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Abstract—The objective of this paper is to develop a neural 

network-based residual generator to detect the fault in the actuators 
for a specific communication satellite in its attitude control system
(ACS). First, a dynamic multilayer perceptron network with dynamic 
neurons is used, those neurons correspond a second order linear 
Infinite Impulse Response (IIR) filter and a nonlinear activation 
function with adjustable parameters. Second, the parameters from the 
network are adjusted to minimize a performance index specified by 
the output estimated error, with the given input-output data collected 
from the specific ACS. Then, the proposed dynamic neural network 
is trained and applied for detecting the faults injected to the wheel, 
which is the main actuator in the normal mode for the communication 
satellite. Then the performance and capabilities of the proposed 
network were tested and compared with a conventional model-based 
observer residual, showing the differences between these two 
methods, and indicating the benefit of the proposed algorithm to 
know the real status of the momentum wheel.  Finally, the application 
of the methods in a satellite ground station is discussed.

Keywords—Satellite, Attitude Control, Momentum Wheel, 
Neural Network, Fault Detection. 

I. INTRODUCTION

INCE several years ago, the influence of automation on the 
operation and the design of technical processes increased 

progressively. This development of expanding process 
automation was caused by an increasing demand on the 
process performance or the product quality, the independence 
of process operation from the presence of human operators, 
relieve of operators from monotonic task and because of rising 
wages. [1].

As the satellites are very important for improve almost 
everything in the life, then the process of automation had been 
helping the progress in this qualified field. Usually, the 
researchers are attempting to do some hardware and software 
in order to upgrade the system, but sometimes they have some 
limitations due to the equipment’s performances. The 
variables’ control is a goal during the designing and 
development for the system, this course of action is not easy, 
afterward is necessary to use the fault detection, diagnosis and 
Isolation.

The appeal of neural networks and its application to fault 
diagnosis that has been studied in [4], [5], [6], [14], [15] are 
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due to their capabilities to cope with nonlinearity, complexity, 
uncertainty, noisy and corrupted data. Neural networks 
constitute suitable modeling tools for represents highly 
nonlinear processes. Generally, it is more advantageous to 
develop a nonlinear neural network based model for a range of 
operating conditions than to develop a bank of linear models, 
each developed for a particular operating point, therefore 
rendering neural networks as ideal tools for generating 
residuals. [7].

Fault diagnosis and identification had been widely 
researched during the recent years due to the increasing 
demand on reliable operation of safety critical control systems, 
such as intelligent vehicles and future planned autonomous 
spacecraft/probes. The main task for fault diagnosis schemes 
are to detect and isolate occurring faults in order to avoid 
overall failure of the monitored system and any catastrophes 
involving human fatalities and material damage. [2].

Satellite communications links add capacity to existing 
communications capabilities and provide additional alternate 
routings for communications traffic. Satellite links, as one of 
several kinds of long-distance links, interconnects switching 
centers located strategically around the world [3]. Regarding 
the communication satellite and the attitude, both have a 
relationship, which represents an interesting point for this 
paper, because the actuator’s performance allow maintaining 
the desired antenna pointing, for that reason if it is working 
properly without any fault the results for the satellite’s users 
will be the best.  

There are lot researches going to avoid the actuator’s fault 
and they are using different methods in order to do it, one of 
them is represent by the neural network, where are used and 
combined with other variables, with the main objective of 
procure the best performance for the system. Following these 
researchers we present this paper attempting to develop a 
neural network based fault detection and isolation scheme 
(FDI) for the Attitude Control Subsystem (ACS) of a satellite.
Due to the necessity for an efficient tools that can allow more 
autonomy, with minimal support from the ground station and 
operators detect and isolate faults in the spacecraft that is 
estimated to work under unforeseen conditions, significant 
uncertainties, and disturbances in outer space; in this paper we 
will develop a diagnosis algorithm for the momentum wheel 
(MW) that is commonly used as an actuator in the ACS of 
these systems.

This paper is organized as follows. Initially and introduction 
regarding the area, and then a neural network structure is 
commented in part II, after that it is applied to the momentum 
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wheel dynamic model in the next section, then some faulty 
scenarios and the respective results for the application of our 
proposed neural network are presented in the part IV. With the 
aim of demonstrate and illustrate the capabilities of our 
proposed fault detection approach, a comparative evaluation of 
the results is performed using benchmark a linear model-based 
observer residual generator and finally the conclusions.

II. NEURAL NETWORK

In section II, we are going to develop a neural network 
observer-based scheme for fault detection and isolation in 
momentum wheels. The neural FDI scheme will be employed 
to perform the detection and isolation tasks of the diagnosis 
system using different neural network structures. 

