
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

515

Designing a Tool for Software Maintenance
Amir Ngah, Masita Abdul Jalil, Zailani Abdullah

Abstract—The aim of software maintenance is to maintain
the software system in accordance with advancement in software
and hardware technology. One of the early works on software
maintenance is to extract information at higher level of abstraction. In
this paper, we present the process of how to design an information
extraction tool for software maintenance. The tool can extract the
basic information from old programs such as about variables, based
classes, derived classes, objects of classes, and functions. The tool
have two main parts; the lexical analyzer module that can read the
input file character by character, and the searching module which
users can get the basic information from the existing programs. We
implemented this tool for a patterned sub-C++ language as an input
file.

Keywords—Extraction tool, software maintenance, reverse
engineering, C++.

I. INTRODUCTION

SOFTWARE engineering is the application of a systematic,
disciplined, quantifiable approach to the development,

operation, and maintenance of software [1]. It is also defined
as a systematic approach to the analysis, design, assessment,
implementation, testing, maintenance and reengineering
of software [2]. The generic activities in all software
processes are requirement analysis, design, coding, testing
and maintenance [4], [3].

Software maintenance refers to the modifications of
software after delivery. Other terms suggested for maintenance
are software support, software renovation, continuation
engineering and software evolution [5]. The IEEE Standard
1219-1993 [6] has defined software maintenance as the
modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to
adapt the product to a modified environment. ISO/IEC
14764-1999 [7] has defined software maintenance as software
product that undergoes modification code and associated
documentation due to a problem or the need for improvement.
Rajlich [8] has proposed a new direction of software evolution
and maintenance. Software systems change and evolve over
time. It is impossible to develop any software which does not
need to be modified. Therefore, a research and development
of CASE tools in software maintenance is very significant.

Maintainers are usually under pressure to accomplish
maintenance tasks as quickly as possible. The problem for
most maintainers is that they have to maintain unfamiliar code
that has been modified and the accompanying documentation
is usually out of date, inadequate, inconsistent or sometimes
non-existent. Sometimes, the sheer complexity of the programs

Amir Ngah, Masita A. Jalil and Zailani Abdullah are with the School
of Informatics and Applied Mathematics, University Malaysia Terengganu,
21030 Kuala Terengganu, Malaysia (e-mail: amirnma@umt.edu.my).

can make the modification tasks look impossible. More than
often, the source code may be the only source of information
maintainers have at hand. In theory, the source code itself
should contain all the information a maintainer may need to
commence a modification. The problem is how the maintainers
find a systematic way to uncover this information. One of the
early work on building maintenance tools is to gather the basic
information from the existing program like information related
to variables; local and global, classes, objects of classes, and
soon. In this paper, we present the process of how to design
an information extraction tool for software maintenance that
can collect a basic information from a sub-C++ programs.

II. RELATED WORKS

There are a number of tools developed for software
maintenance especially in reverse engineering (e.g. [9], [10],
[11], [12], [13]). Risi and Scanniello [9] have developed a
visualization tool for the reverse engineering of object-oriented
software called MetricAttitude. They considered a number
of object-oriented metrics such as weighted methods per
class, depth of inheritance tree, number of children, coupling
between object classes, response for a class, flow info,
number of message sends, number of methods, lines of code
and number of comments.

Maras et al. [10] have developed phpModeler, a tool for
reverse engineering of legacy php web applications that
generates static UML diagrams showing resources which the
current web page is using, its functions and dependencies it
has on other web pages. phpModeler has two main modules:
model generator module that generates static UML diagrams
representing resources the current web page is using, its
functions, properties and dependencies on other web pages.
The second module is the difference analyzer that shows
differences between web page model versions.

