
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1839

Abstract—High quality requirements analysis is one of the most

crucial activities to ensure the success of a software project, so that
requirements verification for software system becomes more and more
important in Requirements Engineering (RE) and it is one of the most
helpful strategies for improving the quality of software system.
Related works show that requirement elicitation and analysis can be
facilitated by ontological approaches and semantic web technologies.
In this paper, we proposed a hybrid method which aims to verify
requirements with structural and formal semantics to detect
interactions. The proposed method is twofold: one is for modeling
requirements with the semantic web language OWL, to construct a
semantic context; the other is a set of interaction detection rules which
are derived from scenario-based analysis and represented with
semantic web rule language (SWRL). SWRL based rules are working
with rule engines like Jess to reason in semantic context for
requirements thus to detect interactions. The benefits of the proposed
method lie in three aspects: the method (i) provides systematic steps
for modeling requirements with an ontological approach, (ii) offers
synergy of requirements elicitation and domain engineering for
knowledge sharing, and (3)the proposed rules can systematically assist
in requirements interaction detection.

Keywords—Requirements Engineering, Semantic Web, OWL,
Requirements Interaction Detection, SWRL.

I. INTRODUCTION
HE high quality of requirements analysis is one of the most
crucial factors to ensure the success of a software project,

so that requirements verification for complex software system
becomes more and more important in requirements engineering
and it is one of the most helpful strategies for improving the
quality of software system.

One of the key issues for obtaining dependable requirements
is to introduce actions as managing negative relationships
among sets of requirements. Requirement Interaction is a
negative and ubiquitous problem at the RE phase, that multiple
requirements can’t be satisfied simultaneously when being
integrated together, thus would cause unintended subsequences

Haibo HU is lecturer with the School of Software Engineering, D-Campus

Chongqing University, Chongqing, 401331, China (*Corresponding author,
phone:+862365127222; fax:+862365678333; e-mail: hbhu@cqu.edu.cn).

Dan YANG is with the School of Software Engineering, Chongqing
University, Chongqing, 401331, China (e-mail: danyang@cqu.edu.cn).

Chunxiao YE is with the College of Computer Science, Chongqing
University, Chongqing, 400030, China (e-mail: cxye@cqu.edu.cn).

Chunlei FU is with the Centre for Information and Network of Chongqing
University, Chongqing, 400030, China (e-mail: clfu@cqu.edu.cn).

Ren LI is PhD student with the College of Computer Science, Chongqing
University, Chongqing, 400030, China (e-mail: renlee@cqu.edu.cn).

such as violation of functions or even introduce severe defects
to a software system [1]-[2]. Moreover, with the introduction of
different kinds of paradigms to software development, such as
Component-Based Software Engineering (CBSE) [3], Feature-
Oriented Software Development (FOSD) [4], Aspect-Oriented
Programming (AOP) [5] and Service-Oriented Architecture
(SOA) [6], the hazards of interactions can be more serious than
simple failures in a single component, feature, aspect or
service.

Related works show that requirements often interact with
each other because of heterogeneity and diversity of stake-
holders [7], inconsistency of requirements in semantics [8],
contradictory decision of analysis & design [9], sharing of
system context [10], etc. Hence, there is an obligatory need to
managing requirement interactions that would answer
questions such as: when and why do two requirements interact?
How to detect interactions? And how do we resolve
interaction?

In the past decade, some efforts have been paid on
requirement interactions research both in academia and
industry. These studies provide systematic approaches to
requirements interaction taxonomies [11], modeling
interactions with requirement models to figure out the nature of
interactions [12], detecting interactions [13]-[15] or clear up
interactions when integrating requirements [16]. Meanwhile,
utilizing semantic web technologies is emerging in the field of
software engineering, such as Ontology, RDF/OWL,
Description Logics, Rule Markup Languages, etc., with their
objectives of knowledge representation, sharing, and discovery
by reasoning. To the best of our knowledge, no much work has
been done for utilizing OWL/DL and SWRL based semantic
web technologies to model and detect requirement interactions.
Even though Chi-Lun Liu proposes an ontological method on
requirements conflicts with analysis on activity diagram [17],
his work does not include in depth on how to detect dynamic
requirement interactions with semantic web technologies. On
the other hand, existing achievements do not concern the
synergy of requirements elicitation and domain engineering for
knowledge sharing, or do they lack tools support for
automation of interaction detection.

