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Abstract—This paper describes the design optimization of 

ferrocement-laminated plate made up of reinforcing steel wire 

mesh(es) and cement mortar. For the improvement of the designing 

process, the plate is modeled as a multi-layer medium, dividing the 

ferrocement plate into layers of mortar and ferrocement. The mortar 

layers are assumed to be isotropic in nature and the ferrocement 

layers are assumed to be orthotropic. The ferrocement layers are little 

stiffer, but much more costlier, than the mortar layers due the 

presence of steel wire mesh. The optimization is performed for 

minimum weight design of the laminate using a genetic algorithm. 

The optimum designs are discussed for different plate configurations 

and loadings, and it is compared with the worst designs obtained at 

the final generation. The paper provides a procedure for the designers 

in decision-making process. 

 

Keywords—Buckling, Ferrocement-Laminated Plate, Genetic 

Algorithm, Plate Theory.  

I. INTRODUCTION 

VER the last few decades, laminated composites have 

found usage in aerospace, automotive, marine, civil, and 

sport equipment applications. This popularity is due to 

excellent mechanical properties of composites as well as their 

amenability to tailoring of those properties. The finding of an 

efficient laminated composite is achieved not only by sizing 

the cross-sectional areas and the member thickness, but also 

tailoring the material properties through the selective choice of 

orientation, number, and stacking sequence of the layers that 

makes up the composite laminate. 

Ferrocement-laminated plate is a thin-walled type composite 

structure, which comprises of cement mortar and closely 

spaced small diameter steel wires. Due to its better weight to 

stiffness ratio and better post cracking behavior over 

traditional reinforced concrete, it is being extensively used in 

the construction of shell, folded plates, and thin web 

structures. However, to our knowledge, until now very few 

researchers have performed design optimization formulation 

and automation of this type of composite structures, even 

though by tailoring different properties of this type of material, 

more efficient and economical structure can be obtained. It is 

worth mentioning that researchers have been optimizing the 

unidirectional composites used in the aerospace structures 
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heavily [3]-[6], where the materials are different from 

ferrocement-laminated composites. 

At present time, among various optimization techniques, 

genetic algorithm (GA) is one of the most popular methods. 

Since the formal introduction of GA in 1975 by John Holland 

[1] at the University of Michigan, this optimization tool has 

been increasingly applied to the solution of combinatorial 

problems in artificial systems. Search and optimization by GA 

is a process based on natural selection, where the individuals 

(designs) continue generation-to-generation based on 

Darwinian survival of fitness. A genetic algorithm performs 

the evolution process by means of random genetic changes 

using some probabilistic operators and an environment (fitness 

function) defined by the user. Since the introduction of GA, it 

is being used in different fields like engineering, medicine, and 

business. Goldberg [2] did an excellent introduction in search 

and optimization. Actually, laminated composite design 

optimization is often formulated as a continuous optimization 

problem using the thickness and orientation angles used as 

variables, but many times the thickness, orientation angles and 

materials are limited to a set of discrete values for the 

manufacturing and structural point of view. Design of a 

composite laminate involves a set of variables like ply material 

type and ply orientation, and therefore is well suited to genetic 

algorithm (GA) for design optimization problem. For this 

reason genetic algorithm is more suitable for this type 

problem. The genetic algorithm is being used extensively for 

the design optimization of laminated plate made of, basically, 

ductile matrix and synthetic unidirectional fibers [3]-[5] used 

in aerospace engineering. 

As pointed out above that optimization problems for 

ferrocement like material made of brittle mortar matrix and 

ductile steel wire mesh having orientational effect can be 

solved effectively by GA. The target problem of this study is 

to increase the stiffness to weight ratio of ferrocement 

laminated plates. The ferrocement plate is assumed to be 

laminated by the layers of two different materials: mortar and 

ferrocement. The mortar layers comprise plane mortar alone, 

which is assumed to be homogenous. The ferrocement layers 

have a single layer of reinforcing mesh placed centrally in the 

mortar matrix. For given different in plane loading conditions, 

tailoring the stacking sequence and material, the performance 

of the ferrocement plate is to be improved. 

