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Abstract—Particle detection in very noisy and low contrast images
is an active field of research in image processing. In this article, a
method is proposed for the efficient detection and sizing of subsurface
spherical particles, which is used for the processing of softly fused
Au nanoparticles. Transmission Electron Microscopy is used for
imaging the nanoparticles, and the proposed algorithm has been
tested with the two-dimensional projected TEM images obtained.
Results are compared with the data obtained by transmission optical
spectroscopy, as well as with conventional circular object detection
algorithms.
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I. INTRODUCTION

PARTICLE detection and size determination in noisy and
low contrast images is a challenging problem in image

processing [1]. Noise and low contrast are more significant
problems encountered while imaging particles which are sub-
surface in nature. In this article, a method is proposed for
the efficient detection and size determination of subsurface
spherical particles, which is used for the processing of softly
fused Au nanoparticles.

There are two main sources of problems regarding shape
detection from real images – due to the imaging technique,
and due to problems in the shape inconsistency of the sample
itself. In this implementation we are primarily dealing with a
problem of the second category with of course the co-existence
of the problem of the first category.

Here we have Transmission Electron Microscopy (TEM)
images in real space of objects that are ‘softly’ fused, i.e.
hard objects connected by soft gluey ‘strips’ - Au nanoparticles
(NPs) connected through organic coatings or cappings that can
attach to multiple nanoparticles. Nanoparticles are interesting
fundamentally because they have size and shape dependant
properties. All properties become uniquely defined only when
the size and/or shape become well-defined, i.e. fall predomi-
nantly within a range for a collection of nanoparticles, known
as shape/size ‘monodispersity’. It is particularly to be noted
that ultra-high resolution images of the atomic lattices within
the NPs are not strictly relevant here, as overall and interfacial
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morphology of the particles, rather than their lattice, determine
the properties. Hence detection and accurate measurement of
shape and size of the nanoparticles is of crucial importance.
This aspect underscores the relevance of this work.

Notwithstanding the fact that TEM provides most well-
resolved images, there are certain limitations of imaging the
NPs using TEM. Using electrons for subsurface imaging lead
to problems as they are affected by the sample’s chemical
content. This leads to non-uniform illumination of the sample,
and finally leading to high noise and weak edges in the TEM
images produced. Thus an efficient algorithm is essential for
detection and sizing of the nanoparticles in the TEM images.

The Circular Hough Transform (CHT) [2], an extension of
the General Hough Transform [3], is the most popular method
for circle detection in images. The principle of a Hough
Transform is the transformation of the image to a parameter
space, called the Hough space. The CHT is expected and
has been previously shown to work well with noisy images,
however it is inefficient in detecting nanoparticles from the
micrographs due to excessive noise. Thus a modification to the
CHT has been proposed in this article. For more efficient noise
reduction, some preprocessing of the images is also proposed.

There has been some prior work on nanoparticle detection
from TEM images. Woehrle et al [4] discusses how certain
image processing software can be used for counting the
number of nanoparticles present in a TEM image. However the
method fails for samples which contain varying nanoparticle
sizes in them. Fisker et al [5] proposes a deformable ellipse
model for the detection and size determination. However, the
method is inefficient for irregular particle size, as well as over-
lapped particles. It is also a very computationally expensive
method. There have been some other work in particle detection
from electron micrographs in the past [6], [7], [8], [9], [10],
however, the level of false positives remains very high. Thus
there is a need for a faster, and more efficient automatic image
analysis method for the detection and sizing of nanoparticles.

In this article, a 3-step algorithm is proposed for the efficient
detection and sizing of the NPs from the TEM images. The
first step was to attempt to decrease the noise while making
sure that the edges are not blurred. For this, we use the Median
Filter [7] alongwith the Laplacian Sharpening Filter [7].

In the second step, for edge detection, we used the Canny
edge detector [11]. This is used instead of the Sobel edge
detector, as it shows better performance in detecting thin as
well as low contrast edges.

To construct an efficient algorithm for the detection of
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Fig. 1. Schematic of (a) Thiol-capped Au nanoparticle, (b) dithiol-capped
Au nanoparticles

nanoparticles in an image, as much possible prior information
should be incorporated into the algorithm. In the growth
technique employed, it is expected that the NPs would be
spherical, so circular patterns in a 2D projection are of main
interest. Thus for the final step, we employed a modified
version of the Circular Hough Transform for more efficient
detection and extraction of the particles. The modifications
take into account the low contrast nature of the images. In
addition, the TEM images obtained do not yield perfectly
circular projections of the spherical nanoparticles as the Au
nanoparticles are interconnected through organic coatings.
Thus our modified CHT takes into account this object irregu-
larity and the corresponding uncertainty in radii.

Since this is not an online implementation, priority is given
on accuracy than on time complexity. However, the Circular
Hough Transform is very easy to highly parallelize when
implemented in hardware, thus leading to very fast execution.

