—The aging and deterioration of water pipelines in cities 

worldwide result in more frequent water main breaks, water service 
disruptions, and flooding damage. Therefore, there is an urgent need 
for undertaking proper maintenance procedures to avoid breaks and 
disastrous failures. However, due to budget limitations, the 
maintenance of water pipeline networks needs to be prioritized 
through efficient deterioration assessment models. Previous studies 
focused on the development of structural or physical deterioration 
assessment models, which require expensive inspection data. But, 
this paper aims at developing deterioration assessment models for 
water pipelines using statistical techniques. Several deterioration 
models were developed based on pipeline size, material type, and soil 
type using linear regression analysis. The categorical nature of some 
variables affecting pipeline deterioration was considered through 
developing several categorical models. The developed models were 
validated with an average validity percentage greater than 95%. 
Moreover, sensitivity analysis was carried out against different 
classifications and it displayed higher importance of age of pipes 
compared to other factors. The developed models will be helpful for 
the water municipalities and asset managers to assess the condition of 
their pipes and prioritize them for maintenance and inspection 
purposes. 
 

Keywords—Water pipelines, deterioration assessment models, 
regression analysis.  

I. INTRODUCTION 

HE deterioration of water distribution network leads to a 
compromised water quality, increased breakage and 

leakage rates, and reduced hydraulic capacity. The 2017 
ASCE report card [1] rated the performance of the US water 
distribution infrastructure a poor grade of “D”. Moreover, 
ASCE reported that most of the US water pipelines are over 
100 years old. Thus, with the increasing number of 
deteriorated pipelines in the US, Canada and around the globe, 
deterioration assessment modeling is of paramount 
importance. The American Water Works Association [2] 
estimated an investment of over one trillion US dollar to 
replace all water pipelines in the US, out of which $384.2 
billion is needed alone for the maintenance of water 
infrastructure in the next 20 years. The Canadian 
Infrastructure Report Card [3] displayed the Canadian water 
infrastructure in a good condition. However, there are ongoing 
concerns due to high number of failures and pipe breaks. 
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Water infrastructure failures have negative monetary, 
health, and safety consequences. Therefore, there is a need to 
increase the reliability of water distribution networks and 
reduce their maintenance costs. Deterioration assessment tools 
are helpful and efficient in prioritizing the maintenance of 
pipelines, especially when available budget is limited. 
Previous deterioration assessment models were either 
inspection-based or did not consider the interdependency 
between the factors affecting pipeline deterioration. Structural/ 
physical deterioration assessment using inspection-based 
methods is very costly, given the limited inspection budget. 
Moreover, the inspection of all pipelines in a large water 
distribution network is not manageable. Alternatively, 
statistical models can accurately assess the pipeline 
deterioration and help the municipalities in prioritizing the 
maintenance of their water pipelines.  

In order to address the above-mentioned limitations, the aim 
of this research is to develop statistical pipeline deterioration 
models using regression analysis. Water pipeline historical 
data, which are used to develop the proposed models, were 
collected from Canadian municipalities. The variables that 
contribute to the deterioration of water pipelines were 
identified. Regression models were developed using the 
pipeline condition indices obtained from the model developed 
by El Chanati et al. [4] and the values of the identified factors 
that were collected from Canadian municipalities. Categorical 
and non-categorical regression models were developed for 
several pipeline classifications. The categorical regression 
models can be used to compute the condition of pipelines in 
case of any missing input data. 

II. RESEARCH OBJECTIVES 

The main objectives of the present study are as follows: 
• Identify the contributory factors affecting the 

deterioration of water pipelines.  
• Develop deterioration assessment models for water 

pipelines. 
• Develop deterioration index and breakage rate forecasting 

models. 

III. BACKGROUND 

Previous Studies 

A distribution network is the most expensive component of 
a water supply system [5]. Its total expenditure accounts for 
more than 80% of the entire water supply system [6]. The 
National Guide to Sustainable Municipal Infrastructure best 
practice [7] emphasized on the importance of a planned 
inspection program for water distribution systems to ensure a 
safe, cost-effective, reliable, and sustainable water supply. 
Water pipeline deterioration leads to impaired water quality, 
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increased breakage rate, reduced hydraulic capacity, and high 
leakage rate. Therefore, the deterioration assessment of water 
pipelines is essential to assist municipalities in planning their 
inspection and rehabilitation actions. The deterioration 
assessment of water pipelines is usually conducted through 
two methods, namely, physical-based (i.e. direct inspection) 
and statistical-based approaches. The first method studies the 
physical mechanisms underlying pipeline failures. However, 
this method requires costly data [8]. Consequently, physical 
models are only justified for major transmission water 
pipelines because of their potential failure costs. Contrarily, 
the second method can be used for the majority of water 
pipelines because its input data is less costly and easy to 
obtain. 

