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Abstract—In this paper we introduce the notion of protein interac-
tion network. This is a graph whose vertices are the protein’s amino
acids and whose edges are the interactions between them. Using a
graph theory approach, we observe that according to their structural
roles, the nodes interact differently. By leading a community struc-
ture detection, we confirm this specific behavior and describe the
communities composition to finally propose a new approach to fold
a protein interaction network.

Keywords—interaction network, protein structure, community
structure detection.

I. INTRODUCTION

PROTEINS are biological macromolecules participating in
the large majority of processes which govern organisms.

The roles played by proteins are varied and complex. Certain
proteins, called enzymes, act as catalysts and increase sev-
eral orders of magnitude, with a remarkable specificity, the
speed of multiple chemical reactions essential to the organism
survival. Proteins are also used for storage and transport of
small molecules or ions, control the passage of molecules
through the cell membranes, etc. Hormones, which transmit
information and allow the regulation of complex cellular
processes, are also proteins.

Genome sequencing projects generate an ever increas-
ing number of protein sequences. For example, the Human
Genome Project has identified over 30,000 genes which may
encode about 100,000 proteins. One of the first tasks when
annotating a new genome, is to assign functions to the proteins
produced by the genes. To fully understand the biological
functions of proteins, the knowledge of their structure is
essential.

In their natural environment, proteins adopt a native com-
pact three dimensional form. This process is called folding and
is not fully understood. The process is a result of interactions
between the protein’s amino acids which form chemical bonds.
In this paper we identify some of the properties of the network
of interacting amino acids. We believe that understanding these
networks can help to better understand the folding process.

The rest of the paper is organized as follows. In section II we
briefly present the main types of amino acid interactions which
determine the protein structure. In section III we introduce
our model of amino acid interaction networks. Section 4
presents the means to lead a community structure detection
in interaction networks. In section 5 we study the amino acids
interaction networks by topological measures and observe
specific interactions. We lead also a community structure
detection to confirm the behavior already described. Finally,
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Fig. 1. Left: an α-helix illustrated as ribbon diagram, there are 3.6 residues
per turn corresponding to 5.4 Å. Right: A β-sheet composed by three strands.

in section 6 we conclude and give some future research
directions.

II. PROTEIN STRUCTURE

Unlike other biological macromolecules (e.g., DNA), pro-
teins have complex, irregular structures. They are built up
by amino acids that are linked by peptide bonds to form
a polypeptide chain. We distinguish four levels of protein
structure:

• The amino acid sequence of a protein’s polypeptide chain
is called its primary or one-dimensional (1D) structure.
It can be considered as a word over the 20-letter amino
acid alphabet.

• Different elements of the sequence form local regular
secondary (2D) structures, such as α-helices or β-strands.

• The tertiary (3D) structure is formed by packing such
structural elements into one or several compact globular
units called domains.

• The final protein may contain several polypeptide chains
arranged in a quaternary structure.

By formation of such tertiary and quaternary structure, amino
acids far apart in the sequence are brought close together to
form functional regions (active sites). The reader can find more
on protein structure in ([5]).

One of the general principles of protein structure is that
hydrophobic residues prefer to be inside the protein contribut-
ing to form a hydrophobic core and a hydrophilic surface.
To maintain a high residue density in the hydrophobic core,
proteins adopt regular secondary structures that allow non co-
valent hydrogen-bond and hold a rigid and stable framework.
There are two main classes of secondary structure elements
(SSE), α-helices and β-sheets (see Fig. 1).

An α-helix adopts a right-handed helical conformation with
3.6 residues per turn with hydrogen bonds between C’=O
group of residue n and NH group of residue n+ 4.

A β-sheet is build up from a combination of several regions
of the polypeptide chain where hydrogen bonds can form
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between C’=O groups of one β strand and another NH group
parallel to the first strand. There are two kinds of β-sheet
formations, anti-parallel β-sheets (in which the two strands
run in opposite directions) and parallel sheets (in which the
two strands run in the same direction).