II.  ANALYSIS OF FERROCEMENT-LAMINATED PLATE 

Thin ferrocement-laminated structures assumed to be made 

up by thin layers can carry loads through two different types of 
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mechanisms. One mechanism involves stretching of the 

laminate in its own plane, which is called membrane action, 

and another one is by bending. In the present study, all 

loadings and deformations are limited to the plane of the plate. 

However, buckling of the plate under compressive loads is 

considered, leading to bending stiffness design as well as the 

in-plane stiffnesses. The ferrocement plate is assumed to be 

laminated by the mortar and ferrocement layers. This kind of 

layering approach for analysis was followed in another work 

by Pankaj et al. [10]. Here, the mortar layers comprise plain 

mortar alone. The ferrocement layers have a single layer of 

reinforcing mesh placed centrally in the mortar matrix. The 

mortar layers are considered as isotropic homogeneous layers. 

The ferrocement layers are considered as orthotropic i.e. that 

they have two planes of symmetry in the plane of loading. To 

analyze the ferrocement-laminated plate, classical laminated 

plate theory (CLPT) is use. In Fig. 1, a cross-section of the 

composite laminate representing the mortar layers and 

ferrocement layers are shown.  

 

 

Fig. 1 Section of a four-layer ferrocement laminate 

 

In Fig. 2, the lamina’s material coordinate (1,2) and 

laminate’s global coordinate (X, Y) are shown for the mesh 

steel fiber reinforced composite plate. For the material axes, 

generally the stronger mesh direction is given 1 and the 

perpendicular direction is given 2. The loading arrangement on 

the laminate is shown in Fig. 2, and the axial loads are applied 

in the mid plane of the laminate, where compression is 

negative. 

 

 

Fig. 2 Coordinate system and loading diagram of the laminate 

 

Based on Kirchhoff’s hypothesis, the force and moment 

resultants (Nx, Ny, Nxy, Mx, My, and Mxy) can be written in 

terms of mid-plane strains (
0
xy

0
y

0
x ε and ,ε,ε ) and curvatures 

(kx, ky, and kxy) as [7]: 
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where, extension stiffnesses,  
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the Z is shown in Fig. 3; 

 

 

Fig. 3 Geometry of an N-layered laminate 

 

transformed reduced stiffnesses in global coordinate,  
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where, cosθc = , sinθs = , and θ is the angle between the 

lamina’s material coordinate system and the global coordinate 

system, as shown in Fig. 2; reduced stiffnesses in lamina’s 

coordinate system,  
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here, the components of the reduced stiffness matrix of a 

lamina are defined in terms of the in-plane mechanical 

properties of the lamina: 
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bending-extension coupling stiffnesses,  
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bending stiffnesses, 
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It is noted here that for this type of thin walled structure 

buckling is a critical phenomenon to be considered in the 

design. To find out critical buckling load factor of a laminated 

ferrocement plate, the Galerkin energy method outlined in [8] 

is utilized. Realizing that there is no coupling between bending 

and extension for symmetric laminates (i.e., [Bij] = 0), the 

strain energy, U, for transverse bending of a laminated plate of 

length (x = a) and width (y = b) shown in Fig. 2 is  
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and the potential energy, V, of the biaxial and shear loads (Nx, 

Ny , and Nxy) that are applied to the plate is considered as 
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The governing equation for the ferrocement plate [8]: 

 

( )δU δV dt 0− − − =∫                               (10) 

 

where δU and δV are the first variations in strain energy and 

potential energy due to the in-plane loads, respectively. The 

governing equation for the composite plate takes the form: 
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As the effects of the D16 and D26 terms are not neglected, the 

surface integrals in (11) are included in the governing 

equation. This allows the transverse deflection and first 

variation of the transverse deflection to be formulated in a 

double sine series: 
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Substituting (12) into (11) and performing the necessary 

integrations, the following set of algebraic equations are 

obtained: 
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and R is defined as the plate aspect ratio (a/b). Equation (13) 

yields MN number of homogeneous equations that can be 

broken into the form of  

 

[A]{x}−λ[B]{x}=0                             (14) 

 

The coefficient matrix contains terms involving Nx,Ny, and 

Nxy only. The smallest value of λ, λcr, for which the 

determinant of the coefficient matrix vanishes, will give the 

values for the critical buckling load factor. 

