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Abstract—High quality requirements analysis is one of the most 

crucial activities to ensure the success of a software project, so that 
requirements verification for software system becomes more and more 
important in Requirements Engineering (RE) and it is one of the most 
helpful strategies for improving the quality of software system. 
Related works show that requirement elicitation and analysis can be 
facilitated by ontological approaches and semantic web technologies. 
In this paper, we proposed a hybrid method which aims to verify 
requirements with structural and formal semantics to detect 
interactions. The proposed method is twofold: one is for modeling 
requirements with the semantic web language OWL, to construct a 
semantic context; the other is a set of interaction detection rules which 
are derived from scenario-based analysis and represented with 
semantic web rule language (SWRL). SWRL based rules are working 
with rule engines like Jess to reason in semantic context for 
requirements thus to detect interactions. The benefits of the proposed 
method lie in three aspects: the method (i) provides systematic steps 
for modeling requirements with an ontological approach, (ii) offers 
synergy of requirements elicitation and domain engineering for 
knowledge sharing, and (3)the proposed rules can systematically assist 
in requirements interaction detection. 
 

Keywords—Requirements Engineering, Semantic Web, OWL, 
Requirements Interaction Detection, SWRL.  

I. INTRODUCTION 
HE high quality of requirements analysis is one of the most 
crucial factors to ensure the success of a software project, 

so that requirements verification for complex software system 
becomes more and more important in requirements engineering 
and it is one of the most helpful strategies for improving the 
quality of software system.  

One of the key issues for obtaining dependable requirements 
is to introduce actions as managing negative relationships 
among sets of requirements. Requirement Interaction is a 
negative and ubiquitous problem at the RE phase, that multiple 
requirements can’t be satisfied simultaneously when being 
integrated together, thus would cause unintended subsequences 
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such as violation of functions or even introduce severe defects 
to a software system [1]-[2]. Moreover, with the introduction of 
different kinds of paradigms to software development, such as 
Component-Based Software Engineering (CBSE) [3], Feature- 
Oriented Software Development (FOSD) [4], Aspect-Oriented 
Programming (AOP) [5] and Service-Oriented Architecture 
(SOA) [6], the hazards of interactions can be more serious than 
simple failures in a single component, feature, aspect or 
service. 

Related works show that requirements often interact with 
each other because of heterogeneity and diversity of stake- 
holders [7], inconsistency of requirements in semantics [8], 
contradictory decision of analysis & design [9], sharing of 
system context [10], etc. Hence, there is an obligatory need to 
managing requirement interactions that would answer 
questions such as: when and why do two requirements interact? 
How to detect interactions? And how do we resolve 
interaction? 

In the past decade, some efforts have been paid on 
requirement interactions research both in academia and 
industry. These studies provide systematic approaches to 
requirements interaction taxonomies [11], modeling 
interactions with requirement models to figure out the nature of 
interactions [12], detecting interactions [13]-[15] or clear up 
interactions when integrating requirements [16]. Meanwhile, 
utilizing semantic web technologies is emerging in the field of 
software engineering, such as Ontology, RDF/OWL, 
Description Logics, Rule Markup Languages, etc., with their 
objectives of knowledge representation, sharing, and discovery 
by reasoning. To the best of our knowledge, no much work has 
been done for utilizing OWL/DL and SWRL based semantic 
web technologies to model and detect requirement interactions. 
Even though Chi-Lun Liu proposes an ontological method on 
requirements conflicts with analysis on activity diagram [17], 
his work does not include in depth on how to detect dynamic 
requirement interactions with semantic web technologies. On 
the other hand, existing achievements do not concern the 
synergy of requirements elicitation and domain engineering for 
knowledge sharing, or do they lack tools support for 
automation of interaction detection. 

This paper proposes a hybrid method which aims to detect 
behavioral requirement interactions in order to improve the 
quality of software system. The proposed method includes two 
main parts. The first part of this method is an ontological 
modeling process for requirement specification thus to 
construct a semantic web based context. The second part of this 

Detecting Interactions between Behavioral 
Requirements with OWL and SWRL 

Haibo Hu*, Dan Yang, Chunxiao Ye, Chunlei Fu And Ren Li 

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1840

 

 

method is a set of conflicts detection rules derived from 
behavioral analysis and represented them into SWRL, which 
can be used to detect requirement interactions in former context 
with tool support like Protégé and JESS. The roadmap of 
proposed method in this paper is shown in Fig. 1. 