III. AMINO ACID INTERACTION NETWORKS

The 3D structure of a protein is determined by the coordi-
nates of its atoms. This information is available in Protein Data
Bank (PDB) ([4]), which regroups all experimentally solved
protein structures. Using the coordinates of two atoms, one can
compute the distance between them. We define the distance
between two amino acids as the distance between their Cα

atoms. Considering the Cα atom as a “center” of the amino
acid is an approximation, but it works well enough for our
purposes. Let us denote by N the number of amino acids in the
protein. A contact map matrix is a N ×N 0-1 matrix, whose
element (i, j) is one if there is a contact between amino acids i
and j and zero otherwise. It provides useful information about
the protein. For example, the secondary structure elements can
be identified using this matrix. Indeed, α-helices spread along
the main diagonal, while β-sheets appear as bands parallel or
perpendicular to the main diagonal ([13]). There are different
ways to define the contact between two amino acids. Our
notion is based on spacial proximity, so that the contact map
can consider non-covalent interactions. We say that two amino
acids are in contact iff the distance between them is below a
given threshold. A commonly used threshold is 7 Å and this
is the value we use.

Consider a graph with N vertices (each vertex corresponds
to an amino acid) and the contact map matrix as incidence
matrix. It is called contact map graph. The contact map graph
is an abstract description of the protein structure taking into
account only the interactions between the amino acids. Now
let us consider the subgraph induced by the set of amino
acids participating in SSE. We call this graph SSE interaction
network (SSE-IN) and this is the object we study in the
present paper. The reason of ignoring the amino acids not
participating in SSE is simple. Evolution tends to preserve the
structural core of proteins composed from SSE. In the other
hand, the loops (regions between SSE) are not so important
to the structure and hence, are subject to more mutations.
That is why homologous proteins tend to have relatively
preserved structural cores and variable loop regions. Thus,
the structure determining interactions are those between amino
acids belonging to the same SSE on local level and between
different SSEs on global level. Fig. 2 gives an example of
a protein and its SSE-IN. Here, we also consider the graph
induced by the entire set of amino acids participating in folded
proteins. We call this graph the three dimentional structure
elements interaction network (3DSE-IN), see Fig. 2.

In ([16], [6], [2], [9]) the authors rely on similar models
of amino acid interaction networks to study some of their
properties, in particular concerning the role played by certain
nodes or comparing the graph to general interaction networks
models. Thanks to this point of view the protein folding
problem can be tackled by graph theory approaches.

Fig. 2. Protein 1DTP (top), its SSE-IN and its 3DSE-IN (bottom).

IV. COMMUNITY STRUCTURE DETECTION

Many systems, both natural and artificial, can be represented
by networks, that is by sites or vertices bound by links.
The study of these networks is interdisciplinary because they
appear in scientific fields like physics, biology, computer sci-
ence or information technology. The purpose of these studies
is to explain how elements interact inside the network and
what are the general laws which govern the observed network
properties.

From physics and computer science to biology and the
social sciences, researchers have found that a broad variety of
systems can be represented as networks, and that there is much
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Fig. 3. An example of network with community structure as defined in this
paper. There are three communities, denoted by the dashed circles, having
dense internal links whereas there are connected by a lower density of external
links.

to be learned by studing these networks ([7]). Indeed, the study
of the Web ([1]), of social networks ([19]) or of metabolic
networks ([15]) are contribute to put in light common non-
trivial properties to these networks which have a priori nothing
in common. The ambition is to understand how the large
networks are structured, how they evolve and what are the
phenomenom acting on their constitution and formation ([20]).

A. Definitions

Community structure is a network property which can be
described as the gathering of vertices into groups such that
there is a higher density of edges within groups than between
them ([8]). The network topology let appear groups of nodes,
called communities, within the density or also the number
of edges, is higher than the density between these groups.
The ability to identify these organisations can be helpful
in understanding the structure of networks since it provide
an interpretation of the topology by describing how vertices
interact each other, see Fig. 3.

Technics to succeed in detecting community structure falls
into two groups, bisection and hierarchical which itself is
divided into two broad classes, agglomerative and divisive
([18]).

The agglomerative method is based on an empty network (n
vertices with no edges) from which edges are added between
vertex pairs according to a particular similarity measure. One
can stop the process at any step and the resulting components
are considered as the network communities. In a divisive
method the network is considered in its entirety with all its
vertices and edges. Edges are removed when they link the
weakest connected pairs of vertices. After some iterations,
the network is divided into small components which are the
network communities.

Both method can be halted after any edge removal, the two
process can be illustrated as a tree or dendrogram where the
ith horizontal cuts represent the network community structure
at the ith step, see Fig. 4.

B. Algorithm

In ([21]) the authors suggest using a force-based graph
layout to detect communities.