Several studies have been carried out to assess the condition 
or performance of water pipelines. Yan and Vairavamoorthy 
[9] used fuzzy Multi-Criteria Decision-Making (MCDM) 
technique for the condition assessment of water pipelines. 
Geem [10] used Artificial Neural Network (ANN) while 
developing a Decision Support System (DSS) to assess the 
condition of water pipelines. Al-Barqawi and Zayed [11], [12] 
developed condition assessment models for water mains using 
Analytic Hierarchy Process (AHP) and ANN methods, 
respectively. Geem et al. [13] applied Multiple Linear 
Regression (MLP) and ANN techniques to develop water 
pipeline condition assessment models. The results of the study 
presented the outperformance of the ANN technique as it 
resulted in a higher coefficient of determination (R2). Al-
Barqawi and Zayed [14] developed an integrated AHP/ANN 
based condition assessment model for the water mains. Wang 
et al. [15] developed multiple regression models to predict 
annual break rates of water mains. Zhou et al. [16] developed 
a condition assessment model for water pipelines using fuzzy 
Preference Ranking Organization METHod for Enrichment 
Evaluation (PROMETHEE II) MCDM technique. Fares and 
Zayed [17] designed a framework to assess the failure risk of 
water mains using hierarchical fuzzy expert system. Wang et 
al. [18] used Bayesian inference to evaluate the condition of 
water pipelines. Clair and Sinha [19] applied a weighted factor 
and fuzzy inference methodology to forecast the performance 
index of metallic water pipelines. Although the above-
mentioned models produced satisfactory results, they did not 
consider the interdependency of model variables/factors. 
Moreover, none of the developed models considered the 
categorical nature of variables such as; pipeline material type, 
pipe diameter size and soil type. 

Recently, El Chanati et al. [4] used ANP and fuzzy 
inference techniques to develop a model that forecasts the 
condition of water pipelines. The model considers the 
interdependency and uncertainty of the factors. It developed 
indices to calculate pipeline conditions based on age, 
diameter, material type, size, installation quality, surface type, 
ground water depth and quality, soil type, C-factor, and 
breakage rate. The model did not provide a mathematical 
function to facilitate the calculation process. Moreover, it did 
not predict the deterioration of the pipelines during their 
service lives. The National Guide to Sustainable Municipal 

Infrastructure [7] classified the variables that affect the 
deterioration of pipes into three categories: physical, 
environmental, and operational. Yan and Vairavamoorthy [9] 
developed their condition rating model using physical and 
environmental factors only. The model considered pipe age, 
diameter, and material as physical factors, and road loading, 
soil condition, and surroundings as environmental factors. 
Furthermore, it was limited to one soil type. Geem [10] 
developed another condition rating model that included seven 
physical and environmental factors, namely, pipe age, material 
and diameter, bedding condition, corrosion, temperature, and 
trench width. However, the model development relied on 
randomly-generated data. Al Barqawi and Zayed [11] 
considered soil type, road surface, pipe depth, diameter, 
material, age, number of breaks, and C-factor while assessing 
the condition of pipelines. But, the developed model did not 
account for the interdependency and uncertainty of the factors. 

Regression analysis was used herein to generate water 
pipeline deterioration models for various classifications. 
Robust deterioration assessment models using regression 
analysis were developed for several infrastructure types [12], 
[20]-[22]. Regression models represent the mathematical best-
fit representation of a database given several constraints [23]. 
Firstly, the errors around the best fit are independent from the 
predictor variables. Secondly, the errors around the best fit are 
constant for all variables. Finally, the errors are normally 
distributed around the best fit. The independent variables can 
be either quantitative (i.e. numerical) or categorical (i.e. 
classification). The variables that include pipeline 
characteristics (e.g. material type) and surrounding 
environment (e.g. soil type) can be considered as quantitative 
(numerical). However, they lose their significance in the 
statistical tests of regression analysis. Consequently, it is 
helpful to consider such variables as categorical. 

IV. RESEARCH METHODOLOGY 

Fig. 1 summarizes the developed deterioration assessment 
methodology. Firstly, an extensive literature review was 
conducted to compile previous studies on the deterioration 
assessment of water pipelines and determine the main factors 
affecting the deterioration of water pipelines. Secondly, 
historical data on water pipeline networks was gathered from 
several Canadian cities. The collected data was then used to 
compute the pipeline deterioration indices using the model 
developed by El Chanati et al. [4]. The results obtained 
created an initial regression analysis platform. 

The historical data and computed deterioration indices were 
used as input in the regression analysis. Two linear regression 
analysis methods were used to develop the deterioration 
assessment models. Several input variables (e.g. installation 
quality, soil type, material type, and ground water depth) were 
qualitatively valued where; all the qualitative input variables 
were numerically coded as shown in Table I. Those values 
were obtained from the effect values reported by El Chanati et 
al. [4]. Regression models were developed to compute the 
deterioration index of several pipeline categories. The models 
needed the values of all input variables to compute the output. 
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However, the values of few input variables were missing in 
the database. As a result, categorical regression models were 
developed to address this limitation. Input variables, such as 
installation quality, soil type, material type, and ground water 
depth, were qualitatively described in categorical regression 
models. Given the fact that each categorical variable should 
have at least one equation, choosing numerous qualitative 
input variables in one model results in large number of 
equations. Consequently, this research has limited the number 
of categorical variables through comparing the results 
obtained using several combinations of these qualitative 
variables. The developed regression models were validated 
using a dataset representing 20% of the collected data. A 
sensitivity analysis was carried out to quantify the importance 
of each factor in the developed regression models. The 
pipeline age was found to be the highest impacting factor on 
the pipeline deterioration. 