This paper is organized as follows. Section 2 investigates the
methodology used in our research. In Section 3, we report the
results obtained on imaging the nanoparticles. We also discuss
the pitfalls of the algorithm. Final conclusions are presented
in Section 4.

II. EXPERIMENTS & METHODOLOGY

A. Preparation of Au nanoparticles with different cappings.

Preparation of Au nanoparticles of different cappings were
primarily based on the widely used Brust-Schiffrin (BS) two-
phase synthetic method [12]. We have prepared Au nanopar-
ticles with three types of capping. In each case, Au was
extracted from aqueous solution of HAuCl4 by transferring
it to an organic solution of toluene by using a phase transfer
reagent TOABr (tetraoctylammonium bromide). After that the
capping agent (dodecanethiol (C12H25SH), octadecanethiol
(C18H37SH) or 1,6-hexanedithiol (C6H12(SH)2)) is added to
this phase separated solution and finally HAuCl4 is reduced
using aqueous solution of sodium borohydride (NaBH4). The
capped Au nanoparticles precipitate in ethanol solution when

Fig. 2. Surface Plasmon Resonance (SPR) peaks of Au nanoparticles with
different cappings. Black lines correspond to Lorentzian fit, while open circles
represent the data for dodecanethiol (magenta), octadecaethiol (orange) and
hexanedithiol (green) -capped NPs.

left overnight. This precipitate is washed with ethanol, filtered,
and the residue on the filter paper is dissolved in toluene
according to the desired concentration. It is to be mentioned
that the S atom of the thiol chain attaches to the Au atoms
of the core of nanoparticles to make them stable (Fig. 1).
Among the cappings, the dithiol, due to the existence of S
atoms at both ends of the carbon chain, can bind to two Au
nanoparticles and is capable of producing a self-assembled
string of superclusters [13] as shown in the cartoon of Fig.
1(b).

All chemicals were bought from Sigma-Aldrich, USA and
used without further purification.

B. UV-Vis Spectroscopy

As an independent assessment of the sizes of these variously
capped nanoparticles, we carried out transmission optical spec-
troscopy to investigate the surface plasmon resonance (SPR)
bands of these nanoparticles using a GBC Cintra 10e UV-
Vis spectrometer. The average size (d) of the nanoparticles is
related to the FWHM (Γ) of the SPR band through the relation
d = 2vF

Γ where vF is the Fermi velocity of the Au [14]. The
SPR bands in question are shown in Fig. 2. It should be noted
that while the SPR band for dodecanethiol-capped nanopar-
ticles is very well fit by a Lorentzian, both octadecanethiol-
capped and hexanedithiol-capped Au NP bands show small
deviations from Lorentzian distributions. Nevertheless, as the
deviations are small the FWHMs can give reliable estimate
of NP sizes. Thiol-capped Au nanoparticles show no shift in
the SPR peak (526nm for dodecanethiol, 510nm for octade-
canethiol) whereas the dithiol-capped nanoparticles show a
red-shift (568nm) probably due to the denser coating with
higher dipole moment that gives rise to a higher dielectric
constant [15]. From SPR, the size of the metallic nanoparticles
core come out to be 3.5nm, 3.4nm, 2.6nm for dodecanethiol,
octadecanethiol and hexanedithiol respectively.
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Fig. 3. Effect of pre-processing with the Median Filter and the Laplacian Sharpening Filter on the original TEM images. Original images are shown in (a)
(Dodecanethiol-capped Au NPs) and (c) (Hexanedithiol-capped Au NPs), while the pre-processed images are shown in (b) and (d) respectively.

C. Transmission Electron Microscopy

To probe these nanoparticles by TEM we have used carbon-
coated copper grid containing around 400 square meshes. Few
microlitres of nanoparticle solution in toluene were drop-cast
on the grid which was kept over a Whatman Grade 1, 150mm
diameter filter paper with particle retention capacity 11 micron
in liquid. The excess solvent trickled to the filter paper
underneath and dried out completely within an overnight, in
a desiccator.

TEM images were taken using a FEI electron microscope
of model Technai S-twin, operating at accelerating voltage
200kV with a resolution of 2.4Å. TEM images were analyzed
using ImageJ software (National Institute of Health, USA). It
is to be noted that both TEM and SPR provide the size of the
diameter of the metal core only.

Well-resolved nanoparticle images were obtained for the

thiol-capped Au nanoparticles as shown in Fig. 5(a) and (b)
for dodecanethiol and octadecanethiol-capped nanoparticles,
respectively. However, for dithiol-capped nanoparticles the
images (Fig. 5(c)) were unresolvable a priori, and to the end of
resolving the shapes and sizes of these particles, the methods
described in the succeeding sections have been employed.