Ferrocement falls in the family of thin laminated 

cementitious composites. In this study, simply, the Tsai–Wu 

stress based quadratic failure criterion [9], is used for well 

interaction between different failure modes, which stipulates 

that the condition for non-failure for any particular 

ferrocement or mortar layer under in-plane loading, first ply-

failure criteria, as the first ply-failure criteria provides a 

conservative estimate of laminate failure loading: 
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where, the stresses (σ1, σ2, τ12 ) are calculated using CLPT 

discussed above for any layer ,and the strength  parameters 

F11, F22, F66, F12, F1 and F2 are given by 
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where, Xt, Xc, Yt, and Yc are the tensile and compressive limit 

stresses of the mortar and ferrocement layer in the lamina’s 

material directions (1, 2), up to which material behaves 
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linearly, which are determined by simple laboratory tension 

and compression test data, and S is the in-plane shear strength. 

III. OVERVIEW OF GENETIC ALGORITHM 

Goldberg [2] stated that GA is “search procedures based on 

the mechanics of natural selection and natural genetics”. GA 

applies the adaptive processes of natural system to the artificial 

systems. Actually, the GA is a program, which codes and 

decodes a design problem represented by one or more strings 

(chromosomes). The initial populations or designs 

(chromosomes) are created randomly, and after that these are 

subjected to different probabilistic genetic operators to search 

and exploit the design space. Survival of the individuals 

(designs) is ensured to the next generation upon the values of 

the fitness function defined by the user according to his 

problem.  

For the optimization of composite ferrocement-laminated 

plate, GA code used in this work is described in details 

elsewhere [11], [12]. The main element of GA is the organism, 

which usually consists of a fixed number of chromosomes. 

Each chromosome may consist of one or many genes. 

Typically, each gene is coded using integer alphabets. An 

organism which represents a laminate design is composed of 

orientation and material chromosome. Each gene of the 

orientation chromosome represents the mesh orientation 

angles, and each gene of the material chromosome represents 

the material type used for the layers. A schematic of a typical 

GA structure is given in Fig. 4. 

 

 

Fig. 4 A schematic of a typical GA structure 

 

Size of an initial population determines the size of the 

population in the all-future generations. Choosing the 

population size is a matter of trial and error. When the string 

length of an organism or design will be short, then a smaller 

population size is justified. The first population of organisms 

is initialized using some type of randomized process and is 

termed the first generation of the search. Each organism is then 

placed into a common environment where it competes and 

breeds with other members of the population. The 

characteristics of an organism are provided in the gene strings 

of each chromosome, the most important of which is fitness. 

An organism's fitness shows how well it has adapted to its 

environment. In many GA applications, the environment is 

more commonly referred to as the design space or the set of all 

possible choices that exist for a given problem. The GA's task 

is to locate the area(s) in the design space that will give the 

best solution to the problem.  

 In genetic algorithms, evolution from generation to 

generation is simulated both by preserving the genetic 

information contained in the chromosome strings of fit 

individuals and by altering this information by means of 

random genetic changes. Genetic operators affect both of these 

goals. The goal of preserving the genetic information of fit 

individuals is achieved through crossover. Crossover creates 

child individuals by crossing over portions of two parent 

individuals' chromosomes. One or both of the child individuals 

are retained in the new child population, and the child 

individuals are required to be unique with respect to the other 
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children and to the parent population.  

The child population is unique but the crossover operator 

ensures that the genetic information of the parent population is 

preserved. During a one-point crossover, two parent 

individuals are selected at random (with selection biased 

towards choosing the fittest parents), and their chromosome 

strings are cut at a randomly determined point. A child 

individual then receives a chromosome string comprised of the 

first portion of the first parent's chromosome string and the 

second portion of the second parent's chromosome string and 

so on for crossover operations in which the parent 

chromosome strings are cut at more than one random point 

(e.g., two point crossover, uniform crossover). Thus, a unique 

child individual is created which includes portions of the 

chromosome strings of both its parents. In the following 

example in Fig. 5 (a), a two-point crossover is applied to two 

parent chromosome strings, and the resulting child 

chromosomes are shown. The 0 is taken to denote an absent or 

deleted gene. The randomly selected crossover points are 

denoted by the symbol “|”. 