This paper proposes a hybrid method which aims to detect
behavioral requirement interactions in order to improve the
quality of software system. The proposed method includes two
main parts. The first part of this method is an ontological
modeling process for requirement specification thus to
construct a semantic web based context. The second part of this

Detecting Interactions between Behavioral
Requirements with OWL and SWRL

Haibo Hu*, Dan Yang, Chunxiao Ye, Chunlei Fu And Ren Li

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1840

method is a set of conflicts detection rules derived from
behavioral analysis and represented them into SWRL, which
can be used to detect requirement interactions in former context
with tool support like Protégé and JESS. The roadmap of
proposed method in this paper is shown in Fig. 1.

Fig. 1 Framework of Proposed Method

The advantages of our proposed approach are threefold: On

the one hand this method offers a systematic and step-by-step
process for modeling ontologies and requirements in activity
diagrams as well as analyzing conflicts. This method also offers
a set of explicit questions for facilitating requirements
elicitation works. Finally, requirement conflicts can be
systematically detected by the proposed rules based on
onotologies and requirement models.

The remainder of this paper is structured as follows: Section
II gives an overview of the state of semantic web technologies.
Section III presents the proposed process of requirement
conflicts analysis based on ontologies. Section IV illustrates
semantic based rules for conflicts detection and Section V
provides the scenarios for demonstrating how these rules work
appropriately. Finally, we conclude the paper in Section VI.

II. SEMANTIC WEB TECHNOLOGIES: OWL AND SWRL
The Semantic Web refers to both a vision and a set of

technologies. The vision was first articulated by Tim
Berners-Lee as an extension to the existing web in which
knowledge and data could be published in a form easy for
computers to understand and reason with. Doing so would
support more sophisticated software systems that share
knowledge, information and data on the Web just as people do
by publishing text and multimedia. Under the stewardship of
the W3C, a set of languages, protocols and technologies have
been developed to partially realize this vision, to enable
exploration and experimentation and to support the evolution
of the concepts and technology.

The current set of W3C standards are based on RDF [18], a
language that provides a basic capability of specifying graphs
with a simple interpretation and serializing them in XML. Since
it is a graph-based representation, RDF data are often reduced
to a set of triples where each represents an edge in the graph

(ClassA has-Relationship ClassB) or alternatively, a binary
predication has-Relationship(ClassA, ClassB).

The Web Ontology Language OWL [19] is a family of
knowledge representation languages based on Description
Logics (DL) [20] with a representation in RDF. OWL supports
the specification and use of ontologies that consist of terms
representing individuals, classes of individuals, properties, and
axioms that assert constraints over them. The axioms can be
realized as simple assertions (e.g., Woman is a sub-class of
Person, hasMother is a property from Person to Woman,
Woman and Man are disjoint) and also as simple rules.

The use of OWL to represent requirements has several very
important advantages that become critical in distributed
environments involving coordination across multiple
organizations. First, most policy languages define constraints
over classes of targets, objects, actions and other constraints
(e.g., time or location). A substantial part of the development of
a policy is often devoted to the precise specification of these
classes, e.g., the definition of what counts as a full time student
or a public printer. This is especially important if the policy is
shared between multiple organizations that must adhere to or
enforce the policy even though they have their own native
schemas or data models for the domain in question. The second
advantage is that OWL’s grounding in logic facilitates the
translation of policies expressed in OWL to other formalisms,
either for analysis or for execution.

Semantic Web Rule Language (SWRL) [21] is a proposal for
a Semantic Web rules-language, combining sublanguages of
the OWL Web Ontology Language with those of the Rule
Markup Language (RuleML) [22]. Rules are of the form of an
implication between an antecedent (body) and consequent
(head). The intended meaning can be read as: whenever the
conditions specified in the antecedent hold, then the conditions
specified in the consequent must also hold.

III. ONTOLOGICAL MODELING OF BEHAVIORAL REQUIREMENT
The output of the requirements engineering phase is a

requirement artifacts that contain a set of requirements
describing stakeholders’ needs. This set of requirements can
either describe certain properties that have to be preserved
(static view) or dynamic behavior which the system exhibits
when certain triggers occur (dynamic view). Usually there is
also a description of resources the system uses (environmental
view).