 

 

Fig. 1 Research methodology 
 

TABLE I 
NUMERICAL VALUES USED TO CODE QUALITATIVE VARIABLES 

Variable Characteristic Numerical Code 

Installation Quality (IQ) 

Poor 2 

Fair 6 

Good 10 

Ground Water (GW) 

Shallow 2 

Moderate 5 

Deep 10 

Soil Type (ST) 

Aggressive 2 

Moderate 5 

Non-Aggressive 10 

V. DATA COLLECTION 

The literature review was used to identify the factors 
affecting the deterioration of water pipelines. The data 
collection included two main steps. Firstly, a set of data was 
collected from a Canadian municipality. The data included the 
following pipe characteristics: age, material type, size, 
breakage rate, C-factor, water quality, and surface type. The 
performance indices of the pipes in the collected database 
were computed using the model developed by El Chanati et al. 
[4]. The contributing factors’ data and the estimated pipe 
deterioration indices were the inputs of the regression models. 
The factors affecting the deterioration of water pipelines were 
identified through an extensive literature review. As shown in 
Fig. 2, the factors were grouped into three main categories: 
Physical, Environmental, and Operational [11]. The pipeline 
physical factors included material type, age, size (i.e. 
diameter), and installation quality. The Environmental 
category includes ground water depth, soil type (i.e. 
aggressive or non-aggressive), and location. Finally, the 
Operational category includes the flow velocity or C-factor, 
breakage rate, and water quality. 

VI. MODEL DEVELOPMENT 

A. Best Subset Analysis 

In order to develop each model, training and testing datasets 
were randomly prepared. The training and testing datasets 
represented 80 and 20% of the database, respectively. Several 
variable combinations were considered during the model 
development. Combinations of variables are determined 
through the subset analysis and with/without considering their 
diameter sizes. The analysis of this classification was based on 
the failure modes prediction guide for water pipes [7]. The 
best variable combinations were determined using the best 
subset analysis. The best subset of the variables was 
determined using four main criteria: coefficient of 
determination (R2), adjusted R2, mean square error (S or 
MSE), and Mallow Cp. The R2 value varies between zero and 
one where; an R2 value close to one indicates a higher 
efficiency of the model in fitting the data. The other indicator 
used to determine the best subset is the Mallow Cp where; a 
smaller Mallow Cp normally indicates that the model can 
predict future outcomes in an unbiased manner. Among the 
tested subset models, the one with the number of selected 
variables and constants closest to the Mallow Cp value is the 
most precise. The results of the best subset analysis for the 
overall regression model are shown in Table II. Although the 
coefficient of determination value for most of the subsets is 
acceptable, the last subset of variables was selected herein. 
The Mallow Cp’s value for this subset is exactly equal to the 
number of variables (i.e. seven) plus one (i.e. number of 
constants). The difference of these two values (i.e. Mallow 
Cp’s value and number of variables plus one) for the variables 
of the sixth subset, except the breakage rate, is 0.8, which is 
satisfactory. However, the breakage rate variable is one of the 
most important indicators that affect the pipeline deterioration. 
In other subsets, the Mallow Cp’s value is significantly larger 
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than the number of variables plus one, which signifies the 
incapability of those models to accurately predict the outcome 
in an unbiased manner. Therefore, the last subset was selected 
for the model development. The selected subset includes the 
following variables: age, pipe size, C-factor, installation 
quality, ground water depth, soil type, and breakage rate. The 
model has an R2 equal to 96.5%. After performing a 

correlation analysis, the Age and C-factor variables displayed 
a high Pearson correlation value of 0.969, which implies the 
interdependency between them and thus, they cannot be used 
together in the same regression model. Consequently, the 
variable of Age and C-factor were not included in the same 
model. 

 

 

Fig. 2 Factors affecting water pipelines condition 
 

TABLE II 
BEST SUBSET ANALYSIS  

Variables R-Sq R-Sq (adj) Mallows Cp S Age Size C factor I.Q. Ground Water Soil Type Breakage rate 
1 94.9 94.9 382.9 0.41 * 
1 88.4 88.4 2004.7 0.63 * 
2 95.6 95.6 227.6 0.39 * * 
2 95.2 95.2 309.3 0.40 * * 
3 95.9 95.9 309.3 0.37 * * * 
3 95.9 95.9 139.2 0.37 * * * 
4 96.3 96.2 57.5 0.36 * * * * 
4 96.1 96.1 92.2 0.36 * * * * 
5 96.4 96.4 20.5 0.35 * * * * * 
5 96.4 96.3 33.7 0.35 * * * * * 
6 96.5 96.5 6.2 0.35 * * * * * * 
6 96.4 96.4 21.9 0.35 * * * * * * 
7 96.5 96.5 8 0.35 * * * * * * * 

 

B. Traditional Regression Models 

Since age and C-factor cannot be included in the same 
model as deduced previously, two separate water pipeline 
deterioration assessment models were developed for each 
category. The first category of the model was called “Overall 
Model”, which included the pipe diameter as one of the 
variables. Two other categories, namely large and small size 
pipes, were used based on the pipeline diameter size (i.e. large 
> 300 mm and small < 300 mm). Separate models were 
developed for each category. Table III shows six common 
regression models with quantitative variables and four 
categorical regression models. The first and second models 
included the Age and C-factor, respectively. They were 
developed for pipelines without any diameter classification. 
The third model included the age. Due to the fact that the P-
value of soil type was not satisfactory, this variable was 
removed from the third model. On the other hand, the fourth 

model included four variables besides C-factor. The fifth 
model included the installation quality, ground water depth, 
age, and soil type. Finally, the sixth model included the 
breakage rate and C-factor and excluded the age. 