A graph layout is a spacial arrangement of nodes so that
strongly connected nodes are close together and lightly or

unconnected nodes are far form each others. Most often such
layout is used to better visualize a graph. One of the most
successful layout method is based on repulsive and attractive
forces. Intuitively the idea is that all vertices repulse each
others, but vertices connected by an edge attract. The attraction
forces counteract the repulsion forces for vertices connected to
each others whereas other vertices are pushed far away. This
is very close to the community definition given by ([8]).

There are several force-based layout algorithms. The one
that where used here is based on ([10]). Such algorithms tend
to slow a lot when the number of nodes grow due to their
O(n2) complexity. However, it is possible to use recursive
space decompositions techniques like the ones used in fast
mutlipole methods ([14], [3]) to speed up things. This has
been done in our reference implementation.

Once a graph layout has been found communities are
detected using a hierarchical divisive technique. Edges are
cut using a value that may take into account several factors,
but at least the edge spacial length computed by the force-
based algorithm. After the edge is cut, the layout algorithm is
run anew. Each time an edge is cut, a modularity, see below,
measure is made. Edges are cut as long as the modularity
grows. This procedure ends when it is no more possible to
grow the modularity. Communities correspond then to the
connected components of the graph.

It is possible to improve this algorithm by changing the way
an edge is cut. Instead of only considering the edges spacial
length, it is possible to use a length modified by several factors.
One possible factor we used in our implementation is called
”proximity”. We define intuitively the proximity of two nodes
A and B as the number of common neighbors for A and B :

proximity =
number of common neighbors

combined degree

With :

combineddegree =
degree of A+ degree of B

2

Then we can divide the spacial length of an edge by this
proximity measure to ensure nodes that share a lot of neighbors
are closer.

The algorithm relies on an evaluation function namely the
modularity which measure the quality of a particular division
of a network to perform community detection. The modularity
is defined by the next formula ([17]):

Q =
∑

i

(eii − a2
i )

If the network is divided into k communities, e is a (k,k)
symmetric matrix whose element eij is the fraction of all edges
in the network that link vertices in community i to vertices
in community j. The row (or column) sums ai =

∑
j eij

represent the fraction of edges that connect to vertices in
community i ([17]). Because the algorithm need to remove
the total m edges and since each iteration takes O(mn) time,
the worst-case running time of the algorithm is O(m2n) or
O(n3) on a sparse network.
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Fig. 4. A hierarchical tree or dendrogram computed by hierarchical detection
of community structure algorithm. Vertices of the network are at the bottom,
they belong to communities when they are linked by a horizontal line. The
dotted-line indicates the cut level choosen when the modularity is maximum
which guaranteed the strongest community structure.

TABLE I
STRUCTURAL FAMILIES STUDIED. WE CHOOSE ONLY FAMILIES WHICH

CONTAIN MORE THAN 100 PROTEINS, FOR A TOTAL OF 18294 PROTEINS.
WE HAVE WORKED WITH THE SCOP 1.73 CLASSIFICATION.

Class Family Protein
Number Number

All α 12 2968
All β 17 6372
α/β 18 5197
α + β 16 3757

V. EXPERIMENTAL RESULTS

In this paper we propose to identify the community structure
of amino acid interaction networks built from folded protein.
This work, lead to divide up a graph into connected com-
ponents representing communities which regroup the nodes
the most connected. We study the protein 3DSE-IN and in
particular their community structures. We want to to put in
evidence how amino acids interact each other within the
tertiary structure and what are amino acids which tend to
group togheter. Thus, our goal is to describe the composition
of communities and identify nodes which interact highly.

Based on the SCOP classification and more precisely on the
fold families (see Tab. 1), we have selected a total of 18294
proteins and studied their SSE-IN and also their 3DSE-IN to
finally describe their community structure composition. Thus,
each class provides a broad sample guarantying more general
results and avoiding fluctuations. Moreover, these four classes
contain proteins of very different sizes, varying from several
dozens to several thousands amino acids in SSE. The results
obtained for the different classes are very similar, that is why
in the rest of this section we show the results only for two
studied classes. Moreover, we choose to not plot the average
deviation when it disturbs the clarity of the figures.

Now, we describe the topological properties of the protein
3DSE-IN and further we will return to the community structure
detection using the algorithm presented in section 4.2.