Cseri et al. [11] have developed a software maintenance
tool that focuses on the code comprehension process of large
legacy C++ systems that heavily utilize code comments. Their
research proposed a method to find the correct place of the
comments in the AST-based on project-specific rules. Chen et
al. [12] have developed a software maintenance tool called a
Powerful Live Updating System (POLUS). The tool is capable
of iteratively evolving running software into newer versions.
POLUS is designed to support realistic software changes
involving both code and data. The tool is composed of three
components. A patch constructor, in the form of a source to
source compiler, detects the semantic differences between two
successive software versions and generates the POLUS patch
files. A patch injector is a running process that applies the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

516

updates. A runtime library provides some utility functions to
manage POLUS patches for the patch injector. These all tools
are purposely developed to aid software maintenance activities.

III. SUB C++ PROGRAM ELEMENTS

The C++ language is becoming very popular among
programmers and most of the critical systems developed were
using this language. The language also provides flexibility
for users. We implemented this tool for a sub-C++ language
as a input file. The sub-C++ is a subset of the original C++
language that only focuses on some part of elements of the
C++ language.

Generally, the vocabulary in a programming language
is categorized into four: reserved words, special symbols,
numerical, and identifier. The reserved words in sub-C++ are
shown in Table I. A few additional words as shown in Table II
is also categorized as reserved words in sub-C++. There are
two categories of special symbols which are symbol with
double character and single character as shown in Table III
and Table IV respectively. A numerical in sub-C++ is a
decimal notation for a non-negative integer only. For example
22, 0 and 321. An identifier started with a letter, which may
be followed by more letters or numeral. For example token,
x, and B2.

Basically, all the operations used in the sub-C++ language
are true if they are of the same type. In this case, the name
of a variable must be unique in the sub-C++ program if and
only if the variable name defined in different scopes. Every
function in sub-C++ has its own scope. If a programmer
defines a local variable in one function and at the same time
defines the same name in another function, the definition is
correct. However if the name is defined as a global variable;
the name cannot be used again in the program even in
different scopes.

TABLE I:
RESERVED WORDS in SUB-C++

do if for int
else case char void
break class switch return
public default private continue protected

TABLE II:
ADDITIONAL RESERVED WORDS in SUB-C++

cin cout main
scanf printf include

Identifiers and reserved words in sub-C++ are case sensitive,
meaning that the words in upper and lower cases are different.
Therefore, the words for reserved words must be written
in small letters only. If the reserved words were written in

TABLE III:
SPECIAL SYMBOLS with DOUBLE CHARACTER in

SUB-C++

<= >= == != /* */ //

TABLE IV:
SPECIAL SYMBOLS with SINGLE CHARACTER in

SUB-C++

’ - * / = & < >
() { } ” ’ , ; .

upper case, the tool will generate error message. However, the
identifiers are correct if they have upper and lower case letters.
However, the identifiers in upper case letters are different
with identifiers in lower case letters. Also, the space between
symbols is omitted. For example, the following two statements
(S1 and S2) which were written in sub-C++ language are the
same. The statement S1 contains more than one space between
symbols, and statement S2 does not have any space between
the contents.

Statement (S1): if (x > 10) x = x 1 ;
Statement (S2): if(x>10)x=x-1;

Every line in sub-C++ language must end with a semicolon
(;). If the line does not end with a semicolon, it is an
incorrect line or fault. For comments, they begin with the
special symbol /* and end with the other special symbol */.
If the comment does not end with the right symbol, the tool
gives an error message. Comments also can start with special
symbol //. This comment type is just used for single line
comment only.

In sub-C++, an identifier can be a local or global variable,
the name of based or derived class, class attribute, method
or object. However, sub-C++ only consider a variable type
of int and char. A variable can be declared with or without
initialization.

IV. A TOOL DESIGN

This information extraction tool consists of two main
modules. There are the lexical analyzer module, and the
searching module as shown in Fig. 1. The lexical analyzer
module will analyze the lexical from the input file, sub-C++.
The searching module enables users to gather the information
from tokens that were produced by the lexical analyzer
module. For example, users can get the information like
global and local variables, the number of classes, objects of
related classes, and so on. The design for each module will
be executed separately, where each module is depended on
one another.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

517

Fig. 1: The Tool Model

A. The Design of Lexical Analyzer Module

The first phase in this tool is the lexical analyzer or also
known as a scanner, similar to a compiler design. The lexical
analyzer reads the sub-C++ program language character by
character until it reaches the end of the program. In the
process of reading, if the lexical analyzer finds any symbols
or characters that does not belong to the sub-C++ language
components, it will tell that an error occur. In other words,
the lexical analyzer recognizes the basic tokens in its input
and represents the tokens in some encoded form. Then, the
lexical analyzer transfers it to the next part of the tool, the
searching module.