C. Categorical Regression Models 

The last four models (i.e. 7 to 10) shown in Table III were 
developed by considering few variables as categorical. 
Various combinations of categorical variables were tested 
during the model development process. The variables that did 
not yield logical results were removed from the developed 
models. The variables, which did not significantly change the 
deterioration of various categories, were also removed from 
the developed models. The first developed categorical model 
considered the pipeline material type as a category. All 
material types were initially used to develop categorical 
models. However, asbestos, concrete, and cast iron pipes 

Water Pipelines Condition Factors

Physical 
Factors

Environmental
Factors

Operational
Factors

Water Pipeline Material 

Water Pipeline Age

Location

Ground Water Depth

Soil Type

Flow velocity / C-factor 

Breakage Rate

Water Pipeline Size

Installation Quality

Water Quality
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generated similar results. Therefore, they were grouped into 
one category. Finally, four deterioration assessment equations 
were developed based on the pipeline material type category. 
The only difference between various categorical regression 
equations is their constant values as shown in Table IV. It is 

obvious that the first material group yielded lower pipeline 
deterioration. On the other hand, the fourth material group 
yielded the highest pipeline deterioration. Table V summarizes 
the material type categories and their descriptions.  

 
TABLE III 

CONDITION ASSESSMENT MODELS 
Models Equation 

Common 
Regression 

Models 

1: Overall Water Pipelines (With age) CI = 7.54 - 4.39*AG + 0.225*DI + 0.437*IQ + 0.542*GW + 0.329*ST - 0.309*BR 

2: Overall Water Pipelines (With C-factor) CI = 3.28 + 2.97*CF + 0.274*DI + 0.848*IQ + 0.811*GW + 0.785*ST - 0.608*BR 

3: Small Pipelines (With age, removing soil type) CI = 7.93 - 4.27*AG + 0.328*IQ + 0.303*GW - 0.872*BR 

4: Small Pipelines (With C-factor) CI = 3.91 + 2.87*CF + 0.670*IQ + 0.485*GW + 0.409*ST - 1.23*BR 

5: Large Pipelines (With age) CI = 7.64 - 4.58*AG + 0.412*IQ + 0.620*GW + 0.528*ST 

6: Large Pipelines (With C-factor) CI = 3.23 + 3.15*CF + 0.797*IQ + 0.899*GW + 1.06*ST - 0.498*BR 

Categorical 
Regression 

Models 

7: Material Type CI= C1 - 4.68884*AG + 0.358854*DI+ 0.439668*IQ + 0.065772*GW + 0.240868* ST - 
0.137076*BR 

8: Soil Type CI= C2 - 5.03383*AG + 0.30422*DI+ 0.356489*IQ + 0.058199*GW - 0.171302*BR 

9: Size and Material Type CI= C3 - 4.57835*AG + 0.424003*IQ + 0.502984*GW + 0.23131*ST - 0.203788*BR 

10: Size, Material Type and GWD CI= C4 - 4.54795*AG + 0.41312*IQ + 0.228297*ST -0.315282* BR 

CI = Condition Index, AG = Age, CF = C factor, DI = Diameter, IQ = Installation Quality, GW = Ground Water Depth, ST = Soil Type, BR = Breakage Rate 
 

TABLE IV 
MODELS’ CONSTANT VALUES 

Constant 
Values 

Model No. 

1 2 3 4 5 6 

C1: 7.8055 7.5677 7.7095 7.5030 - - 

C2: 7.9366 8.0983 8.1039 - - - 

C3: 8.2773 8.0885 8.2257 7.9908 8.0150 7.8262 

C4: 8.8106 8.3663 8.3542 8.6525 8.2082 8.1961 

C4 (+12): 8.5241 8.0798 8.0677 8.3660 7.9217 7.9096 

C4 (+24): 8.4168 7.9725 7.9604 8.2587 7.8144 7.8023 

Constant 
Values 

Model No. 