A. Topological Properties

First, we plot the distribution of the two interaction net-
works, see Fig. 5, to see that our dataset describes proteins
whose size, their amino acid number, is most frequently
between 100 and 500 residues.
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Fig. 5. Mean degree distribution according to protein SSE-IN size. It evolves
with values close, between 6 and 8. Most of the SSE-IN or 3DSE-IN have a
size 100 and 500 amino acids.

The mean degree, denoted z, provides a relation between
the edge number m as a function of the node number n, it is
defined by the next formula:

z =
2m
n

From the plot, see Fig. 5, we deduct bounds for the mean
degree which involves according to the following relation: For
n ≥ 10,

6 < zSSE-IN < 9 and 6 < z3DSE-IN < 9

These results help to understand how amino acids interact
within a protein interaction network since it gives an estima-
tion of the quantity of edges getting evolved as a function of
the IN size. The reader can find a more detailed mean degree
study in ([11]).

Second, we continue our description of the interaction
networks. Thus, the nature of an edge depends on nodes which
it allows to link. In a protein SSE-IN the edges can join
two nodes from the same SSE or not. In a 3DSE-IN, the
edges can link nodes whose structural role is different. Then,
we distinguish the nodes which participate in the secondary
structure and the others (from the loop regions) and we obtain:

{
mSSE-IN = mH +mS +mH−S = m2D

m3DSE-IN = m2D +m3D +m2D−3D

The fraction mH or mS designates the edges which link
only nodes which are from the same SSE while mH−S link
two nodes belonging to different SSE. As well, m3D edges
join only nodes which intervene in the loop regions. In a
protein 3DSE a node belongs to the secondary structure or
not, thus: n3DSE-IN = n2D + n3D.

By interesting us in protein SSE-IN, we describe the way
that their constituents interact each other. We evaluate the
interaction level between the α-helices and the β-sheets by
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Fig. 6. Ratio of inter-SSE edges (r) as a function of the network size for
the two classes of studied proteins.It’s bounded and doesn’t exceed 20% of
the total edge number.

computing the ratio of edges, denoted r = mH−S/mSSE-IN,
linking two different SSEs, see Fig. 6. By this way, we measure
the interaction level inter-SSE.

Fig. 6 shows that the number of inter-SSE edges is quite
variable, but is bounded and does not exceed 20%, its the
consequence of the excluded volume effect, since the number
of residues that can physically reside within a given radius is
limited.

Now, we study only the 3DSE-IN topological properties to
find a general behavior which can influence the community
structure detection.

We describe the 3DSE-IN according to the nature of their
nodes and their edges, see Fig. 7-8.

These plots confirm clearly the assumption about which the
secondary structure elements are considered as the structural
fragments most conserved through the folded proteins. Thus,
these elements composed in the most majority the protein
3DSE-IN around 61% of the total node number. Their inter-
action is measured by the fraction of edges which link them,
denoted m2D, which represents around 54.9% of the total
edge number. As well, the fraction m2D and m2D−3D are
equivalent through all protein 3DSE-IN when n3DSE-IN > 100.
This means that a node from the loop regions, n3D, has an
equal probability to interact with a n2D node than with an
another n3D node.

It is interesting to understand the way that the nodes from
the loop regions, n3D, interact in the protein 3DSE-IN. Indeed,
see Fig. 9, they tend to group together and consequently we
can except to encounter local clouds of them interacting with
n2D nodes.

Once we have described the general behavior of protein
3DSE-IN, we can refine this study by searching correlations
between previous measures. We observe, see Fig. 7-8, that
the fraction of node n2D involved in the protein 3DSE-IN
determines the way that the nodes interact each other. To
validate this relation of cause and effect, we describe the nature
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Fig. 8. Fraction of edges in protein 3DSE-IN for the classes α + β, top,
and α/β, bottom, according to the nodes they link.

of the edges as a function of the n2D/n3DSE-IN rate.
The plot, see Fig. 10, shows that the average interacting rate

m2D−3D between n2D nodes and n3D nodes stays constant
independently of the proportion of n2D nodes presents in
the protein 3DSE-IN. It implies that the n3D nodes have a
bounded interaction level. Thus, the n3D nodes will form
edges with n2D nodes for a maximum of 25% of the total
edge number. To this limit be reached, n3D nodes will group
together to form clouds whose only the ”surface” will interact
with n2D nodes.