The coding method is used by the lexical analyzer to encode
tokens by using an integer value, that is an enumerated type
in C++ language. Then, the lexical analyzer uses these values
to identify the tokens and passes them to the syntax analyzer.
The enumerated type introduces a name for every symbol
in the sub-C++ language, as shown in Table V. When the
tool recognizes any of the sub-C++ language symbol such
as the equal (=) as an input, the lexical analyzer outputs
the corresponding symbol value equal. It uses the save1()
function to save the output values to the output file as shown
in (1).

save1(equal); (1)

In addition, the lexical analyzer uses different output
functions to save another kind of tokens, called long tokens,
which include the numerical and the value of the numerical
constant; the name and the values are the code of identifiers,
and the newline value is the line number. The save2() function

TABLE V:
REPRESENTATION of TOKENS USING INTEGER

VALUE

name symbol integer value
endtxt 0
numeral 1
unknown 2
name 3
newline 4

(Special symbols)
semicolon ; 5
comma , 6
not ! 7
signnum # 8
colon : 9
doublecolon :: 10
equal == 11
less < 12
dot . 13
greater > 14
gteq >= 15
lesseq <= 16
noteq != 17
andpercent & 18
and && 19
or || 20
plus + 21
minus - 22
multiple * 23
division / 24
assignment = 25
cinoperator >> 26
coutoperator << 27
leftparenthesis (28
rightparenthesis) 29
Openbracket [30
Closebracket] 31
Ocompountstate { 32
Ccompountstate } 33

(Reserved words)
cin 34
cout 35
main 36
scanf 37
printf 38
include 39
do 40
if 41
for 42
int 43
else 44
case 45
char 46
void 47
break 48
class 49
switch 50
return 51
public 52
default 53
private 54
continue 55
protected 56

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

518

saves tokens such as numerical and followed by its value.
For example, the lexical analyzer outputs a variable name as
a symbol named name followed by the value of that variable
as shown in (2).

save2(name, value); (2)

The line number of the source program is also included in
the lexical analyzer. This inclusion helps the tool to provide
more informative error messages. When the lexical analyzer
reads a new line, it outputs the newline followed by the
line number. Also, when the lexical analyzer reads unknown
symbols, it saves them as an unknown to the output file.
These will later be reported as an error in the next part of the
tool. Finally, when the lexical analyzer reaches the end of the
file, it outputs endtxt and terminates.

Generally, every character in sub-C++ will be classified
by lexical analyzer into six (6) groups which are numerical,
identifier, reserved word, special symbol, commented line and
quotation statement (string). The lexical analyzer will identify
numerical characters using the algorithm as shown in Fig. 2.

if (isdigit(ch))
{

int value = 0;
while (isdigit(ch))
{

int digit = ch - ’0’;
if (value <= (maxint - digit)/1)
{

value = value * 10 + digit;
ch = RichEdit1->Lines->

Text.c_str()[character++];
}
else
{

ListBox1->Items->Add("error");
while (isdigit(ch))
ch = RichEdit1->Lines->

Text.c_str()[character++];
}

}
ListBox1->Items->Add(numeral1);
ListBox1->Items->Add(value);

}

Fig. 2: Algorithm for Numerical Identification

When the lexical analyzer detects letter characters, it will
assume that the token may be an identifier or a reserved
word. A valid identifier in sub-C++ is the word which is
created by combination of letters and numbers. The word
must starts with a letter. A single letter is also classified as an
identifier. The algorithm to detects identifier is shown in Fig. 3.