7 8 9 10 11 12 

C1: - - - - - - 

C2: - - - - - - 

C3: 7.9635 7.7286 7.8824 7.6936 7.8309 7.5960 

C4: 8.7661 8.3218 8.3097 8.5162 8.0719 8.0598 

C4 (+12): 8.4796 8.0352 8.0231 8.2297 7.7853 7.7732 

C4 (+24): 8.3723 7.9280 7.9158 8.1224 7.6780 7.6659 

 
The first material type category included polyethylene 

pipelines. The fourth material type included asbestos, 
concrete, and cast iron pipelines. The eighth model included 
different condition assessment equations using the soil type as 
a category. As shown in Table IV, the difference between the 
highest and the lowest conditions was around 0.2 (i.e. 8.1-7.9 
= 0.2) condition units. As shown, the highest condition was 
obtained for non-aggressive soil types. On the other hand, the 
lowest condition was obtained for aggressive soil type because 
of its deteriorating nature. The ninth model combined the 
effect of two categorical variables: size and material type. 
Three pipeline size groups, large, medium, and small, were 
used to develop the model. The size classification was selected 
based on the results of testing the closeness of various size 
groups. The model included 12 deterioration assessment 
equations. The highest condition value was obtained for 
polyethylene pipelines. On the other hand, the lowest 
condition was obtained for small asbestos, concrete, and cast 

iron pipelines. The ground water depth was considered as a 
categorical variable for the tenth model. 36 deterioration 
assessment equations were developed based on pipeline size, 
material, and ground water depth categories. The ground water 
depth included three categories: deep, moderate, and shallow. 
The large polyethylene pipelines buried in deep ground water 
locations resulted in the highest condition values. On the other 
hand, small pipelines from asbestos, concrete and cast iron 
located in shallow ground water resulted in the lowest 
condition values. 

TABLE V 
CATEGORIES’ DEFINITION 

Constant 
Values 

Category No. 

1 2 3 4 5 6 

C1: MT M1 M2 M3 M4 - - 

C2: ST S1 S2 S3 - - - 
C3: DI, 

MT 
D1, M1 D1, M2 D1, M3 D1, M4 D2, M1 D2, M2 

C4: DI, 
MT, GWD 

D1, 
M1,G1 

D1, 
M1,G2 

D1, 
M1,G3 

D1, 
M2,G1 

D1, 
M2,G2 

D1, 
M2,G3 

C4 (+12): 
D2, 

M1,G1 
D2, 

M1,G2 
D2, 

M1,G3 
D2, 

M2,G1 
D2, 

M2,G2 
D2, 

M2,G3 

C4 (+24): 
D3, 

M1,G1 
D3, 

M1,G2 
D3, 

M1,G3 
D3, 

M2,G1 
D3, 

M2,G2 
D3, 

M2,G3 

Constant 
Values 

Category No. 

7 8 9 10 11 12 

C1: MT - - - - - - 

C2: ST - - - - - - 
C3: DI, 

MT 
D2, M3 D2, M4 D3, M1 D3, M2 D3, M3 D3, M4 

C4: DI, 
MT, GWD 

D1, 
M3,G1 

D1, 
M3,G2 

D1, 
M3,G3 

D1, 
M4,G1 

D1, 
M4,G2 

D1, 
M4,G3 

C4 (+12): 
D2, 

M3,G1 
D2, 

M3,G2 
D2, 

M3,G3 
D2, 

M4,G1 
D2, 

M4,G2 
D2, 

M4,G3 

C4 (+24): 
D3, 
M3,G1 

D3, 
M3,G2 

D3, 
M3,G3 

D3, 
M4,G1 

D3, 
M4,G2 

D3, 
M4,G3 

MT: Material Type, M1: Polyethylene, M2: PVC, M3: Ductile Iron, M4: 
Concrete, Asbestos, and Cast Iron, ST: Soil Type, S1: Aggressive, S2: 
Moderate, S3: Non-Aggressive, DI: Pipes’ Diameter, D1: Pipes larger than 
450 mm, D2: Pipes between 250 & 350 mm, D3: Pipes smaller than 250 mm, 
GWD: Ground Water Depth, G1: Deep, G2: Moderate and G3: Shallow 
ground water. 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:7, 2017

1018

 

 

D. Statistical Tests 

Statistical tests were carried out to validate the models 
where F-test and t-test were conducted to study the 
significance of the parameters. In the F-test, the null 
Hypothesis (H0) assumes that all coefficients (i.e. β0, β1,…, βp-1) 
are equal to zero. The alternate hypothesis (Ha) assumes that at 
least one variable has a non-zero coefficient (βk). P (F) shows 
the results of the F-test. If P (F) is lower than the confidence 
interval, the null Hypothesis is rejected, which means that at 
least one coefficient is non-zero. The confidence interval of 
the test (α) was assumed as 0.05. All models achieved P-
values equal to zero, implying their validity. The coefficient of 
multiple determination (R2) is another diagnostic measure of 
the model that checks the variation of data around the fitted 
model. A higher correlation shows that there is a little 
variation around the fitted model. All models displayed 
correlation coefficients greater than 94%, with little variance 

around the fitted line.  
The t-test was performed for each variable separately to 

check their significance. The Null Hypothesis (H0) of the test 
assumed that the coefficient of the selected variable was equal 
to zero, while the alternate Hypothesis (Ha) assumed that it 
non-zero. If the P-value was less than the confidence interval, 
the Null Hypothesis is rejected and the variable is significant 
to the model. ANOVA results for all models are shown in 
Table VI, which includes the variable coefficients, SE 
coefficients, T-values, and P-values. Most of the variables had 
P-values equal to zero. This means that the variables were 
significant to the models and were therefore accepted. The 
only exception was the breakage rate variable in the seventh 
and eighth models, which showed a negligible non-zero P-
value. Variables were normalized to be in the similar range as 
shown in Table VII. For example, the actual age was divided 
by 90 to obtain a normalized age value. 