The goal of introducing change to the information in the 

chromosome strings of individuals created by crossover is 

achieved with the mutation, addition, deletion, and 

permutation operators. The mutation operator introduces new 

information into the chromosome string of an individual by 

randomly altering one or more genes in that string. The 

example in Fig. 5 (b) illustrates a one-point mutation carried 

out on child chromosome from the above crossover operation.  

The mutated gene is indicated with an underscore character 

“_”. The addition operator randomly adds a gene to the 

chromosome string. For example Fig. 5 (c), a randomly 

determined gene is added at a random point in the 

chromosome. The randomly selected addition point is denoted 

by the symbol |. In this example, addition causes the number of 

actual genes in the chromosome to increase from 12 to 13; as a 

result it increases the number of plies in the stack of laminate. 

The deletion operator randomly deletes a gene from the 

chromosome string. In the following example Fig. 5 (d), a 

randomly determined gene, indicated by an underscore 

character “_”, is removed from the chromosome. In this 

example, deletion causes the number of actual genes in the 

chromosome to decrease from 13 to 12, and as a result it 

decreases the number of plies in the stack of laminate. If the 

total thickness of the laminate is to remain unchanged during 

optimization process, then the addition and deletion operators 

are not used. The permutation operator relays information 

from one part of the chromosome to another by inverting the 

order of a randomly determined sequence of genes. In the 

following example Fig. 5 (e), the points at which the 

permutation operator is applied are indicated by the symbol 

“|”. This operator is responsible for the change in the bending 

stiffness of the laminate without changing its in-plane 

properties, so it is a very important operator in buckling load 

optimization. The swap operator, like the permutation 

operator, relays information from one part of the chromosome 

to the other. The swap operator switches the positions of two 

randomly determined genes in the chromosome. The swapped 

genes are indicated with an underscore character “_” in the 

following example, Fig. 5 (f). 

 

Parent chromosome 1 [ 3  2  3  1 |  3  3  1  1 |  3  2  3  1  0  0  0] 

Parent chromosome 2 [ 1  1  2  1 |  3  1  2  2 |  2  2  1  0  0  0  0] 

Child chromosome 1   [ 3  2  3  1 |  3  1  2  2 | 3  2  3  1  0  0  0 ] 

Child chromosome 2   [ 1  1  2  1 |  3  3  1  1 | 2  2  1  0  0  0  0 ] 

(a) 2-point crossover 
 

Chromosome before mutation [ 3  2  3  1  3  3  1  1  3  2  3  1  0  0  0 ] 

Chromosome after mutation    [ 3  2  3  1  3  3  2  1  3  2  3  1  0  0  0 ] 

(b) Mutation 
 

Chromosome before addition [ 3  2  3  1  3  3  2  1  3  | 2  3  1  0  0  0 ] 

Chromosome after addition    [ 3  2  3  1  3  3  2  1  3  3  2  3  1  0  0 ] 

(c) Gene addition 
 

Chromosome before deletion [ 3  2  3  1  3  3  2  1  3  3  2  3  1  0  0 ] 

Chromosome after deletion    [ 3  2  3  1  3  2  1  3  3  2  3  1  0  0  0 ] 

(d) Gene deletion 
 

Chromosome before permutation [ 3  2  3 | 1  3  2  1  3  3 | 2  3  1  0  0  0] 

Chromosome after permutation    [ 3  2  3 | 3  3  1  2  3  1 | 2  3  1  0  0  0] 

(e) Permutation 
 

Chromosome before swap [ 3  2  3  3  3  1  2  3  1  2  3  1  0  0  0] 

Chromosome after swap    [ 3  2  1  3  3  3  2  3  1  2  3  1  0  0  0] 

(f) Gene swap 

Fig. 5 Schematics of operators used in the GA 

 

To simulate the natural selection process in the GA, a 

selection mechanism is mandatory.  For each generation in the 

execution of a GA, each individual's chromosome strings are 

decoded by some decoding function, and the decoded 

individual (the phenotype) is evaluated and given a quality 

value, or fitness, by the objective function. Individuals are 

chosen for mating by randomly choosing them from the 

population, with selection biased towards those individuals 

with higher relative fitnesses. Biasing the selection process 

may be accomplished with, for example, roulette wheel 

selection, Goldberg DE [2]. The roulette wheel ascribes to 

each individual a probability of being selected for mating 

based on its relative position in the population, when the 

individuals are ranked and sorted according to objective 

function value. The fitness is part of a simulated roulette 

wheel, in which the fraction of the roulette wheel, fi, associated 

with the i-th best individual in a ranked population of nd 

designs is then 

 

dd

d
i

nn

in
f

+

−+
=

2

)1(2
                                (17)                           