 

 
Fig. 1 Framework of Proposed Method 

 
The advantages of our proposed approach are threefold: On 

the one hand this method offers a systematic and step-by-step 
process for modeling ontologies and requirements in activity 
diagrams as well as analyzing conflicts. This method also offers 
a set of explicit questions for facilitating requirements 
elicitation works. Finally, requirement conflicts can be 
systematically detected by the proposed rules based on 
onotologies and requirement models. 

The remainder of this paper is structured as follows: Section 
II gives an overview of the state of semantic web technologies. 
Section III presents the proposed process of requirement 
conflicts analysis based on ontologies. Section IV illustrates 
semantic based rules for conflicts detection and Section V 
provides the scenarios for demonstrating how these rules work 
appropriately. Finally, we conclude the paper in Section VI. 

II. SEMANTIC WEB TECHNOLOGIES: OWL AND SWRL 
The Semantic Web refers to both a vision and a set of 

technologies. The vision was first articulated by Tim 
Berners-Lee as an extension to the existing web in which 
knowledge and data could be published in a form easy for 
computers to understand and reason with. Doing so would 
support more sophisticated software systems that share 
knowledge, information and data on the Web just as people do 
by publishing text and multimedia. Under the stewardship of 
the W3C, a set of languages, protocols and technologies have 
been developed to partially realize this vision, to enable 
exploration and experimentation and to support the evolution 
of the concepts and technology. 

The current set of W3C standards are based on RDF [18], a 
language that provides a basic capability of specifying graphs 
with a simple interpretation and serializing them in XML. Since 
it is a graph-based representation, RDF data are often reduced 
to a set of triples where each represents an edge in the graph 

(ClassA has-Relationship ClassB) or alternatively, a binary 
predication has-Relationship(ClassA, ClassB).  

The Web Ontology Language OWL [19] is a family of 
knowledge representation languages based on Description 
Logics (DL) [20] with a representation in RDF. OWL supports 
the specification and use of ontologies that consist of terms 
representing individuals, classes of individuals, properties, and 
axioms that assert constraints over them. The axioms can be 
realized as simple assertions (e.g., Woman is a sub-class of 
Person, hasMother is a property from Person to Woman, 
Woman and Man are disjoint) and also as simple rules. 

The use of OWL to represent requirements has several very 
important advantages that become critical in distributed 
environments involving coordination across multiple 
organizations. First, most policy languages define constraints 
over classes of targets, objects, actions and other constraints 
(e.g., time or location). A substantial part of the development of 
a policy is often devoted to the precise specification of these 
classes, e.g., the definition of what counts as a full time student 
or a public printer. This is especially important if the policy is 
shared between multiple organizations that must adhere to or 
enforce the policy even though they have their own native 
schemas or data models for the domain in question. The second 
advantage is that OWL’s grounding in logic facilitates the 
translation of policies expressed in OWL to other formalisms, 
either for analysis or for execution. 

Semantic Web Rule Language (SWRL) [21] is a proposal for 
a Semantic Web rules-language, combining sublanguages of 
the OWL Web Ontology Language with those of the Rule 
Markup Language (RuleML) [22]. Rules are of the form of an 
implication between an antecedent (body) and consequent 
(head). The intended meaning can be read as: whenever the 
conditions specified in the antecedent hold, then the conditions 
specified in the consequent must also hold. 

III. ONTOLOGICAL MODELING OF BEHAVIORAL REQUIREMENT 
The output of the requirements engineering phase is a 

requirement artifacts that contain a set of requirements 
describing stakeholders’ needs. This set of requirements can 
either describe certain properties that have to be preserved 
(static view) or dynamic behavior which the system exhibits 
when certain triggers occur (dynamic view). Usually there is 
also a description of resources the system uses (environmental 
view). 