 
TABLE VI 

ANOVA RESULTS FOR MODELS’ COEFFICIENTS 

Model Predictor Constant AG DI CF IQ GWD ST BR 

No. 1 

Coef. 7.538 -4.394 0.225 - 0.437 0.542 0.329 -0.309 
SE Coef. 0.096 0.08 0.026 - 0.052 0.041 0.048 0.066 

T 78.82 -54.59 8.59 - 8.47 13.27 6.9 -4.71 
P 0 0 0 - 0 0 0 0 

No. 2 

Coef. 3.285 - 2.966 0.274 0.848 0.811 0.785 -0.608 
SE Coef. 0.057 - 0.087 0.036 0.069 0.055 0.062 0.091 

T 57.14 - 33.99 7.55 12.36 14.75 12.67 -6.66 
P 0 - 0 0 0 0 0 0 

No. 3 

Coef. 7.93069 -4.2739 - - 0.32803 0.303 - -0.87 
SE Coef. 0.06571 0.05868 - - 0.04651 0.03776 - 0.05464 

T 120.7 -72.83 - - 7.05 8.03 - -15.96 
P 0 0 - - 0 0 - 0 

No. 4 

Coef. 3.909 - - 2.867 0.67 0.485 0.40914 -1.2265 
SE Coef. 0.06574 - - 0.09057 0.074 0.06 0.06957 0.08999 

T 59.47 - - 31.66 9.03 8.04 5.88 -13.63 
P 0 - 0 0 0 0 0 

No. 5 

Coef. 7.6398 -4.5812 - - 0.41198 0.62047 0.52786 - 
SE Coef. 0.1475 0.1327 - - 0.08203 0.06951 0.0762 - 

T 51.79 -34.52 - - 5.02 8.93 6.93 - 
P 0 0 - - 0 0 0 - 

No. 6 

Coef. 3.22519 - - 3.147 0.7972 0.89923 1.06224 -0.5 
SE Coef. 0.08624 - - 0.14 0.111 0.0905 0.09329 0.193 

T 37.4 - - 22.48 7.18 9.94 11.39 -2.58 
P 0 - - 0 0 0 0 0.01 

No. 7 

Coef. C1 -4.6888 0.3589 - 0.4397 0.0658 0.2409 -0.1371 
SE Coef. D1 0.0776 0.0313 - 0.0378 0.0039 0.0324 0.0715 

F 92.6028 -60.3972 11.4717 - 11.634 16.9169 7.4407 -1.9175 
P 0 0 0 - 0 0 0 0.056 

No. 8 

Coef. C2 -5.03383 0.30422 - 0.35649 0.0582 - -0.1713 
SE Coef. D2 0.071558 0.031639 - 0.037928 0.003953 - 0.075098 

T 103.145 -70.346 9.615 - 9.399 14.722 - -2.281 
P 0 0 0 - 0 0 - 0.023 

No. 9 

Coef. C3 -4.57835 - - 0.424 0.50298 0.23131 -0.20379 
SE Coef. D3 0.077679 - - 0.037816 0.030907 0.034292 0.072873 

T 110.556 -58.939 - - 11.212 16.274 6.745 -2.796 
P 0 0 - - 0 0 0 0.005 

No. 10 

Coef. C4 -4.54795 - - 0.41312 - 0.2283 -0.31528 

SE Coef. D4 0.076361 - - 0.037134 - 0.033635 0.073994 

T 129.243 -59.559 - - 11.125 - 6.787 -4.261 

P 0 0 - - 0 - 0 0 

 
E. Residual Analysis 

After the primary statistical tests, the residuals of the 

models were checked for normality error, homoscedasticity, 
and independence of error. For the normality error test, the 
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residuals’ distribution was compared with the normal 
probability distribution (NPD). A normal distribution of the 
residuals showed that the errors were normally distributed, 
which validated the efficiency of the models. A small 
deviation from the normal distribution is usually tolerated. The 
deviations determine the possibility of the presence of outliers. 
Removing the outliers resulted in a higher correlation. 
However, the outliers were saved as they might represent 
important data patterns. Moreover, the distribution of the 
residuals around the fitted values was investigated. According 
to Kutner et al. [24], the symmetry of the distribution of the 
residuals around the fitted value is due to the consistency of 
the variance around the fitted values. The plots of residuals in 
all models proved the reliability and soundness of the models. 

F. Model Validation 

The generated models were validated using the testing 
dataset. In this step, the generated outputs were compared with 

the actual ones. The efficiency of the models was also 
measured through various indicators as computed in (1)-(4): 
 

∑ 1             (1) 

 
100                  (2) 

 

∑ /                (3) 
 

∑ | 	 |
                (4) 

 
where:  = Average Invalidity Percent;  = Average 
Validity Percent;  = Root Mean Squared Error;  = 
Mean Absolute Error; 	= estimated value; 	= actual value; 
and n = number of events. 