 

A uniform random variable determines which portion of the 

roulette wheel is selected, and the parent individual associated 

with that portion of the roulette wheel is selected for mating. 
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Thus, the selection of parents for mating and crossover is 

biased towards those individuals having a more optimal 

objective function value. Using a selection scheme instead of 

simply choosing parents based on their proportional fitness 

ensures that a highly fit individual does not dominate the 

population the likelihood of choosing an individual for mating 

is based on that individual's relative rank in the population, not 

on its proportional fitness. In order to ensure that optimal 

designs are not discarded during a GA optimization, further 

selection is done after the child generation has been created. 

The fittest individual in the parent generation may be retained 

in the child generation (while discarding the least fit child). 

This is known as elitist selection, which is used in this study. 

IV. MATERIAL PROPERTIES 

The elastic properties of the mortar and ferrocement lamina 

are deduced from in-plane axial tension and compression tests 

on mortar, and tension tests on reinforcing mesh, separately. 

For reinforcing, machine woven galvanized mesh with opening 

size 7.5x6.0mm and average wire diameter of 0.72 mm was 

considered. For deducing the elastic properties of the 

ferrocement composite, “rule of mixtures”, and some empirical 

equations for determining shear strength from the simple axial 

test results, was used. The unit cost is assumed here which 

includes both the labor and material cost. It is to mention here 

that, though the composite behavior of the ferrocement lamina 

is different in compression and tension, for the mathematical 

convenience, the Young’s modulus in compression is assumed 

same as that in tension. The detailed material properties are 

shown in Table I. In that table the compressive or tensile 

strength of the lamina is defined as the stress limit where the 

ferrocement composite or mortar firstly deviates from linearity 

and starts cracking. 

 
TABLE I 

MATERIAL PROPERTIES [10], [13] 

Properties Mortar layer Ferrocement layer 

Young's modulus (longitudinal), E11 0.735× 106 psi  0.925× 106 psi  

Young's modulus (transverse), E22 0.735× 106 psi  0.901× 106 psi  

Shear modulus, G12 0.306× 106 psi  0.351× 106 psi  

Poisson's ratio, ν12  0.2 0.22 

Ply thickness, t 0.25 in 0.5 in 

Material density, ρ   126.10 lb/ft3 130 lb/ft3 

Tensile strength, Xt 404 psi 654 psi 

Tensile strength, Yt 404 psi 572 psi 

Compressive strength, Xc 1132 psi 1377 psi 

Compressive strength, Yc 1132 psi 1296 psi 

Shear strength, S 390 psi 547 psi 

Cost factor, Cf 1.0 (lb-1) 8.0 (lb-1) 

V. OPTIMIZATION FORMULATION 

Mainly, the problem is to find the stacking sequence, both in 

terms of the through-the-thickness distribution of the 

orientation angles and the material types of the layers, which 

provides the lowest weight but does not fail due to buckling 

and excessive stress due to loads. For simplicity, it is assumed 

that the laminate is symmetric. So, the length of the GA string 

can be half, which reduces the search space for the GA and 

automatically satisfy the symmetry constraint. Balance 

constraint, which ensures that each ply oriented at +θ
0
 is 

complemented with another ply oriented at −θ
0 

throughout the 

stacking sequence, will be enforced using penalty parameters 

to eliminate the coupling between extension and shear (A16 and 

A26).  

From the material properties given in the Table I, it is 

observed that the stiffness-to-weight ratio (E11/ρ) of 

ferrocement is greater than that of the mortar by only 18%, but 

it is more expensive, with a cost per pound that is 8 times 

greater than that of mortar. So, whatever the priority (weight or 

cost), always the mortar layer will be selected for its less 

weight and less cost. So, the present optimization problem is 

not a multi-objective problem so far. It is enough to optimize 

the design taking the weight as the objective function, because 

the weight controls the cost. 