Fig. 1 General Structure of the neural network FDI Scheme

In mathematical model-based fault diagnosis schemes, a 
model for the plant is built first. Then diagnostic residuals are 
generating through comparing the output of the practical 
system with the output of the model. Next, the residuals are 
used to diagnose faults [11], [14]. An important assumption 
for the model-based fault diagnosis schemes is that the 
mathematical models are able to represent the practical 
systems with sufficient accuracy. Otherwise, the mismatch 
between the practical systems and their models as well as 
disturbances might cause the proposed fault diagnosis schemes 
unreliable.

In this section a generalized structure of dynamic neuron 
model is introduced, which was proposed in [12] considered in 
[14] and here. The structure of the dynamic neural network is a 
generalization of the conventional static model accomplished 
by adding an Infinite Impulse Response (IIR) filter to neuron 
transfer function.

Fig. 2 Dynamic Neural Network with P inputs

There are three main operations are performed in this 
dynamic neuron structure, beginning with the weighted sum of 
the inputs which is calculated according the following 
expression [5]: 
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Where w=[w1 w2 w3…wp]denotes the input-weight vector, P
is the number of inputs and u(k)=[u1(k).u2(k)…up]

T is the input 
vector. Hence, the computed weighted sum of the inputs x(k) is 
passed through the IIR filter. The corresponding 
characteristics of the filter can be described by the following 
difference equation:
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Since represents the filter input, )(~ ky denotes the filter 

output, a=[ a1 a2 a3…an] and b=[b0 b1 …bn] are the feedback 
and feed-forward paths weighted by the vector weight, and n 
denotes the filter order. The neuron output can be formulated 
as:

)(~()( kygFky        (3)

Where F(∙) is the nonlinear activation function that 
produces the neuron output  y(k) and g is the parameter of the 
activation function defining its slope.

Owing to the neuron’s internal dynamic system properties 
the DMLP processes the modeled system measurements at the 
current time instant k thereby reducing the input space of 
trained network in comparison with Elman and another 
recurrent DML network [13].

The network has to be trained for accomplish the task of 
replacing the analytical model that describes the MW in 
normal mode of operation. Learning data is collected directly 
from the simulation model of the MW developed by [10] that 
is as realistic as possible. After the training process, the 
dynamic neural network is ready for on-line residual 
generation. The proposed dynamic neural network can has 
equal structure as a standard feed forward backpropagation 
network. The calculated output error is propagated back to the 
input layer through the hidden layers containing dynamics 
filters, where the extended dynamic backpropagation 
algorithm can be defined and it can operate in both modes of 
training, on or off-line [13].

III. MOMENTUM WHEEL MODEL

The attitude of a spacecraft is its orientation in space, it 
depend upon control subsystem who allows stabilize and 
reorient the spacecraft, this paper is concerned with some 
aspects of spacecraft attitude; in order to know how to control 
them and determine when there are various faults, and then the 
MW represents an important device in this field, due to the 
functioning during the spam life of the satellite. Belonging to 
the subsystem, this stabilizes the S/C and reorients it in desired 
direction despite the external disturbance torques acting on the 
satellite. 

Momentum Wheel is a flywheel designed to operate at 
biased, or nonzero, momentum. It provides variable-
momentum storage capability about its rotation axis, which is 
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usually fixed in the vehicle [8], [9], [14]. This device is used 
primarily to provide the spacecraft with the momentum bias 
necessary for inertial attitude stability. As a byproduct, the 
momentum wheel can also develop torque for controlling the 
attitude of the satellite’s axis that is parallel to the momentum 
wheel’s axis rotation [9]. MW is used for spacecraft attitude 
control and consists of a heavy rotating disk or wheel. Even 
though the momentum wheels are very accurately balanced 
statically and dynamically, the high speed of operation (≈ 4500 
to 5400 RPM), causes dynamic disturbances to the spacecraft; 
of course, reality is not so simple, this device has an electrical 
motor which provides according the input voltage and the 
himself electrical resistance (RM) control the torque desired.

According [9] the basic equation that converts an electrical 
motor into what is known as a momentum wheel (MW) is:




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


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w
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1
   (4)

The above equation gives a linear model for the momentum 
exchange device. Technically, such a device has a torque and 
velocity limitations; when the attitude control of a satellite is 
designed, these limitations must be taken into consideration.

The MW is in essence a momentum transfer and storage 
device which provides torque to the vehicle and store angular 
momentum. It consist of a rotating flywheel that is driven by 
an internal brushless DC motor, the use provides usefulness for
the attitude control. Based on MATLAB Simulink blocks a 
detailed block diagram of the momentum wheel is an adaption 
support on the reaction wheel model developed by [10] is 
shown in Fig. 3.