 
TABLE VII 

FACTORS’ NORMALIZATION METHOD 

Predictor Age Diameter C-factor Installation Quality Ground Water Soil Type Breakage Rate 
Norm
alizat
ion 

Unit Years Inches NA NA Meters NA Failures/ kilometer/ year

Method AG/ 90 (DI-150)/ 300 (CF-20)/ 105 (IQ-2)/ 10 (GW-2)/ 8 (ST-2)/8 BR/4 

 
TABLE VIII 

MODELS’ VALIDATION RESULTS 

Models 
Validation Technique 

P-Value R2 (%) AIP (%) AVP (%) RMSE MAE 

No. 1 0.000 97.2 5.21 94.79 0.01 0.32 

No. 2 0.000 94.6 3.58 96.42 0.01 0.23 

No. 3 0.000 98.4 2.17 97.83 0.01 0.12 

No. 4 0.000 95.8 3.86 96.14 0.01 0.21 

No. 5 0.000 96.6 4.25 95.75 0.02 0.29 

No. 6 0.000 94.1 5.26 94.74 0.02 0.35 

No. 7 0.000 96.7 4.06 95.94 0.02 0.24 
No. 8 0.000 96.4 4.23 95.77 0.22 0.27 

No. 9 0.000 96.6 4.12 95.88 0.01 0.26 

No. 10 0.000 96.8 3.83 96.16 0.01 0.24 

 
The validation results and the models’ correlation 

coefficients are shown in Table VIII. The Average Invalidity 
Percentage (AIP) values of the models were mostly less than 
5%, which implies the validity of the developed models. The 
third model obtained the lowest AIP value of 2.17% and the 
highest Average Validity Percentage (AVP) value of 97.83%. 
The Root Mean Squared Error (RMSE) was 0.01 for most of 
the models except for the fifth and sixth models, which 
displayed an RMSE of 0.02, which was satisfactory and 
showed the reliability of the produced models. All models 
achieved Mean Absolute Error (MAE) values less than 0.35, 
which also proved the validity of the developed models. The 
third model obtained the lowest MAE value. The validation 
plots of the actual and generated conditions for the whole 
dataset are shown in Fig. 3. All models showed satisfactory 
results as there is a little discrepancy between the lines 
representing the pipeline actual and predicted deterioration 
indices. 

G. Discussion on the Application of Developed Models 

This section discusses the advantages of the different 
models and their application in an actual water pipeline 
network case study. In order to predict the deterioration and 
condition of pipelines, the developed models can be applied, 
depending on the availability of the data. When the data for all 
variables are available, the overall water pipeline model 
should be preferably used. However, data on some variables 
(e.g. pipe diameter) might be missing from historical 
databases of large water distribution networks. The missing 
data do not allow the user to use the overall models (i.e. first 
and second models) while computing the condition of the 
pipes. The traditional regression models for small and large 
pipes overcome this limitation and enable the user to compute 
the condition of the pipes by only knowing the pipe size 
category. For large diameter category (e.g. most of water 
mains), the model for large diameter pipes will be used. After 
choosing the model (Table III), the condition of the pipes is 
calculated by substituting the value of each variable in the 
regression model. For example, let us consider a pipe with the 
following data: 1) AG:5, 2) DI:250, 3) IQ: Good, 4) GW: 
Deep depth, 5) ST: Moderate, and 6) BR: 0.01. The equivalent 
numerical values for the qualitative variables are obtained 
using Table I. The first model (with age) is selected (i.e. CI = 
7.54 - 4.39*AG + 0.225*DI + 0.437*IQ + 0.542*GW + 
0.329*ST - 0.309*BR). Then, the actual values are 
normalized using the equations in Table VII. Finally, the 
variables are substituted with their actual values and the 
condition index is computed, which was estimated, in this 
case, at 8.55. 
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Fig. 3 Models’ validation results 
 

Traditional regression models require data for all input 
variables including age, diameter, installation quality, ground 
water depth, soil type, and breakage rate. In a large pipeline 
network of a city, data for certain numerical and categorical 
variables might be missing. For example, municipalities might 
not have enough information regarding the soil type and water 
depth around the pipes in different parts of the city. In 
categorical models, there are different models that can be used 
when the data for one or more variables are not available. For 
example, if the soil type in various pipeline beddings is not 
available, the eighth model may be used. In the presence of an 
aggressive soil type, the constant value is equal to 7.9366 as 
shown in Table IV according to the first model of the eighth 
model group. If the soil type is considered as non-aggressive, 
the constant value will be 8.1039. Consequently, the estimated 
value of the pipeline’s actual deterioration will vary with a 
range of 0.2 condition units. If material type and ground water 
depth data are missing, the tenth model might be used to 
forecast the condition of the pipes. If the pipeline size is 
known, the number of categories is decreased to 12. The 

maximum variation between various classifications of the 
unknown variables is about 0.8 condition units. As a result, the 
categorical regression models can be used to compute the 
deterioration of pipeline sections in a large city network when 
part of the required data is not available. Unlike traditional 
regression models, categorical models consider pipeline 
material types, which are important in the deterioration 
assessment. 