In this work, we mainly take behavioral (or dynamic 
behavior) requirement into account for modeling and detection 
interactions. This is mainly because behavioral requirements 
are hold more properties in system context that are more likely 
to interact with each other. 

A. Ontological Analysis of Behavioral Requirement 
Our goal is to define OWL ontologies that can be used to 

represent the model of behavioral requirement and to show how 
they can be used to represent a context for interaction detection. 

Each dynamic behavior requirement describes how the 
system should behave when it is in a certain state and a specific 
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trigger event occurs. For example, a requirement from the smart 
home system might state the following: “When the smoke 
sensor is triggered, smart home system will shut ovens, 
unlock doors and windows, and turn on fans”.  

Any dynamic behavior requirement consists of internal 
attributes such as ID and Description, plus the following basic 
external attributes [11]:  

 Prestate, which is a description of the required system 
state prior to the execution of this dynamic 
requirement;  

 Trigger event, which is a description of the trigger 
event required for this dynamic requirement to execute;  

 Action, which is a description of the action carried out 
by this dynamic requirement once triggered; and  

 Next state, which describes the next state that the 
system reaches after executing this requirement.  

Thus the objective properties of Behavioral Requirement 
can be extracted ontologically, namely, TriggerEvent, Action, 
PreState and NextState. Moreover, Prestate and Nextstate are 
sub-class of Systemstate. We define objective properties in the 
ontology as hasTriggerevent, hasAction, hasPrestate and 
hasNextstate, together with two data type properties as hasID 
and hasDescription. The behavioral requirements can be 
defined with OWL as follow: 
<rdf:RDF 

<owl:Ontology rdf:about=""/> 
<owl:Class rdf:ID="Systemstate"/> 
<owl:Class rdf:ID="Prestate"> 

<rdfs:subClassOf rdf:resource="#Systemstate"/> 
</owl:Class> 
<owl:Class rdf:ID="Action"/> 
<owl:Class rdf:ID="Behavioral_Requirement"/> 
<owl:Class rdf:ID="Triggerevent"/> 
<owl:Class rdf:ID="Nextstate"> 

<rdfs:subClassOf rdf:resource="#Systemstate"/> 
</owl:Class> 
<owl:ObjectProperty rdf:ID="hasTriggerevent"> 

<rdfs:range rdf:resource="#Action"/> 
<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="hasAction"> 

<rdfs:range rdf:resource="#Action"/> 
<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="hasPrestate"> 

<rdfs:range rdf:resource="#Prestate"/> 
<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 

</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="hasNextstate"> 

<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 
<rdfs:range rdf:resource="#Nextstate"/> 

</owl:ObjectProperty> 
<owl:DatatypeProperty rdf:ID="hasDescription"> 

<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 
</owl:DatatypeProperty> 
<owl:FunctionalProperty rdf:ID="hasID"> 

<rdfs:domain rdf:resource="#Behavioral_Requirement"/> 
<rdf:type rdf:resource 

="http://www.w3.org/2002/07/owl#Dataty peProperty"/> 
</owl:FunctionalProperty> 

</rdf:RDF> 

 

B. Refinement of Behavioral Requirement Model 
In order to represent the relationships of requirements and 

system context, we propose an ontology design pattern that 
defines TriggerEvent, Action and SytemState by introducing 
three pairs of primitive concepts as (Trigger, Event), 
(Actuator, Actuation), (StateThing, StateValue). Primitive 
Classes such as Trigger, Actuator and Statething are collections 
of the entities come from a concrete problem domain, while 
Event, Actuation and Statevalue are predefined variables to 
indicate system behaviors or states. 

Thus the behavioral requirement can be expressed with 
UML activity diagram, as shown in Fig. 2. 
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Fig. 2 Modeling Behavioral Requirements with UML 

 
The refined model can be represented with OWL-DL by 

introducing three pairs of primitive concepts talked above, in 
addition with three sets of objective properties (hasTrigger, 
hasEvent), (hasActuator, hasActuation) and (hasStatething, 
hasPrestateValue, hasNextstatevalue). We assert that Trigger 
and Actuator are system things in a domain, so that they are 
subclasses of StateThing.  
1) Refinement for TriggerEvent 

A TriggerEvent is a class that has exactly one trigger, which 
is an instance of the Trigger class, and one event which is an 
instance of the Event class. 