Fig. 3 Block Diagram of Momentum Wheel

The above schematic of the momentum wheel allows us to 
obtain a relationship in the ACS of the satellite to be used for a 
high fidelity mathematical model. It must be emphasized that 
this block regard the mathematical description will be used for 
the simulations, introducing any faults in order to check the 
neural network time responding. Typical parameters for the 

MW are coming from the T-SAT virtual satellite developed by 
[3] and are shown in details in [10]. The above MW model 
developed is subsequently used for diagnosis in the ACS 
system including the nonlinear attitude dynamics model of the 
satellite, also the model will be modified in order to include 
fault injection capabilities which will be shown later.

The configuration in a typical three-axis stabilized 
communication spacecraft, two-momentum wheels and one 
reaction wheel are used for attitude control [9]. One geo-
stationary virtual spacecraft developed by [3] represents an 
example for this configuration, where two momentum wheels 
(MW) are attached to the spacecraft structure using brackets. 
This satellite was developed accomplishing some special 
requirements, like attitude error of normal mode, which must 
to be less than: Roll: ±0.05°, Pitch: ±0.05° and Yaw: ±0.15, 
also during normal mode, Satellite has the ability to do W/E 
station-keeping.

The satellite needed to meet the ACS accuracy requirements 
(in our case, the satellite should be maintained within the range
of a Earth-pointing attitude in all the three axes for any attitude 
set point change in a specified range) in order to guarantee  the 
reliability of the system and so on.

IV. SIMULATIONS RESULTS

A. System Identification

The modeled Momentum wheel at the pitch axis has one 
input (Torque Command Voltage) and one output which is the 
reaction torque and is simulated in order to generate input and 
output training data to be used for training purposes. The 
training process for the dynamic network was carried out using 
an extended dynamic backpropagation algorithm for about 
10,000 time samples (msec). Preprocessing steps are 
performed for the network inputs and targets so that all the 
input-output data vectors are normalized.

During the training process the dynamic network allows us 
to know the real status, according the results and then we can 
said that after the 15,000 times samples (msec), the network is 
well trained, because during the training phase (depicted in fig. 
4), the performance was really good getting the best result with 
the network structure N1-13-1 (one input, 13 neurons in the 
hidden layer and one neuron in the output layer), this structure 
was chosen after several tests in order to get the best one for 
our system.

In order to check the capability of the trained network, the 
DNN is evaluated through generalizing it with another data set 
of 15,000 samples (Fig. 5) that was not seen previously by the 
network, then after that we got some results regarding this 
evaluation which are indicating that the output of the neural 
network follows the actual model’s output, and that situation 
allows us to notice that the neural model is capable for 
detecting any changes in the reaction wheel input signal (i.e. 
command voltage). Also, we can notice that the difference 
between the momentum wheel model and the neural model is 
due to the error between the actual and the estimated reaction 
torque signal when the noise is present. 
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Fig. 4 Training Phase for the Dynamic Neural Network
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Fig. 5 DNN Testing phase (msec)

B. Fault Detection

The created residual generator is applied regarding the fault 
detection in the satellite’s actuator, specifically at the 
momentum wheel of communication satellite, and then 
different types of faults are considered allowing to us to 
generate fault scenarios under noisy working conditions, which 
are used and have been injected to the close loop attitude 
controlled system. Bellow is presented the simulation results in 
order to shown the dynamic neural network behavior under 
different conditions. 

Case 1: Bus Voltage Fault  
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Fig. 6 Residual error from the dynamic neural network, the over bus 
fault.
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Fig. 7 Residual error from the linear model-based observer, the over 
bus fault.

Regarding the low bus voltage conditions, it is important to 
know that the motor torque may be limited at high speeds due 
to the increasing back-EMF, Ke, of the motor. From a 
disturbance standpoint, it should also be noted that the 
available motor torque will at that point be coupled directly to 
the bus voltage, and any fluctuations in bus voltage will be 
sensed as torque disturbance [10]. Initially, an over bus 
voltage faulty scenario was injected at the time sample 7,000 
msec, as shown in Fig. 7. The fault diagnosis is principally 
performed during the steady state response of the satellite 
which is reached after approximately the 4,000 msec samples, 
and all the other simulation results that are shown after this 
state. The result in this figure allows knowing how the 
proposed dynamic neural network residual generator is 
capable of recognizing and determining the presence of a fault 
that is very close to the time that the actual fault has occurred.
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Fig. 8 Residual error generated from the linear residual, low bus 
fault.
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Fig. 9 Residual error generated from the Dynamic Neural Network 
when the low bus fault occurs.