Optimization problem can be formulated as: 

 

Minimize,







 ×−+

×−+−×

=
                     lamiante   feasiblefor       Maww

fPW

laminate   unfeasiblefor     Maww
fPPM)(1W

f
           (18) 

 

where, W is total weight of laminate respectively, 

{ }FB λ,λminM = ; margin of safety for the critical buckling 

load, λB=1-λcr , using (14) , margin of safety for the stress 

failure, λF=1-F, using (15), wa is average weight over all 

material types for a ply in the laminate respectively, P is the 

constraint penalty parameter which is varied if GA generates 

very thin laminates, and the penalties for unbalanced laminate 

are 

 







=

                  laminate balancedfor       0

laminate   unbalancedfor     fwubfN

w
fP  

 

where, Nubf is the number of unbalanced layers, and w 

indicates the weight of single ply, where subscript, f , indicates 

ferrocement layer. Here, the penalty is considered only when 

orthotropic ferrocement layers will be unbalanced, not for the 

mortar layer as it is isotropic in nature and it has not any 

orientation effect on shear extension coupling terms (A16 and 

A26). 

VI. NUMERICAL EXAMPLES  

The genetic parameters and corresponding strategies used in 

the optimization procedure are shown in Table II. These 

values are determined by trial and error in order to maximize 

reliability, which is the probability of reaching the optimum 

for a given number of function evaluations [12]. Those are 

used in all the examples in this paper. The design search space 

for GA is kept constant considering seven types of orientation 

angles (0-15-30-45-60-75-90) and two types of materials 

(ferrocement and mortar) for all examples. Optimizations are 
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performed for the simply supported plates with various 

configurations (a/b ratio) shown in Fig. 6, and results are 

obtained with the different loadings (here, Nx/Ny is changed, 

rigorously, as 1, 2, and 4 to understand its effect on the 

stacking) for each aspect ratio shown in Table III. Here, the 

optimization is done for the laminates with constant number of 

plies (10, i.e. the maximum thickness of the laminate is limited 

to 5 inch. to overlook large numbers of layers) varying the 

stacking sequences only through the optimization process. For 

an example and to show how the GA converges, the 

improvement of fitness value and weight with generation for 

Plate1 (Nx=Ny=-4.0 kips/in, and Nxy=0.1 kips) shown in Fig. 7, 

and it is observed for all plates that GA converges very quickly 

due to small number of layers. 
 

 

Fig. 6 Various plate configurations (number inside indicates plate 

designation no.) 

 

 

 

 

 

 

 

TABLE II 

GA PARAMETERS USED IN THE GENETIC SEARCH 

Parameters Value 

Population size  200 

Stopping criterion (maximum no of generations) 2000 

Probability for crossover (Two-point crossover)  1.0 

Probability for mutation (One-point mutation) 0.3 

Probability for gene addition 0.00 

Probability for gene deletion 0.00 

Probability for gene swap 0.00 

Probability for permutation  0.00 

 

 

Fig. 7 Improvement in fitness value and weight with generation for 

Plate1 (Nx=Ny=-4.0 kips/in, and Nxy=0.1 kips) 

 

 

 

 

TABLE III 

OPTIMUM AND WORST PLATE DESIGNS 
Plate 

(a/b ratio) 
Optimum and worst stacking sequences 

Loads Nx/Ny/Nxy 

(kips/in,kips) 

Thic 

(in) 
Cost 

Reinf. volume 

Fraction (%) 

Weight 

(lbs) 

Critical buckling 

load factor 

1 (1.0) 

[ ]sM/45/45/M2 −+   

-4.0/-4.0/10.1 
3.5 189.07 0.49 37.41 110.49 

Worst: [ ]s15/90/00/ ±  5.0 433.20 0.86 54.16 334.19 

[ ]sM/0/0/M 2
 

-2.0/-1.0/0.1 
4.0 270.49 0.65 42.99 418.24 

Worst: [ ]s905
 5.0 433.20 0.86 54.16 889.02 

[ ]s0/M 4
 

-4.0/-1.0/0.1 
4.5 351.90 0.77 48.58 367.99 

Worst: [ ]s0/90/0 22
 5.0 433.20 0.86 54.16 533.48 

2(0.66) 