TriggerEvent a rdfs:Class. 
Trigger rdfs:subClassOf StateThing. 
Trigger rdfs:Property, owl:FunctionalProperty; 

rdfs:domain TriggerEvent; 
rdfs:range Trigger. 

Event a rdfs:Property, owl:FunctionalProperty; 
rdfs:domain TriggerEvent; 
rdfs:range Event. 

2) Refinement for Action 
An Action is a class that has exactly one actuator, which is 

an instance of the Actuator class, and one event which is an 
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instance of the Event class. 

Action a rdfs:Class. 
Actuator rdfs:subClassOf StateThing. 
Actuator rdfs:Property, owl:FunctionalProperty; 

rdfs:domain Action; 
rdfs:range Actuator. 

Actuation a rdfs:Property, owl:FunctionalProperty; 
rdfs:domain Action; 
rdfs:range Actuation. 

3) Refinement for SystemState 
A SystemState is a class that has exactly one statething, 

which is an instance of the StateThing class, one prestatevalue 
which is an instance of the StateValue class, and one 
nextstatevalue which is an instance of the StateValue class. 

SystemState a rdfs:Class. 
StateThing a rdfs:Property, owl:FunctionalProperty; 

rdfs:domain SystemState; 
rdfs:range StateThing. 

StateValue a rdfs:class. 
PreStateValue rdfs:subClassOf StateValue. 
PreStateValue rdfs:Property, owl:FunctionalProperty; 

rdfs:domain SystemState; 
rdfs:range StateValue. 

NextStateValue rdfs:subClassOf StateValue. 
NextStateValue rdfs:Property, owl:FunctionalProperty; 

rdfs:domain SystemState; 
rdfs:range StateValue. 

C. Behavioral Requirement Ontology 
Based on above analysis and refinement, the Ontology of 

behavioral requirement can be expressed with a UML class 
diagram, as shown in Fig. 3. 

 

 
Fig. 2 Modeling Behavioral Requirements with UML 

Alternatively, Event, Actuation and Statevalue can be 
defined in OWL as datatype properties of classes 

TriggerEvent, Action and SystemState respectively. In this 
paper, we only take them as objective properties for scalability. 
Although the cost of inference will be increase, we can 
introduce owl:sameAs and owl:differentFrom to 
reason on classes for feasibility and decidability of rules. This 
will be mentioned in Section V. 

IV. MODELING FOR REQUIREMENTS INTERACTION 

A. Formal Description of Behavioral Requirement 
A specification θ for a behavioral requirement is a triplet θ = 

(T, A, S) that: 

 ,T A S  (1) 

where, 
T is the set of trigger events with m elements t, and t is a pair 

t=(r, e) representing trigger and event; 
A is the set of actions with n elements a, and a is a pair a=(o, 

i) representing actuator and actuation; 
S is the set of system-state with k elements s, and s is a triplet 

s= (g, p, n) representing state-thing, values of pre-state and 
next-state; i.e., 

 , , ,j j jr T a A s S∀ ∈ ∈ ∈
1 1 1
( , ), ( , ) ( , , )

m n k

j j j j j j jj j j
r e o i g p n

= = =
∧ ∧ ∧  (2) 

B. Interaction between Behavioral Requirements 
Two aspects of the challengeable issue for requirements 

interaction are that how do they interact with each other, and 
when will they interact. The former concerns about the 
classification of feature interaction, while the latter leads to 
work on feature interaction detection. 

With our ontological modeling, behavioral requirement 
interaction is defined as an object property among 
requirements, i.e., it holds binary relation of both its Domain 
and Range as the class Behavioral_Requirements. In our 
work, we summarize 6 types of requirement interactions from 
Shehata et al’s taxonomy [11], i.e., Non-Determinism, 
Override, Dependence, Negatively Impact, Bypass, and Infinite 
Loop, which are specified as sub-properties of Interaction in 
our Ontology.  