In this work, we mainly take behavioral (or dynamic
behavior) requirement into account for modeling and detection
interactions. This is mainly because behavioral requirements
are hold more properties in system context that are more likely
to interact with each other.

A. Ontological Analysis of Behavioral Requirement
Our goal is to define OWL ontologies that can be used to

represent the model of behavioral requirement and to show how
they can be used to represent a context for interaction detection.

Each dynamic behavior requirement describes how the
system should behave when it is in a certain state and a specific

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1841

trigger event occurs. For example, a requirement from the smart
home system might state the following: “When the smoke
sensor is triggered, smart home system will shut ovens,
unlock doors and windows, and turn on fans”.

Any dynamic behavior requirement consists of internal
attributes such as ID and Description, plus the following basic
external attributes [11]:

 Prestate, which is a description of the required system
state prior to the execution of this dynamic
requirement;

 Trigger event, which is a description of the trigger
event required for this dynamic requirement to execute;

 Action, which is a description of the action carried out
by this dynamic requirement once triggered; and

 Next state, which describes the next state that the
system reaches after executing this requirement.

Thus the objective properties of Behavioral Requirement
can be extracted ontologically, namely, TriggerEvent, Action,
PreState and NextState. Moreover, Prestate and Nextstate are
sub-class of Systemstate. We define objective properties in the
ontology as hasTriggerevent, hasAction, hasPrestate and
hasNextstate, together with two data type properties as hasID
and hasDescription. The behavioral requirements can be
defined with OWL as follow:
<rdf:RDF

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Systemstate"/>
<owl:Class rdf:ID="Prestate">

<rdfs:subClassOf rdf:resource="#Systemstate"/>
</owl:Class>
<owl:Class rdf:ID="Action"/>
<owl:Class rdf:ID="Behavioral_Requirement"/>
<owl:Class rdf:ID="Triggerevent"/>
<owl:Class rdf:ID="Nextstate">

<rdfs:subClassOf rdf:resource="#Systemstate"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="hasTriggerevent">

<rdfs:range rdf:resource="#Action"/>
<rdfs:domain rdf:resource="#Behavioral_Requirement"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasAction">

<rdfs:range rdf:resource="#Action"/>
<rdfs:domain rdf:resource="#Behavioral_Requirement"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasPrestate">

<rdfs:range rdf:resource="#Prestate"/>
<rdfs:domain rdf:resource="#Behavioral_Requirement"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasNextstate">

<rdfs:domain rdf:resource="#Behavioral_Requirement"/>
<rdfs:range rdf:resource="#Nextstate"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasDescription">

<rdfs:domain rdf:resource="#Behavioral_Requirement"/>
</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:ID="hasID">

<rdfs:domain rdf:resource="#Behavioral_Requirement"/>
<rdf:type rdf:resource

="http://www.w3.org/2002/07/owl#Dataty peProperty"/>
</owl:FunctionalProperty>

</rdf:RDF>

B. Refinement of Behavioral Requirement Model
In order to represent the relationships of requirements and

system context, we propose an ontology design pattern that
defines TriggerEvent, Action and SytemState by introducing
three pairs of primitive concepts as (Trigger, Event),
(Actuator, Actuation), (StateThing, StateValue). Primitive
Classes such as Trigger, Actuator and Statething are collections
of the entities come from a concrete problem domain, while
Event, Actuation and Statevalue are predefined variables to
indicate system behaviors or states.

Thus the behavioral requirement can be expressed with
UML activity diagram, as shown in Fig. 2.

act Requirements Mo...

S
ta

te
Th

in
gs

Tr
ig

ge
r

A
ct

ua
to

rs

ActivityInitial

Triggered
Event

Actuations

State Migration

ActivityFinal

Fig. 2 Modeling Behavioral Requirements with UML

The refined model can be represented with OWL-DL by

introducing three pairs of primitive concepts talked above, in
addition with three sets of objective properties (hasTrigger,
hasEvent), (hasActuator, hasActuation) and (hasStatething,
hasPrestateValue, hasNextstatevalue). We assert that Trigger
and Actuator are system things in a domain, so that they are
subclasses of StateThing.
1) Refinement for TriggerEvent

A TriggerEvent is a class that has exactly one trigger, which
is an instance of the Trigger class, and one event which is an
instance of the Event class.