This behavior illustrates perfectly the general folded protein
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nodes aggregate each others since near than 64% of their neighbourhood is
composed by others n3D nodes.
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Fig. 10. Variation of the edge natures as a function of the n2D/n3DSE-IN
fraction in protein 3DSE-IN.

shape, that is the hydrophobic side chains are packed into
the interior of the protein creating a hydrophobic core and a
hydrophilic surface. The fact that the SSE are in the interior of
the folded protein implies therefore that interaction between
them and the others amino acids are bounded, because their
contact surface is limited. As well, when the fraction of
node n2D/n3DSE-IN represents less than 60% of the total node
number, n3D nodes have tendency to interact each other in
proportion superior or equal than they interact with n2D nodes.

The consequence is to see appear clouds of n3D nodes able
to disturb the community structure already determined in the
protein SSE-IN.
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Fig. 11. Evolution of communities size as function of protein 3DSE-IN size

B. Community Structure Detection

Now we have described the behavior of the protein 3DSE-
IN, we are interested in the community structure composition.
The algorithm we use to perform the community detection is
given here:

Algorithm 1: Algorithm to detect community structure in
protein 3DSE-IN.
Input:
m : Edge set
Data:
Q : modularity in the network.
re : Fraction length/proximity for the edge e.
r3DSE-IN : Average rate length/proximity for the entire
3DSE-IN.

begin
Q←− 0
while Q is increasing do

foreach Edge e ∈ m do
computeProximity(e);
computeLength(e);

m←− m− {Edges with re > r3DSE-IN};
Q←− computeModularity();

end

We have realized simulations according to the protein SCOP
class level, see Tab. 1. A first observation concerns the
average size evolution of detected organisations, see Fig. 11.
Its evolution is linear and the organisation sizes double when
the interaction network size increases by doubling. This means
that one can describes the entire 3DSE-IN, at a macroscopic
level, as the association of microscopic communities whose
elements are highly interacting. Thus, the local interactions
contribute to the formation of strong communities with an
average size depending on the interaction network size. Thus,
these interactions between organisations finally determine the
global protein 3DSE-IN.

By continuing our description, we are interested in the
organisations constitution. At first sight, one can expect to
encounter communities composed exclusively by nodes partic-
ipating in the secondary structure because they form effectively
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Fig. 13. Average covalence distance between n3D nodes and their neighbors
in communities for α + β class, top, and α/β class, bottom.

dense subgraph within 3DSE-IN.
We measure the average fraction of node n2D in organisa-

tions, see Fig. 12, to evaluate in what proportion nodes from
the secondary structure group together and interact. The plot
shows that the communities tend to be composed predomi-
nantly by n2D nodes. It implies that it exists communities
with a weak fraction of nodes from the loop regions which
interact with others n2D nodes.

To identify suitably what are the n3D nodes which interact
highly within communities, we rely on the covalence dis-
tance, denoted cd, defined as follows. The covalence distance
between two nodes, u and v corresponds to the number
of covalence bonds between amino acids they represent in
the primary structure. By this way, in each organisation we
are interested in n3D nodes and we evaluate their average
covalence distance computed with their whole neighbors, we
denote by nH and nS a node from a helix or sheet subgraph.

The plot provides interpretations about how nodes from the

tertiary structure interact with the others. First, n3D nodes
which interact highly with n2D nodes from helixes are near of
them in the primary structure meaning that helices have a local
interaction within a folded protein. Second, n2D from sheets
are able to interact with distant n3D nodes. This behavior is
the consequence of the specific shape of sheets composed by
strands which interact each other despite of a high covalence
distance due to loop regions. To illustrate this phenomenon,
we can consider the following example. Let a folded protein
with 100 amino acids having a sheet composed by three
strands s1, s2, s3 defined by intervals [10, 15], [25, 30] and
[45, 50]. Then, a community structure detection will provide an
organisation grouping the three strands and others n3D nodes.
Here we are interested in a particular node, for example one
representing the amino acid number 51. This node is connected
with the node 50 of s3 and also with the node 30 of s2 and
consequently its normalised average covalence distance will be
high. Nevertheless, this phenomenon is eased for large 3DSE-
IN notably because the strands are close each others.

C. Synthesis

We study how loop nodes, n3D, interact in the 3DSE-IN
by plotting their node neighborhood distribution. Thus, they
tend to group together to aggregate. Consequently we exccept
to encounter local clouds which interact with n2D nodes.
We describe the nature of edges to observe that the average
interaction level m2D−3D stays constant independently of
the n2D/n3DSE-IN rate. This implies that n3D nodes have a
bounded interaction level. They form edges with the secondary
structure nodes for a maximum of 25% of the total edge
number. Once the limit is reached, n3D nodes group together
to form clouds. Only the surface of the clouds interacts with
n2D nodes.