The interactions are defined as properties in our ontology 
shown in Table I. 

 

TABLE I 
INTERACTIONS AS PROPERTIES OF REQUIREMENT 

Interaction Denotation Domain Range 

Interaction interact_With Requirement Requirement 

Non-Determinism non_Determine Requirement Requirement 

Override override Requirement Requirement 

Dependence depends_On Requirement Requirement 

Negatively Impact negatively_Impact Requirement Requirement 

Bypass byPass Requirement Requirement 

Infinite Loop infinite_Loop Requirement Requirement 
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A common characteristic of requirement interactions is that 
they are subtle in nature and resulting from sharing of system 
context. Furthermore, requirements usually interact with each 
other in different manners under specific scenarios of sharing 
system context. Therefore, analysis on system context sharing 
is the hinge for interaction detection. 

For the conditions of system context variables comparison, 
we revised the work by Shehata et al [11] of 9 scenarios of 
dynamic behavioral requirement to 7 scenarios. Each scenario 
is constructed with a set of element conditions and a decision. 
The element conditions for deciding requirement interactions 
are Same Trigger-events, Linked Trigger-events, Dual linked 
Trigger-events, Same Pre-states, Different Next-states, 
Overrided Actions, Negatively Impacted Actions, Dependence 
of Actions, Action Bypass on Pre-state, and Order. 

The system context of a behavioral requirement is presented 
with semantic data by classes and their properties. The scenario 
for system context sharing is analyzed by comparing variables 
of a pair of behavioral requirements. In order to facilitate 
interaction detections with semantic rules, we investigate the 
variables for a pair of behavioral requirements, and make 
detailed comparison to map each element condition to OWL 
based model. The element conditions of behavioral 
requirement interaction are summarized with formal 
description with their logical characteristics, as shown in Table 
II. 

 

C. Feature Interaction Detection Guidelines 
With analysis for each scenario of behavioral requirement 

interactions, interaction detection guidelines can be presented 
by calling for above conditions of sharing context, as shown in 
Table III. 

 

V. INTERACTION DETECTION WITH SWRL 

A. Semantic Web Context for Interaction Detection 
To detect interactions with the proposed method, a Semantic 

Web based context should be constructed to provide a 
knowledge base with precise and unambiguous specification of 
requirements in problem domain. The mission is performed in 
four steps with the aids of Semantic Web tools Protégé 3.4.4. 

Step I: Merge the conceptual model of behavioral 
requirement to the problem domain ontology by defining 
classes, properties with their domain, range and characteristics.  

Step II: Extract statething, trigger and actuators from the 
textual specification of requirement with the conceptual model, 
and precisely identify their values with no ambiguity.  

Step III: Add the outcome individuals of step2 to the 
behavioral requirement ontology, and refine each specification 
as a distinctive individual of class Behavioral_Requirement.  

Step IV: To ensure the vectors comparable, individuals of 
actuation, event and system should be well defined and related. 
This task can be done by referring owl:sameAs and 
owl:differentFrom assertions to indicate that they 
actually refer to the same thing or not.  

Thus the system context with a set of classes and proper-ties 
represented with semantic data is able to infer assertion of 
properties by applying SWRL rules. 

B. Detecting Interactions by Reasoning with SWRL 
In our work, the SWRL is adopted as a rule language and 

Jess as Rule Engine for reasoning to detect requirement 
interactions in the semantic web based context. The rules are 
expressed with SWRL syntax by importing semantics derived 
from formalized interaction detecting conditions and guidelines 
in Table II and III.  

Due to the limitation of space, for element condition rules, 
we only take the SWRL rule of element conditions for 
same-TriggerEvents as example, which is presented as below. 