The lexical analyzer is also capable of detecting special
symbol in sub-C++. There are two types of special symbol;
single and double characters. Fig. 4 shows an example
of an algorithm to detect a single and double character
special symbol. For example, if the lexical analyzer detects
an assignment symbol (=), the tool will check the second

if (isalpha(ch))
{

int length = 0;
do
{

temptxt[length] = ch;
ch = RichEdit1->Lines->

Text.c_str()[character++];
++length;

}
while (isalnum(ch));
temptxt[length] = ’\0’;
strcpy(txt, temptxt);
Search(0, txt, length, name1);

}

Fig. 3: Algorithm for Identifier Identification

character whether it is an assignment symbol again or not.
This is to differentiate between an assignment symbol and an
equal symbol.

//symbol "==" or ’=’
if (ch == ’=’)
{
ch = RichEdit1->Lines->Text.c_str()[character++];
if (ch == ’=’) //symbol "=="

ListBox1->Items->Add(equal1);
else //symbol ’=’

ListBox1->Items->Add(assignment1);
}

Fig. 4: Algorithm for Special Symbol Classification

In sub-C++, usually comments will start with symbol (/*)
and end with (*/). The comment function, comment() will be
called if the lexical analyzer detects the symbol (/*). By using
this function, all characters between the comments will be
ignored as shown in Fig. 5. The lexical analyzer is capable on
detecting a comment in a single line as shown in Fig. 6.

B. The Design of Searching Module

The searching module will start after the lexical analyzer
module. It uses the outputs from the lexical analyzer as an
input. The purpose of this module is to get the information that
will be used in software maintenance such as the information
related to global variables, local variables, function and so
on. The complete type of information that users can get from
this module is shown in Fig. 7.

The searching process is dependent on the grammar or
basic syntaxes for sub-C++ language are the same as other
programming languages. For example, if users want to get
the number of variables, so the syntax for variable will be
used as shown in Fig. 8.

In this module also, users can list out and determine each
classes whether it is a based or derived class. It also depends
on its own syntax. For example, the syntax of based class is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

519

Comment(char ch, int &character)
{

ch = RichEdit1->Lines->Text.c_str()[character++];

while ((ch != ’*’)&&(ch != NULL))
{

ch = RichEdit1->Lines->
Text.c_str()[character++];

}
if (ch == NULL)

ListBox1->Items->Add("comment error");
else
{

ch = RichEdit1->Lines->
Text.c_str()[character++];
if (ch == NULL)

ListBox1->Items->Add("comment error");
else if (ch != ’/’)

Comment(ch, character);
}

}

Fig. 5: Algorithm for Comment Identification

if (ch == ’/’)
{

ch = RichEdit1->Lines->Text.c_str()[character++];

//comment with star
if (ch == ’*’)
{

Comment(ch, character);
commentline++;

}

//comment one line
else if (ch == ’/’)
{

//12 for endline |10 for return
while (ch != 10)
{

ch=RichEdit1->Lines->
Text.c_str()[character++];

}
commentline++;
--character;

}

//slash
else
{

ListBox1->Items->Add(div1);
}

}

Fig. 6: Algorithm for Comment Classification

shown in Fig. 9. The syntax of based class starts with the
reserved word class, follow by name of class ClassName.
Then, the body of the class starts with a open curly bracket
symbol, and ending with a close curly bracket symbol, and
then follow by semi colon symbol. Beside this, the syntax of
a derived class is shown in Fig. 10, where a derived type is
refer to a public or private class only.