D. Pre-processing Performed on the TEM Images

The TEM images obtained contained very noisy back-
grounds and some pre-processing was required for reducing
the noise in the images. We used a two step process for this.
We first used the Median Filter, and then the Laplacian Sharp-
ening Filter. The effect of using these filters together is shown
in Fig. 3. Fig. 3(a) and 3(c) are two TEM images obtained
from the dodecanthiol and hexanedithiol-capped nanoparticles
respectively. We find, particularly in case of Fig. 3(c), that the
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Fig. 4. The Modified Circular Hough Transform Explained. The red ellipse
denotes the particle with A and B as foci. C, D and E are some of the points
on the particle (ellipse) which vote for a radii range (Rmin to Rmax). From
our algorithm, we get F as the center of the detected blue circle.

nanoparticles are not determinable even by the naked eye. But
after using the Median Filter and the Laplacian Sharpening
Filter, the image were better resolved and could be used for
further processing as shown in Fig. 3(b) and 3(d).

‘Salt and pepper’ noise or impulse noise was removed by
applying the Median Filter. Impulse points are those that have
an absolutely different colour from their neighbouring pixels.
The Median Filter replaces the value of a noise pixel with the
median gray levels in the neighbourhood of that pixel. Thus it
removes the impulse noise present in the image, but an extra
consequence is the blurring of the edges. To take care of this
we used the Laplacian Sharpening Filter as the second step of
the pre-processing.

The purpose of using this filter is for highlighting fine
details and enhancing those which are blurred such as edges.
The Laplacian is a 2D isotropic measure of the 2nd spatial
derivative of an image. It highlights regions of rapid intensity
change and is thus very effective in enhancing blurred edges.

Since the input image is represented as a set of discrete
pixels, we have to find a discrete convolution kernel that can
approximate the second derivatives in the definition of the
Laplacian. We use the following kernel.

A =

⎛
⎝
−1 −1 −1
−1 8 −1
−1 −1 −1

⎞
⎠

The kernel approximates a second derivative measurement
on the image, and is thus very sensitive to noise. This results
in an increase in noise in the image. However using it with
the median filter avoids this problem from occurring.

In all implementations of filters in the proposed algorithm,
we used the classical implementation of convolution. Inventing
input pixel values for places where the kernel extends off
the end of the image has been avoided as it can lead to the
distortion of the output image.

E. Canny Edge Detection

In general, the purpose of edge detection is to significantly
reduce the amount of data in an image, while preserving the
structural properties to be used for further image processing.
There are various edge detecting algorithms, but in this al-
gorithm we used Canny edge detection, as it shows better
performance in detecting thin edges as well as low contrast
edges.

The Canny edge detection algorithm used was as follows:
• Gaussian Smoothing: After applying the Laplacian Sharp-

ening Filter, the image contained some noise and is thus
first smoothened by applying a Gaussian filter. This step
smoothens small noises in contrast to the Median Filter
that causes impulse noise to reduce.We used a small
standard deviation and a 3 ∗ 3 kernel to reduce the small
noise incorporated into the image by the Laplacian Filter.

• Gradient Calculation: The gradient magnitude and direc-
tion of each pixel of the image was determined by the
Sobel operator.

• Non-maximum suppression: This step converted the
blurred edges in the image of the gradient magnitudes to
sharp edges by preserving all local maxima in the gradient
image, and deleting everything else.

• Double thresholding and hysteresis: Pixels stronger than
the high threshold were considered edges, those weaker
than the low threshold were considered as background
and those between the two thresholds were marked as
weak edges. Weak edges were included in the image if
and only if they were connected to strong edges.

F. Modified Circular Hough Transform

The Hough Transform (HT) has been recognized as a very
powerful tool for the detection of parametric curves in images.
It implements a voting process that maps image edge points
into manifolds in an appropriately defined parameter space.
Peaks in the space correspond to the parameters of detected
curves. The Circular Hough Transform (CHT) is designed to
find a circle characterized by a center point (x0, y0) and a
radius r. The CHT is computationally more expensive than line
detection algorithms, due to the greater number of parameters
involved. To determine a circle, it is necessary to accumulate
votes in the three-dimensional parameter space (x0, y0, r).
We limited the time required for the circle detection in our
algorithm by incorporating a rough range that the NPs are
expected to fall in.

As shown in Figs. 5(a), (b), (c), the TEM images of the
nanoparticles have very noisy backgrounds, with low contrast
making their detection harder. Moreover, the particles do not
show up as perfectly circular and have a distorted shape.
This is because the Au NPs are connected through organic
coatings. Thus the Circular Hough Transform needs to be
made more robust considering this object irregularity, and the
corresponding uncertainty in radius [16].