[ ]sM/45/45/M2 −+  

-4.0/-4.0/10.1 
3.5 283.61 0.49 56.11 78.70 

Worst: [ ]s75/90/15/75 2 −++  5.0 649.98 0.86 81.24 243.06 

[ ]sM/0/0/M 2
 

-2.0/-1.0/0.1 
4.0 405.73 0.65 64.49 346.20 

Worst: [ ]s905
 5.0 649.98 0.86 81.24 743.10 

[ ]s0/M 4
 

-4.0/-1.0/0.1 
4.5 527.86 0.77 72.87 345.15 

Worst: [ ]s0/90/0 22
 5.0 649.98 0.86 81.24 500.96 

3(0.5) 

[ ]sM/45/45/M2 −+  

-4.0/-4.0/10.1 
3.5 378.15 0.49 74.82 68.59 

Worst: [ ]s0/90/15/0 ±  5.0 866.64 0.86 108.33 209.10 

[ ]sM/0/0/M 2
 

-2.0/-1.0/0.1 
4.0 540.98 0.65 85.99 327.00 

Worst: [ ]s905
 5.0 866.64 0.86 108.33 706.61 

[ ]s0/M 4  

-4.0/-1.0/0.1 
4.5 703.81 0.77 97.16 359.68 

Worst: [ ]s0/90/0 22
 5.0 866.64 0.86 108.33 522.85 

 

3 2 1 

     12 in                    18 in                                  24 in 

 

 

12 in 
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The optimum and worst designs obtained from GA 

optimization are shown in the Table III for all loadings and 

plate configurations, where the every stacking sequence (half 

portion indicated by “s” after second bracket) with its 

corresponding thickness, cost, reinforcement volume fraction, 

weight and critical buckling load factor is presented. In the 

second bracket of the stacking sequences, the plain number 

designates ferrocement layer and the “M” designates the 

mortar-filling layer. The subscript after plain number or “M” 

indicates number of layers, and the left to right arrangement of 

the layers represents the position from top to midsection in the 

structure. The worst design is defined as the heaviest plate, 

obtained at final generation through GA procedure, that has 

margin of safety from buckling and stress failure, and it is 

observed that the optimum design has weight less than about 

10 to 30% from worst one.   

From the results, it is observed that due to the low weight of 

the mortar layer, it has domination in the stacking sequence to 

fill up the laminate for the moderate loading. Due to the equal 

biaxial loading condition, the ferrocement layers, generally, 

tend to orient in +/-45
0
 to increase the stiffness of the laminate 

in the both direction, though, in the formulation, all orientation 

angles between –75
0
 to +90

0
 with 15

0
 difference are used, and 

also when Nx/Ny increases, the strong axis of ferrocement 

layers tend to take acute angle (0
0
) with the global X-axis of 

the laminate. It is advantageous to use 0
0
 plies because unlike 

other angles (with the exception of 90
0
) they do not have to 

come in pairs (to satisfy balance), thereby saving unnecessary 

additional weight or cost. The optimum stacking of each plate 

changes with the change in loadings, but does change very 

little with the plate configurations (the aspect ratio, a/b).The 

total thickness, the stacking and the aspect ratio of the plate 

affect critical buckling load factor. When the ferrocement 

layers are placed on the top, it increases the stiffness of the 

structure against bending increasing the buckling resistance of 

the structure. Actually, the bending stiffness of the structure is 

totally dominated by the position of the ferrocement layer due 

to its high strength when other factors are unchanged.  

VII. CONCLUSIONS 

The method used in this paper for solving the optimization 

problem is a standard genetic algorithm that has been adapted 

to the optimization of a ferrocement-laminated plate made up 

of reinforcing steel wire mesh(es) and cement mortar. The 

method is shown to be able to capture the optimum designs 

providing the designer with a very helpful tool for decision-

making. Examples of different configured plates under 

different load combinations are designed to minimize weight 

and, consequently, the cost subject to constraints on buckling 

and stress failure. When the in-plane loads are increased, the 

GA evaluation process chooses the ferrocement layers, 

otherwise the mortar layers are selected due to its low unit 

weight to fill up the laminate, where the plate aspect ratio has 

very little effect on the stacking sequence of the plate. Also, it 

is revealed from the results that the optimum designs has 

weight less than about 10 to 30% of the worst designs found at 

the final generation. 
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