TriggerEvent a rdfs:Class.
Trigger rdfs:subClassOf StateThing.
Trigger rdfs:Property, owl:FunctionalProperty;

rdfs:domain TriggerEvent;
rdfs:range Trigger.

Event a rdfs:Property, owl:FunctionalProperty;
rdfs:domain TriggerEvent;
rdfs:range Event.

2) Refinement for Action
An Action is a class that has exactly one actuator, which is

an instance of the Actuator class, and one event which is an

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1842

instance of the Event class.

Action a rdfs:Class.
Actuator rdfs:subClassOf StateThing.
Actuator rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;
rdfs:range Actuator.

Actuation a rdfs:Property, owl:FunctionalProperty;
rdfs:domain Action;
rdfs:range Actuation.

3) Refinement for SystemState
A SystemState is a class that has exactly one statething,

which is an instance of the StateThing class, one prestatevalue
which is an instance of the StateValue class, and one
nextstatevalue which is an instance of the StateValue class.

SystemState a rdfs:Class.
StateThing a rdfs:Property, owl:FunctionalProperty;

rdfs:domain SystemState;
rdfs:range StateThing.

StateValue a rdfs:class.
PreStateValue rdfs:subClassOf StateValue.
PreStateValue rdfs:Property, owl:FunctionalProperty;

rdfs:domain SystemState;
rdfs:range StateValue.

NextStateValue rdfs:subClassOf StateValue.
NextStateValue rdfs:Property, owl:FunctionalProperty;

rdfs:domain SystemState;
rdfs:range StateValue.

C. Behavioral Requirement Ontology
Based on above analysis and refinement, the Ontology of

behavioral requirement can be expressed with a UML class
diagram, as shown in Fig. 3.

Fig. 2 Modeling Behavioral Requirements with UML

Alternatively, Event, Actuation and Statevalue can be
defined in OWL as datatype properties of classes

TriggerEvent, Action and SystemState respectively. In this
paper, we only take them as objective properties for scalability.
Although the cost of inference will be increase, we can
introduce owl:sameAs and owl:differentFrom to
reason on classes for feasibility and decidability of rules. This
will be mentioned in Section V.

IV. MODELING FOR REQUIREMENTS INTERACTION

A. Formal Description of Behavioral Requirement
A specification θ for a behavioral requirement is a triplet θ =

(T, A, S) that:

 ,T A S (1)

where,
T is the set of trigger events with m elements t, and t is a pair

t=(r, e) representing trigger and event;
A is the set of actions with n elements a, and a is a pair a=(o,

i) representing actuator and actuation;
S is the set of system-state with k elements s, and s is a triplet

s= (g, p, n) representing state-thing, values of pre-state and
next-state; i.e.,

 , , ,j j jr T a A s S∀ ∈ ∈ ∈
1 1 1
(,), (,) (, ,)

m n k

j j j j j j jj j j
r e o i g p n

= = =
∧ ∧ ∧ (2)

B. Interaction between Behavioral Requirements
Two aspects of the challengeable issue for requirements

interaction are that how do they interact with each other, and
when will they interact. The former concerns about the
classification of feature interaction, while the latter leads to
work on feature interaction detection.

With our ontological modeling, behavioral requirement
interaction is defined as an object property among
requirements, i.e., it holds binary relation of both its Domain
and Range as the class Behavioral_Requirements. In our
work, we summarize 6 types of requirement interactions from
Shehata et al’s taxonomy [11], i.e., Non-Determinism,
Override, Dependence, Negatively Impact, Bypass, and Infinite
Loop, which are specified as sub-properties of Interaction in
our Ontology.

The interactions are defined as properties in our ontology
shown in Table I.