Now, in order to compare our result above with a model-
based linear residual generator design, which we treated as a 
benchmark fault detection strategy, was developed and 
implemented. The result is exposing in Fig. 7 which shows that 
designed observer is not capable for to detect the presence of 
the fault. It is clearly seen that although the fault has persisted 
in the MW, the residual generated by the model-based 
approach has converged back to its normal condition. The 
process for making fault detection decisions can be 
accomplished by using a simple threshold in the interval [0.1, 
0.2], so that any deviation from this range will be considered 
as a fault. This threshold was selected after performing a 
number of simulations under different operating conditions to 
guarantee that our proposed approach will work successfully 
with minimal false alarms. To demonstrate this further, 
successful fault detection is also obtained when a low bus 
voltage fault scenario, which is simulated in Fig. 7, is applied 
to the MW. For comparison, the model-based observer 

residual output is also depicted in Fig. 8 for the same faulty 
situation. It follows clearly that the linear residual generator 
again could not detect unambiguously the faulty situation.

In order to do the fault detection decisions, this process can 
be accomplished by using a simple threshold in the interval 
[0.1, 0.2], so that any deviation from this range will be 
considered as a fault. This threshold was selected after 
performing lot simulations under different operating conditions
to guarantee that our proposed approach will work 
successfully with minimal false alarms. To demonstrate this 
further, successful fault detection is also obtained when a low 
bus voltage fault scenario occurs, which is simulated in Fig. 8, 
is applied to the MW. For comparison, the model-based 
observer residual output is also depicted in Fig. 9 for the same 
faulty situation. It follows clearly that the linear residual 
generator again could not detect unambiguously the faulty 
situation, while our proposed Dynamic Neural Network can to 
detect the fault.

Case 2: Motor Driver Gain Fault.
As was mentioned before, another scenario is presented, 

introducing a fault at 7000 msec. In this case, the motor 
control torque block (Kt), which is shown in fig. 3, consists of 
a voltage controlled current source with gain Gd and a motor 
with torque constant. The main function of this block is to 
generate a motor current that is proportional to the torque 
command voltage and to convert this current into torque 
through the motor torque constant Kt. Therefore, any injected 
fault in the motor driver gain will be reflected directly as 
fluctuations in the motor current and as result in the motor 
torque. A defective scenario is presented to the motor driver so 
that an over current faulty situation is obtained. The 
capabilities of our proposed dynamic network residual 
generator and a model-based linear observer in detecting this 
kind of fault are depicted in Figs. 10 and 11, respectively.
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Fig. 10 Residual error generated from the dynamic neural network 
after the motor driven gain fault.
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Fig. 11 Residual error generated from the linear observer after the 
motor driven gain fault.

We can notice the plots in the figures, which shown clearly 
that the neural network approach is capable to detect the 
injected fault, while the residual generator had a very poor 
performance.

Case 3 Doble Fault Scenario
Again a fault is injected, but this time is double, we mean in 

the bus voltage and motor driver gain successively. Over the 
bus voltage fault was injected at 7000 msec and after that is 
injected another one, but at 10000 msec in the motor driven 
gain. 
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Fig. 12 Residual error generated from the linear observer after the 
double fault.
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Fig. 13 Residual error generated from the dynamic neural network 

after the double fault.
The dynamic neural network, as is demonstrated in Fig. 13, 

detects the injected double faults rapidly. This indicates that 
the predicted output of the dynamic neural network clearly 
deviates from the output of the actual system, while in Fig. 12 
we can to check that the linear residual generator observer has 
failed completely in detecting the severe double faults.

V. CONCLUSIONS

Our dynamic neural network residual generator is 
constructed based on the Dynamic Multilayer Perceptron 
Network. A generalized embedded structure for the dynamic 
neuron model is considered in the DMLP network. The 
developed fault detection and diagnosis technique is applied 
to a momentum wheel model that is normally used as an 
important actuator in the ACS of a satellite. From the 
simulation results shown it can be concluded that the dynamic 
neural residual generator has produced a very reliable 
performance in detecting both a single and double faults that 
have been injected into the wheel system. 

Comparisons with a linear model-based observer acting as 
a residual generator are also included to demonstrate the 
capabilities and advantages of the proposed dynamic neural 
network scheme. We have shown that the performance of the 
linear residual generator was very bad and wasn’t capable to 
determine when the faults were injected, then this paper 
shown the improvement in fault detection with a dynamic 
neural network-based approach, allowing to the ground 
station save more time and faster responses than another used 
methods.
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