The previous result implies a new approach to fold the
amino acid graph which can be decomposed into three suc-
cessive steps:

• we predict the graph composed only by the secondary
structure

• we add the loops which fold independently
• we predict the global graph where the two parts are

already folded
Our study allows bettering describing the collective be-

haviour of amino acids during the folding process. This
behaviour is a consequence of the general protein folding
principle, according to which amino acids from the secondary
structure are compacted inside the tertiary structure limiting
the contact surface with amino acids from the loops.

VI. CONCLUSION

In this article we show that the community structure de-
tection leading in protein 3DSE-IN is a means to isolate the
more interacting amino acid in the folded protein. Inside or-
ganisations, nodes participating in the secondary structure are
majority and interact with nodes from loop regions. To identify
these last, we measure their average covalence distance with
their neighbourhood, results show that each communities have
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local interaction because of their constituents are close in the
primary structure.

A continuation of our work will be to consider a protein
3DSE-IN as a complex system where it exists local organi-
sations whose mutual interactions allow the emergence of the
global interaction network. In this case, each amino acid will
be considered as a local agent able to interact according to its
structure level and its environment. The emergence of a global
topology would by the shape of the folded protein.

The characterization we propose constitutes a first step of a
new approach to the protein folding problem. The properties
identified here, but also other properties we studied ([11],
[12]), can give us an insight on the folding process. They
can be used to guide a folding simulation in the topological
pathway from unfolded to folded state.

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world
wide web. Nature, 401:130–131, 1999.

[2] A. R. Atilgan, P. Akan, and C. Baysal. Small-world communication
of residues and significance for protein dynamics. Biophys J, 86(1 Pt
1):85–91, January 2004.

[3] R. Beatson and L. Greengard. A short course on fast multipole methods.
[4] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,

H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank.
Nucleic Acids Research, 28:235–242, 2000.

[5] C. Branden and J. Tooze. Introduction to protein structure. Garland
Publishing, 1999.

[6] K. V. Brinda and S. Vishveshwara. A network representation of protein
structures: implications for protein stability. Biophys J, 89(6):4159–
4170, December 2005.

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the Web. Computer
Networks, 33(1-6):309–320, 2000.

[8] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding
community structure in very large networks. Physical Review E,
70:066111, 2004.

[9] N. V. Dokholyan, L. Li, F. Ding, and E. I. Shakhnovich. Topological
determinants of protein folding. Proc Natl Acad Sci U S A, 99(13):8637–
8641, June 2002.

[10] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing
by force-directed placement. Software - Practice and Experience,
21(11):1129–1164, 1991.

[11] O. Gaci and S. Balev. Hubs identification in amino acids interaction
networks. In Proceedings of the 7th ACS/IEEE International Conference
on Computer Systems and Applications, 2009. 7 pages.

[12] O. Gaci and S. Balev. The small-world model for amino acid interaction
networks. In Proceedings of the IEEE AINA 2009, workshop on
Bioinformatics and Life Science Modeling and Computing, 2009. 6
pages.

[13] A. Ghosh, K. V. Brinda, and S. Vishveshwara. Dynamics of lysozyme
structure network: probing the process of unfolding. Biophys J,
92(7):2523–2535, April 2007.

[14] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
J. Comput. Phys., 73(2):325–348, 1987.

[15] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The
large-scale organization of metabolic networks. Nature, 407(6804):651–
654, October 2000.

[16] U. K. Muppirala and Z. Li. A simple approach for protein structure
discrimination based on the network pattern of conserved hydrophobic
residues. Protein Eng Des Sel, 19(6):265–275, June 2006.

[17] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Physical Review E, 69:066133, 2004.

[18] John P. Scott. Social Network Analysis: A Handbook. SAGE Publica-
tions, January 2000.

[19] S. Wasserman and K. Faust. Social network analysis : methods and
applications , volume 8 of Structural analysis in the social sciences.
Cambridge University Press, Cambridge, 1994.

[20] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. Nature., 393:440–442, 1998.

[21] Bo Yang and Da-You Liu. Incremental algorithm for detecting com-
munity structure in dynamic networks. In Proceedings of The 4th
International Conference on Machine Learning and Cybernetics, pages
2284–2290, August 2005.