TABLE I
INTERACTIONS AS PROPERTIES OF REQUIREMENT

Interaction Denotation Domain Range

Interaction interact_With Requirement Requirement

Non-Determinism non_Determine Requirement Requirement

Override override Requirement Requirement

Dependence depends_On Requirement Requirement

Negatively Impact negatively_Impact Requirement Requirement

Bypass byPass Requirement Requirement

Infinite Loop infinite_Loop Requirement Requirement

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1843

A common characteristic of requirement interactions is that
they are subtle in nature and resulting from sharing of system
context. Furthermore, requirements usually interact with each
other in different manners under specific scenarios of sharing
system context. Therefore, analysis on system context sharing
is the hinge for interaction detection.

For the conditions of system context variables comparison,
we revised the work by Shehata et al [11] of 9 scenarios of
dynamic behavioral requirement to 7 scenarios. Each scenario
is constructed with a set of element conditions and a decision.
The element conditions for deciding requirement interactions
are Same Trigger-events, Linked Trigger-events, Dual linked
Trigger-events, Same Pre-states, Different Next-states,
Overrided Actions, Negatively Impacted Actions, Dependence
of Actions, Action Bypass on Pre-state, and Order.

The system context of a behavioral requirement is presented
with semantic data by classes and their properties. The scenario
for system context sharing is analyzed by comparing variables
of a pair of behavioral requirements. In order to facilitate
interaction detections with semantic rules, we investigate the
variables for a pair of behavioral requirements, and make
detailed comparison to map each element condition to OWL
based model. The element conditions of behavioral
requirement interaction are summarized with formal
description with their logical characteristics, as shown in Table
II.

C. Feature Interaction Detection Guidelines
With analysis for each scenario of behavioral requirement

interactions, interaction detection guidelines can be presented
by calling for above conditions of sharing context, as shown in
Table III.

V. INTERACTION DETECTION WITH SWRL

A. Semantic Web Context for Interaction Detection
To detect interactions with the proposed method, a Semantic

Web based context should be constructed to provide a
knowledge base with precise and unambiguous specification of
requirements in problem domain. The mission is performed in
four steps with the aids of Semantic Web tools Protégé 3.4.4.

Step I: Merge the conceptual model of behavioral
requirement to the problem domain ontology by defining
classes, properties with their domain, range and characteristics.

Step II: Extract statething, trigger and actuators from the
textual specification of requirement with the conceptual model,
and precisely identify their values with no ambiguity.

Step III: Add the outcome individuals of step2 to the
behavioral requirement ontology, and refine each specification
as a distinctive individual of class Behavioral_Requirement.

Step IV: To ensure the vectors comparable, individuals of
actuation, event and system should be well defined and related.
This task can be done by referring owl:sameAs and
owl:differentFrom assertions to indicate that they
actually refer to the same thing or not.

Thus the system context with a set of classes and proper-ties
represented with semantic data is able to infer assertion of
properties by applying SWRL rules.

B. Detecting Interactions by Reasoning with SWRL
In our work, the SWRL is adopted as a rule language and

Jess as Rule Engine for reasoning to detect requirement
interactions in the semantic web based context. The rules are
expressed with SWRL syntax by importing semantics derived
from formalized interaction detecting conditions and guidelines
in Table II and III.

Due to the limitation of space, for element condition rules,
we only take the SWRL rule of element conditions for
same-TriggerEvents as example, which is presented as below.

Rule- same-TriggerEvents:
Feature(?fa)∧ Feature(?fb)∧ differentFrom(?fa,?fb)∧

hasTriggerEvent(?fa,?ta)∧ hasTrigger(?ta,?ra)∧

hasTriggerEvent(?fb,?tb)∧ hasTrigger(?tb,?rb)∧

hasEvent(?tb,?eb)∧ hasEvent(?ta,?ea)∧

sameAs(?ra,?rb)∧ sameAs(?ea,?eb)→saTe(?fa,?fb)

TABLE II
ELEMENT CONDITIONS FOR INTERACTION DETECTION

Element Condition Denotation Rule Expression

Sharing System Context shCo(u1,u2) shCo(u1,u2)←∃gj=gk

Same Trigger-events saTe(u1,u2) saTe(u1,u2)←∃(rj,ej)=(rk,ek)

Linked Trigger-events liTe(u1,u2) liTe(u1,u2)←∃gj=gk∧ pi=nj

Duallinked Triggerevents dlTe(u1,u2) dlTe(u1,u2)←liTe(u1,u2)∧ liTe(u2,u1)