Rule- same-TriggerEvents:  
Feature(?fa)∧ Feature(?fb)∧ differentFrom(?fa,?fb)∧  

hasTriggerEvent(?fa,?ta)∧ hasTrigger(?ta,?ra)∧  

hasTriggerEvent(?fb,?tb)∧ hasTrigger(?tb,?rb)∧  

hasEvent(?tb,?eb)∧ hasEvent(?ta,?ea)∧  

sameAs(?ra,?rb)∧ sameAs(?ea,?eb)→saTe(?fa,?fb) 

TABLE II 
ELEMENT CONDITIONS FOR INTERACTION DETECTION 

Element Condition Denotation Rule Expression 

Sharing System Context shCo(u1,u2) shCo(u1,u2)←∃gj=gk 

Same Trigger-events saTe(u1,u2) saTe(u1,u2)←∃(rj,ej)=(rk,ek) 

Linked Trigger-events liTe(u1,u2) liTe(u1,u2)←∃gj=gk∧ pi=nj 

Duallinked Triggerevents dlTe(u1,u2) dlTe(u1,u2)←liTe(u1,u2)∧ liTe(u2,u1) 

Same Pre-states saPs(u1,u2) saPs(u1,u2)←∃(gj,pj)=(gk,pk) 

Different Next-states diNs(u1,u2) diNs(u1,u2)←∃gj=gk∧ nj≠nk 

Override Actions ovAc(u1,u2) ovAc(u1,u2)←∃gj=gk∧ pk=nk≠nj 

Dependence of Actions deAc(u1,u2) deAc(u1,u2)←∃gj=ok∧ ik=pj=nj 

Negative Impact Actions niAc(u1,u2) niAc(u1,u2)←∃gj=gk∧ (gj,nj)≠(gk,nk) 

ActionBypass on Prestate bpAp(u1,u2) bpAp(u1,u2)←∃gj=gk∧ (gj,nj)≠(gk,pk) 

Create Action crAc(u1,u2) crAc(u1,u2)←∃(gj,nj)=(rk,ek)∧ nj≠pj 

TABLE III 
FORMALIZED INTERACTION DETECTION GUIDELINES 

Interaction Formal Expressions 

non-Determinism saTe(u1,u2)∧ saPs(u1,u2)∧ diNs(u1,u2)→non_Determine(u1,u2) 

Dependence saTe(u1,u2)∧ saPs(u1,u2)∧ deAc(u1,u2)→depens_On(u1,u2) 

Override liTe(u1,u2)∧ ovAc(u1,u2)→override(u1,u2) 

Negative Impact liTe(u1,u2)∧ niAc(u1,u2)→negatively_Impact(u1,u2) 

Bypass liTe(u1,u2)∧ bpAp(u1,u2)→byPass(u1,u2) 

Infinite Loop dlTe(u1,u2)∧ crAc(u1,u2)∧ crAc(u2,u1)→infinite_Loop(u1,u2) 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1844

 

 

The interaction detection guideline for Non-Determinism, 
Dependence, Override, Negative Impact, Bypass and Infinite 
Loop can be represented with SWRL rule as follows, 

Rule1- Interaction Detection: Non-Determinism:  
Feature(?fa)∧ Feature (?fb)∧  

saTe(?fa,?fb)∧ saPs(?fa,?fb)∧ diNs(?fa,?fb)∧  

differentFrom(?fa,?fb)∧ →non_Determine(?fa,?fb) 

Rule2- Interaction Detection- Dependence:  
User_Policy(?ua)∧ User_Policy(?ub)∧  

saTe(?ua,?ub)∧ saPs(?ua,?ub)∧ deAc(?ua,?ub)∧  
differentFrom(?ua,?ub)→non_Determine(?ua,?ub) 

Rule3- Interaction Detection- Override (a):  
User_Policy(?ua)∧ User_Policy(?ub)∧  

saTe(?ua,?ub)∧ ovAc(?ua,?ub)∧  
differentFrom(?ua,?ub)→override(?ua,?ub) 

Rule3- Interaction Detection- Override (b):  
User_Policy(?ua)∧ User_Policy(?ub)∧  

liTe(?ua,?ub)∧ ovAc(?ua,?ub)∧  
differentFrom(?ua,?ub)→override(?ua,?ub) 

Rule4- Interaction Detection- Negative Impact (a) 
User_Policy(?ua)∧ User_Policy(?ub)∧  

saTe(?ua,?ub)∧ niAc(?ua,?ub)∧  
differentFrom(?ua,?ub)→negatively_Impact(?ua,?ub) 