 Three main steps are used to compute the deterioration 
index of pipelines using categorical regression models: 1) 
select the category of the pipe from Table V; 2) locate related 
constant values from Table IV; and 3) insert the constant 
values into the equations of Table III. For example, let us 
consider a 450 mm-diameter pipeline made of polyethylene 
and buried in a shallow ground water location. According to 
Table V, the pipeline that belongs to the category of “D3, M1, 
G3” is related to group no. 27. The associated constant value 
of 7.9604, which is obtained from Table IV, is inserted into 
the deterioration assessment equation for the eleventh 
regression model. Finally, the deterioration of the pipe is 
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estimated by replacing the values of age, installation quality, 
soil type, and breakage rate. 

VII. DETERIORATION AND BREAKAGE RATE FORECASTING 

MODEL 

Deterioration profiles can be used to estimate the 
deterioration of water pipelines during their service lives and 
optimize the maintenance and rehabilitation of water pipelines 
during their life cycle. In this study, the collected data were 
used to build a model that predicts water pipeline deterioration 
based on its age. A cubic regression line was the best-fit 
model with an R2 of 98.8%, as shown in Fig. 4. Furthermore, 
the correlation of water pipeline deterioration with its 
breakage rate was investigated to find a model that forecasts 
the breakage rate of water pipelines based on their 
deterioration condition. A model was developed to estimate 
the breakage rate of pipelines by considering first, second, and 
third order regression equations of their deterioration indices. 
The best regression equation was found to be of a third order 
as presented in Fig. 5. The developed model yielded a 
determination coefficient equal to 94.6%, which proves the 
efficiency of the model. Equation (5) predicts the condition of 
the pipe during its service life, while (6) correlates pipe 
breakage rate with its condition. The model predicts the 
breakage rate using the pipeline actual deterioration index. 
The investigation of pipeline deterioration index versus the 
age did not result in an efficient model and the correlation 
coefficient was too small to report. 
 

CI	=	9.787-	0.1717×AG	+	0.002883	×	AG2-0.00002×	AG3(5) 
 

BR	=	13.96	-	5.543	×	CI	+	0.7256×	CI2-	0.03113	×	CI3  (6) 
 
where: CI = pipe condition index, AG = pipe age, and BR= 
pipe breakage rate.  

 

 

Fig. 4 Model to forecast breakage rate through condition index (CI) 
 
The developed models can estimate the overall condition 

and breakage rate of the pipes during their service lives 
without any additional data. The models are developed in a 
generic format to predict the values of the pipe condition and 
its breakage rate during its service life. To forecast the overall 
condition index and breakage rate of a pipe, its condition is 

first estimated by replacing the age value in (5). Then, the 
computed condition index is inserted into (6) to find the 
associated breakage rate of the pipe. For example, let us 
assume a user wants to compute the tenth-year breakage rate 
of a pipe. First, 10 is substituted with the age factor in (5) and 
the Condition Index (CI) is calculated; which results a value of 
8.3383 in this case. Then, the computed CI is inserted into (6) 
to compute the Breakage Rate (BR), which was estimated at 
0.142 failures/year/km in this case. However, this is a very 
generic application of these models. A condition assessment 
model would be more accurate in predicting the breakage rate. 

 

 

Fig. 5 Model to forecast breakage rate via condition index (CI) 

VIII. CONCLUSION 

This study developed deterioration assessment models for 
water pipelines. The factors contributing to the deterioration of 
the pipelines were identified through an extensive literature 
review. These factors were classified into three groups: 
physical, environmental, and operational. Water pipeline 
historical data were gathered from a Canadian municipality. 
The database was divided into training (80%) and testing 
(20%) datasets. Several combinations of the variables were 
considered. Six regression models were developed assuming 
numerical variables where; two of the models were developed 
for water pipelines, regardless of their diameter size; and the 
other two models were developed for small and large 
pipelines, respectively.  

Categorical regression models were also developed 
considering different categories of pipeline material, diameter 
size, ground water depth, and soil type. The regression 
equations of the categorical models differed only in the 
constant value. The developed models were validated, using 
the testing dataset, and displayed an AVP of 95%. The 
correlation coefficients of the models were estimated to be 
greater than 96%. Sensitivity analysis, which was performed 
for non-categorical regression model, visualized the 
importance of age compared to the other variables. The 
categorical models yielded higher conditions for larger and 
polyethylene pipelines. The pipelines buried in non-aggressive 
soils and deep ground waters were subject to less deteriorating 
conditions. The developed models will help water pipeline 
operators and municipalities in the deterioration assessment of 

9080706050403020100

10

9

8

7

6

5

4

3

2

Age

Co
nd

iti
on

 In
de

x

S 0.192116
R-Sq 98.8%
R-Sq(adj) 98.8%

CI =  9.787 - 0.1717 *Age
+ 0.002883* Age^2 - 0.000020* Age^3

1098765432

4

3

2

1

0

Condition Index

Br
ea

ka
ge

 R
at

e

S 0.206068
R-Sq 94.6%
R-Sq(adj) 94.6%

Breakage Rate =  13.96 - 5.543 *CI
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their water network, even in the absence of some missing data. 
Finally, two more models were developed to predict the 
deterioration of pipelines during their service lives. These 
models can be used to forecast the condition profile and 
breakage rate of pipelines during their life cycles. Such 
models will assist the municipalities in prioritizing the 
maintenance and replacement of their water pipelines. 
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