Same Pre-states saPs(u1,u2) saPs(u1,u2)←∃(gj,pj)=(gk,pk)

Different Next-states diNs(u1,u2) diNs(u1,u2)←∃gj=gk∧ nj≠nk

Override Actions ovAc(u1,u2) ovAc(u1,u2)←∃gj=gk∧ pk=nk≠nj

Dependence of Actions deAc(u1,u2) deAc(u1,u2)←∃gj=ok∧ ik=pj=nj

Negative Impact Actions niAc(u1,u2) niAc(u1,u2)←∃gj=gk∧ (gj,nj)≠(gk,nk)

ActionBypass on Prestate bpAp(u1,u2) bpAp(u1,u2)←∃gj=gk∧ (gj,nj)≠(gk,pk)

Create Action crAc(u1,u2) crAc(u1,u2)←∃(gj,nj)=(rk,ek)∧ nj≠pj

TABLE III
FORMALIZED INTERACTION DETECTION GUIDELINES

Interaction Formal Expressions

non-Determinism saTe(u1,u2)∧ saPs(u1,u2)∧ diNs(u1,u2)→non_Determine(u1,u2)

Dependence saTe(u1,u2)∧ saPs(u1,u2)∧ deAc(u1,u2)→depens_On(u1,u2)

Override liTe(u1,u2)∧ ovAc(u1,u2)→override(u1,u2)

Negative Impact liTe(u1,u2)∧ niAc(u1,u2)→negatively_Impact(u1,u2)

Bypass liTe(u1,u2)∧ bpAp(u1,u2)→byPass(u1,u2)

Infinite Loop dlTe(u1,u2)∧ crAc(u1,u2)∧ crAc(u2,u1)→infinite_Loop(u1,u2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1844

The interaction detection guideline for Non-Determinism,
Dependence, Override, Negative Impact, Bypass and Infinite
Loop can be represented with SWRL rule as follows,

Rule1- Interaction Detection: Non-Determinism:
Feature(?fa)∧ Feature (?fb)∧

saTe(?fa,?fb)∧ saPs(?fa,?fb)∧ diNs(?fa,?fb)∧

differentFrom(?fa,?fb)∧ →non_Determine(?fa,?fb)

Rule2- Interaction Detection- Dependence:
User_Policy(?ua)∧ User_Policy(?ub)∧

saTe(?ua,?ub)∧ saPs(?ua,?ub)∧ deAc(?ua,?ub)∧
differentFrom(?ua,?ub)→non_Determine(?ua,?ub)

Rule3- Interaction Detection- Override (a):
User_Policy(?ua)∧ User_Policy(?ub)∧

saTe(?ua,?ub)∧ ovAc(?ua,?ub)∧
differentFrom(?ua,?ub)→override(?ua,?ub)

Rule3- Interaction Detection- Override (b):
User_Policy(?ua)∧ User_Policy(?ub)∧

liTe(?ua,?ub)∧ ovAc(?ua,?ub)∧
differentFrom(?ua,?ub)→override(?ua,?ub)

Rule4- Interaction Detection- Negative Impact (a)
User_Policy(?ua)∧ User_Policy(?ub)∧

saTe(?ua,?ub)∧ niAc(?ua,?ub)∧
differentFrom(?ua,?ub)→negatively_Impact(?ua,?ub)

Rule4- Interaction Detection- Negative Impact (b)
User_Policy(?ua)∧ User_Policy(?ub)∧

liTe(?ua,?ub)∧ niAc(?ua,?ub)∧

differentFrom(?ua,?ub)∧ →negatively_Impact(?ua,?ub)

Rule5- Interaction Detection- Bypass
User_Policy(?ua)∧ User_Policy(?ub)∧

liTe(?ua,?ub)∧ bpAp(?ua,?ub)∧

differentFrom(?ua,?ub)∧ →byPass(?ua,?ub)

Rule6- Interaction Detection- Infinite Loop
User_Policy(?ua)∧ User_Policy(?ub)∧

dlTe(?ua,?ub)∧ crAc(?ua,?ub)∧ crAc(?ub,?ua)∧
differentFrom(?ua,?ub)→infinite_Loop(?ua,?ub)

C. Tools Support for Interaction Detection
In our work, Protégé [23] v3.4.4 is employed as ontology

editor with plug-in SWRLTab for editing rules that can be
bridged to rule engine such as Jess [24]. With these tools
support, requirements can be refined and specified into OWL,
thus to represent the semantic context for requirement
interaction detection. A snapshot of the tools used in our
interaction detection work is shown as Fig. 3.