Rule4- Interaction Detection- Negative Impact (b) 
User_Policy(?ua)∧ User_Policy(?ub)∧  

liTe(?ua,?ub)∧ niAc(?ua,?ub)∧  

differentFrom(?ua,?ub)∧ →negatively_Impact(?ua,?ub) 

Rule5- Interaction Detection- Bypass 
User_Policy(?ua)∧ User_Policy(?ub)∧  

liTe(?ua,?ub)∧ bpAp(?ua,?ub)∧  

differentFrom(?ua,?ub)∧ →byPass(?ua,?ub) 

Rule6- Interaction Detection- Infinite Loop 
User_Policy(?ua)∧ User_Policy(?ub)∧  

dlTe(?ua,?ub)∧ crAc(?ua,?ub)∧ crAc(?ub,?ua)∧  
differentFrom(?ua,?ub)→infinite_Loop(?ua,?ub) 
 

C. Tools Support for Interaction Detection 
In our work, Protégé [23] v3.4.4 is employed as ontology 

editor with plug-in SWRLTab for editing rules that can be 
bridged to rule engine such as Jess [24]. With these tools 
support, requirements can be refined and specified into OWL, 
thus to represent the semantic context for requirement 
interaction detection. A snapshot of the tools used in our 
interaction detection work is shown as Fig. 3. 

 

 
Fig. 3 Snapshot of Protégé and SWRLTab 

 

D. Experimental Study and Discussions 
With the proposed method in this paper, we take the experimental 

case provided in [25] for validation. The case is derived from smart 
home system as the problem domain, which is attracted attention due 
to feature interactions in both requirement and networks.  

Core concepts of the smart home system domain are mapped to 
behavioral requirement ontology with above structural analysis and 
refinement. There are 20 classes from problem domain and 38 
individuals of behavioral requirement in OWL-based semantic web 
context. The detection result of behavioral interactions is shown in Fig. 
4 as follow. 
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Fig. 4 Results of Experiment in Smart Home System 

 
It can be seen from the graph in Fig. 4 that 91 possible 

interactions are inferred from rules with the proposed method. 
With comparison to IRIS method in [25], the proposed method 
in this paper has threefold benefit: the method (i) provides 
systematic steps for modeling requirements with an ontological 
approach, (ii) offers synergy of requirements elicitation and 
domain engineering for knowledge sharing, and (3)the 
proposed rules can systematically assist in requirements 
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interaction detection with tools support for automation. In 
addition, the proposed method is a formal approach for 
interaction detection that based on semantic web technologies 
such as OWL and SWRL. 

While the current limitations of the proposed method in our 
work should be figured out before we draw a conclusion. For 
one thing, the complexity and diversity of requirement 
interaction problem results in multiple aspects of manifestation. 
We cannot assert that the proposed method works on all kinds 
of interactions effectively. It should be taken as a 
complementary methodology to current means for requirement 
interaction detection. On the other hand, current Ontological 
method and Semantic Web technologies are not good at 
representing dynamical and temporal relations in semantics and 
the price on decidability of rules and logical inference should 
also be taken into account. Nevertheless, the proposed method 
will catch its advantages to overcome its disadvantages by 
shaping itself on the specific problem domain and introducing 
more powerful emerging technologies from the Semantic Web 
community. In our feature work, the detailed mechanism of 
interaction will be further investigated, and how to avoid 
interactions when integrating requirements will also be taken 
into account. 

VI. CONCLUSION 
This paper proposes a hybrid method which aims to detect 

behavioral requirement interactions in order to improve the 
quality of software system. The proposed method includes two 
main parts. The first part of this method is an ontological 
modeling process for requirement specification thus to 
construct a semantic web based context. The second part of this 
method is a set of conflicts detection rules derived from 
behavioral analysis and represented with SWRL, which can be 
used to detect requirement interactions with tools support for 
automation. The case experiment study results show that the 
proposed method can detection requirement interactions upon a 
semantic web based system context beneficially. 
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