For dealing with this problem, we let each point in the image
space vote for a radius range in the parameter space, rather
than for a single point. The radius range corresponds to the
uncertainty in radius of the nanoparticle.
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Fig. 5. Effect of Canny Edge Detection and Circular Hough Transform after the proposed pre-processing. Original TEM images of (a) dodecanethiol, (b)
octadecanethiol (c) and hexanedithiol capped Au NPs; Images after application of Canny Edge Detector and CHT without any pre-processing shown in (d),
(e), (f) and after application of Canny Edge Detection and the Modified CHT shown in (g), (h), (i), respectively. NPs detected by both schema are shown by
red circles.

Since there were multiple nanoparticles in each image,
there would be multiple peaks in the accumulator array. Thus
we face the next problem of identifying those smaller peaks
which were near another peak and were the result of the
same particle, and thus needed to be ignored for correct
computation. We implemented the following algorithm for
taking care of this problem.

Once we got a peak in the accumulator array, we discarded
all peaks which were smaller than the original peak and which
lay within the Manhattan Distance of 2xrmin around the peak.
If we found a peak of higher value, we took this as the new
peak, and discarded the previously considered peak. The radius
of the particle was taken to be a simple average of all the
radii of all the points voting for that point, as present in the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:7, 2012

865

(a) (b) (c)

Fig. 6. Histograms of the distributions of NP sizes as obtained from Fig. 5(g), (h), (i) respectively for Au NPs capped with (a) dodecanethiol, (b)
octadecanethiol, and (c) hexanedithiol. The x-axis denotes the size of the nanoparticles in nm, and the y-axis denotes the number of objects detected in the
TEM images.

accumulator array.

R =
1

n

n∑
i=1

Ri (1)

This simple algorithm effectively approximated the nanopar-
ticles as circles and we were able to determine the size of the
NPs.

The algorithm is explained in Fig. 4. The red ellipse denotes
the particle with A and B as foci. C, D and E are some of
the points on the particle (ellipse) which vote for a radii range
(Rmin to Rmax). From our algorithm, we get F as the center
of the detected blue circle. Thus we see that this algorithm
efficiently approximates an irregular shaped particle.

III. RESULTS

The proposed shape detection algorithm was tested with Au
nanoparticles of all three types of cappings. A total of 2, 14 and
18 images were taken of the Au nanoparticles with capping
agents dodecanethiol, octadecanethiol and 1,6-hexanedithiol,
respectively.

Figs. 5(a),(b),(c) show one original TEM image obtained of
the Au nanoparticles for the each of the respective capping
agents. As is evident, the images are very noisy with low
contrast, especially for the hexanedithiol-capped particles.

Figs. 5(d),(e),(f) show the detected particles using the con-
ventional implementation of the Canny edge detector, and
the Circular Hough Transform. The contours of the detected
objects are shown by red circles in the figures. The conven-
tional method does not efficiently detect the nanoparticles, and
detects many false particles as shown.

Figs. 5(g),(h),(i) show the detected objects in the images
using our proposed algorithm. We see that the octadecanethiol
and dodecanethiol-capped Au nanoparticles are all detected
successfully in the images. The 1,6-hexanedithiol-capped im-
ages are slightly less resolvable than these, but the resolution
shows considerable improvement over Fig. 5(f).

Figs. 6(a),(b),(c) show the radii distributions for the particles
in nanometer scale in each of the three cases. From the distri-
butions we see that the sizes of the metallic nanoparticle core
comes out to be 3.3nm, 3.6nm and 2.9nm for dodecanethiol,

octadecanethiol and hexanedithiol respectively. This compares
well to the SPR data obtained, as mentioned before, of sizes
3.5nm, 3.4nm and 2.6nm, in the three cases in the same order.

What is more remarkable is that the size distribution
of the dodecanethiol-capped Au NPs is consistent with the
Lorentzian distribution of the same as obtained from the
SPR data, while those of octadecanethiol, and hexanedithiol-
capped NPs deviate considerably from log-normal behaviour,
again showing consistency with deviations from Lorentzian
behaviour in the corresponding SPR results.

IV. CONCLUSION

In this paper, we have proposed a method for efficient detec-
tion of circular objects from noisy low contrast 2-dimensional
projected images of subsurface spherical objects. We tested
our shape detection method for the detection and processing of
Transmission Electron Micrographs of Au nanoparticles with
three types of cappings, using capping agents as dodecanethiol,
octadecanethiol and 1,6-hexanedithiol. The results obtained
were compared with those of Surface Plasmon Resonance data,
as well as with conventional image analysis methods, and were
found to give good results.

The proposed method could have varied applications. Exam-
ples are the detection of submerged buildings during floods,
or dynamic obstacle detection while moving through foggy
areas. We plan to extend our study on these applications in
the future.

Other than these, this work forms the first step in the
implementation of on-line, real-time, on-chip image and data
processing through a Field Programmable Gate Array (FPGA)
that is capable of high speed operations and has a large
embedded memory.
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