Fig. 3 Snapshot of Protégé and SWRLTab

D. Experimental Study and Discussions
With the proposed method in this paper, we take the experimental

case provided in [25] for validation. The case is derived from smart
home system as the problem domain, which is attracted attention due
to feature interactions in both requirement and networks.

Core concepts of the smart home system domain are mapped to
behavioral requirement ontology with above structural analysis and
refinement. There are 20 classes from problem domain and 38
individuals of behavioral requirement in OWL-based semantic web
context. The detection result of behavioral interactions is shown in Fig.
4 as follow.

3

0

52

16

0

0

38

38

38

38

38

38

324

241

184

230

136

71

20

20

20

20

20

20

0 50 100 150 200 250 300 350

Rule1

Rule2

Rule3

Rule4

Rule5

Rule6

Number of OWL Classes
Number of OWL Axioms
Number of OWL Individuals
Number of Inffered Interactions

Fig. 4 Results of Experiment in Smart Home System

It can be seen from the graph in Fig. 4 that 91 possible

interactions are inferred from rules with the proposed method.
With comparison to IRIS method in [25], the proposed method
in this paper has threefold benefit: the method (i) provides
systematic steps for modeling requirements with an ontological
approach, (ii) offers synergy of requirements elicitation and
domain engineering for knowledge sharing, and (3)the
proposed rules can systematically assist in requirements

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1845

interaction detection with tools support for automation. In
addition, the proposed method is a formal approach for
interaction detection that based on semantic web technologies
such as OWL and SWRL.

While the current limitations of the proposed method in our
work should be figured out before we draw a conclusion. For
one thing, the complexity and diversity of requirement
interaction problem results in multiple aspects of manifestation.
We cannot assert that the proposed method works on all kinds
of interactions effectively. It should be taken as a
complementary methodology to current means for requirement
interaction detection. On the other hand, current Ontological
method and Semantic Web technologies are not good at
representing dynamical and temporal relations in semantics and
the price on decidability of rules and logical inference should
also be taken into account. Nevertheless, the proposed method
will catch its advantages to overcome its disadvantages by
shaping itself on the specific problem domain and introducing
more powerful emerging technologies from the Semantic Web
community. In our feature work, the detailed mechanism of
interaction will be further investigated, and how to avoid
interactions when integrating requirements will also be taken
into account.

VI. CONCLUSION
This paper proposes a hybrid method which aims to detect

behavioral requirement interactions in order to improve the
quality of software system. The proposed method includes two
main parts. The first part of this method is an ontological
modeling process for requirement specification thus to
construct a semantic web based context. The second part of this
method is a set of conflicts detection rules derived from
behavioral analysis and represented with SWRL, which can be
used to detect requirement interactions with tools support for
automation. The case experiment study results show that the
proposed method can detection requirement interactions upon a
semantic web based system context beneficially.

ACKNOWLEDGMENT
This work is supported by the National S&T Major Project

of China under grant No. 2009ZX07315-006, NSF Foundation
of China under Grant No. 60803027, and the Natural Science
Foundation in Chongqing City of China under Grant No.
2008BB2312.

REFERENCES
[1] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction: The

security threat from within software systems,” Progress in Informatics,
no. 5, pp. 75-90, 2008.

[2] R. G. Crespo, “Identification of feature denial of services,” in 2nd
International Conference on Next Generation Mobile Applications,
Services, and Technologies, NGMAST 2008, September 16-19, 2008, pp.
571-575, 2008.

[3] W. Pree, “Component-based software development - a new paradigm in
software engineering?,” in Proceedings of the 1997 Asia-Pacific Software
Engineering Conference and International Computer Science Conference,
APSEC'97 and ICSC'97, December 2-5, 1997, pp. 523-524, 1997.