The process of recognizing of these two types of classes
is based on the colon symbol(:). For example, if the colon

• List and the number of all variables; global and local including their
position

• List of based classes
– List and the number of based classes
– List and the number of object for based classes including their

position
– List and the number of derived class
– List and the number of data members including their position
– List and the number of function members including their position

• List of derived classes
– List and the number of derived classes
– List and the number of object for derived class including their

position
– Type of derived class
– List and the number of derived class
– List and the number of data members including their position
– List and the number of function members including their position

• List of functions
– List and the number of functions
– List and the number of local variables
– List and the number of called functions

• List and the number of global variables including their position

Fig. 7: Searching Module

<definition type> :: = <type> <IdList>;
<type> ::= int | char
<IdList> ::= <iditem> | <iditem> , <IdList>
<iditem> ::= <id> | <id> = <value>
<id> ::= <letter> <restofid>
<restofid> ::=|<validchar>|<restofid><validchar>
<validchar>::= <letter> | <numeral> | _
<letter> ::= a|b|c|.......|X|Y|Z
<numeral> ::= 1|2|3|4|5|6|7|8|9|0

Fig. 8: Syntax for variable declaration

symbol is discovered after the className, the class is
categorized as a derived class, otherwise it becomes a base
class. This module can also detect objects of classes, that is
based on their own syntax as shown in Fig. 11.

V. CONCLUSION

The purpose of this paper is to design a basic information
extraction tool for software maintenance. The tool will give
users an ability to know the basic information from existing
program (sub-C++) such as variables; local and global, a
list of base and derived classes, list of functions, objects of

class className
{

classBody
};

Fig. 9: Syntax for class

class className : deriveType basedClassName
{

classBody
};

Fig. 10: Syntax for derived class

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

520

className <objectList>;

Fig. 11: Syntax for object class declaration

classes, and so on. Because the tool just produced the basic
information, hence it is called the basic software maintenance
tool. The tool have two main parts; the lexical analyzer
module that can read the input file character by character,
and the search module which enables users to obtain basic
information from the existing program.

Based on the current ability of this basic tool, we plan to
extent the scope of sub-C++ program to become a standard
of C++, so that the tool is more compatible with all C++
programs. We can also implement this type of tool to other
programming languages like Java and Visual Basic.

ACKNOWLEDGMENT

This research is sponsor by Ministry of Education, Malaysia
Government under Research Acculturation Collaborative
Grant (RACE).

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, 1990.

[2] Phillip A. Laplante. What Every Engineer Should Know About Software
Engineering. CRC Press, 2007.

[3] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, UK, 2010.

[4] Ian Sommerville. Software Engineering(7th ed.). Addison Wesley, 2004.
[5] Keith H. Bennett and Václav Rajlich. Software maintenance and

evolution: a roadmap. In Proceedings of the International Conference on
Software Engineering (ICSE’00), pages 73-87, 2000.

[6] IEEE Standard for Software Maintenance. IEEE Std 1219-1993, Jun 1993.
[7] ISO/IEC Standard for Software Maintenance. ISO/IEC Std 14764:1999,

1999.
[8] Václav Rajlich. Software Evolution and Maintenance. In the Proceedings

of the Future of Software Engineering (FOSE 2014), pages 133-144,
2014.

[9] Michele Risi and Giuseppe Scanniello. MetricAttitude: A Visualization
Tool for the Reverse Engineering of Object Oriented Software. In the
Proceedings of the International Working Conference on Advanced Visual
Interfaces, pages 449-456, 2012.

[10] Josip Maras and Maja Štula and Ivica Crnkovic. phpModeler - A Web
Model Extractor. In the Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009), pages
660-661, 2009.

[11] Cséri, Tamás and Szügyi, Zalán and Porkoláb, Zoltán. Rule-based
Assignment of Comments to AST Nodes in C++ Programs. In the
Proceedings of the Fifth Balkan Conference in Informatics, pages
291-294, 2012.

[12] Chen, Haibo and Yu, Jie and Chen, Rong and Zang, Binyu and
Yew, Pen-Chung. POLUS: A POwerful Live Updating System. In
the Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007), pages 271-281, 2007.

[13] Sensalire, Mariam and Ogao, Patrick and Telea, Alexandru. Classifying
Desirable Features of Software Visualization Tools for Corrective
Maintenance. In the Proceedings of the 4th ACM Symposium on Software
Visualization (SoftVis 2008), pages 87-90, 2008.