[4] S. Apel and C. Kästner, “An Overview of Feature-Oriented Software
Development,” Journal of Object Technology, vol. 8, no. 5, pp. 49-84,
Aug. 2009.

[5] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented programming,”
Communications of the ACM, vol. 44, no. 10, pp. 29-32, 2001.

[6] G. A. Lewis, E. Morris, S. Simanta, and L. Wrage, “Effects of
Service-Oriented Architecture on software development lifecycle
activities,” Software Process Improvement and Practice, vol. 13, no. 2, pp.
135-144, 2008.

[7] I. Sommerville, “Integrated requirements engineering: A tutorial,” IEEE
Software, vol. 22, no. 1, pp. 16-23, 2005.

[8] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural
language requirements,” ACM Transactions on Software Engineering and
Methodology, vol. 14, no. 3, pp. 277-330, 2005.

[9] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Requirements
Interaction Management,” ACM Computing Surveys, vol. 35, no. 2, pp.
132-190, Jun. 2003.

[10] A. Nhlabatsi, “Initialisation Problems in Feature Composition,” PhD
thesis, The Open University, 2009.

[11] M. Shehata, A. Eberlein, and A. Fapojuwo, “A taxonomy for identifying
requirement interactions in software systems,” Computer Networks, vol.
51, no. 2, pp. 398-425, Feb. 2007.

[12] A. Classen, P. Heymans, and P. Schobbens, “What's in a Feature: A
Requirements Engineering Perspective,” in Proceedings of the 11th
International Conference on Fundamental Approaches to Software
Engineering, vol. 4961, pp. 16-30, 2008.

[13] M. Heisel and J. Souquières, “A Heuristic Approach to Detect Feature
Interactions in Requirements,” in Feature Interactions in
Telecommunications and Software Systems V, pp. 165-171, 1998.

[14] E. Sarmiento, M. R. S. Borges, and M. L. M. Campos, “Applying an
event-based approach for detecting requirements interaction,” in ICEIS
2009 - 11th International Conference on Enterprise Information Systems,
May 6-10, 2009, pp. 225-230, 2009.

[15] M. Shehata, “Detecting Requirements Interactions Using Semi-Formal
Methods,” PhD thesis, University of Calgary, 2005.

[16] R. Laney, T. T. Tun, M. Jackson, and B. Nuseibeh, “Composing Features
by Managing Inconsistent Requirements,” in Feature Interactions in
Software and Communication Systems IX, pp. 129-144, 2007.

[17] C. Liu, “Ontology-based requirements conflicts analysis in activity
diagrams,” in International Conference on Computational Science and Its
Applications, ICCSA 2009, June 29-July 2, 2009, LNCS, vol. 5593, pp.
1-12, 2009.

[18] O. Lassila and R. R. Swick, “Resource Description Framework (RDF)
Model and Syntax Specification.” [Online]. Available:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. [Accessed:
02-Oct-2010].

[19] S. Bechhofer et al., “OWL Web Ontology Language Reference.”
[Online]. Available: http://www.w3.org/TR/owl-ref/. [Accessed:
07-Oct-2010].

[20] F. Baader et al. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[21] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.
Dean, “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML.” [Online]. Available: http://www.w3.org/Submission/SWRL/.
[Accessed: 07-Oct-2010].

[22] H. Boley, S.Tabet, and G.Wagner, “Design rationale of RuleML: a
markup language for Semantic Web rules”. Proc. Semantic Web Working
Symp, California, USA, Aug. 2001, pp. 381-401, 2001.

[23] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen,
“Creating semantic web contents with protege-2000,” IEEE Intelligent
Systems and Their Applications, vol. 16, no. 2, pp. 60-71, 2001.

[24] E. Wang and Y. S. Kim, “A teaching strategies engine using translation
from SWRL to Jess,” in 8th International Conference on Intelligent
Tutoring Systems, ITS 2006, June 26-30, 2006, LNCS vol. 4053, pp.
51-60, 2006.

[25] M. Shehata, A. Eberlein, and A. Fapojuwo, “Using semi-formal methods
for detecting interactions among smart homes policies,” Science of
Compter Programming, vol. 67, no. 2, pp. 125-161, Jul. 2007.

