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 
Abstract—This paper deals with the problem of two-dimensional 

(2-D) recursive two-channel quincunx quadrature mirror filter 
(QQMF) banks design. The analysis and synthesis filters of the 2-D 
recursive QQMF bank are composed of 2-D recursive digital allpass 
lattice filters (DALFs) with symmetric half-plane (SHP) support 
regions. Using the 2-D doubly complementary half-band (DC-HB) 
property possessed by the analysis and synthesis filters, we facilitate 
the design of the proposed QQMF bank. For finding the coefficients of 
the 2-D recursive SHP DALFs, we present a structure of 2-D recursive 
digital allpass filters by using 2-D SHP recursive digital all-pass lattice 
filters (DALFs). The novelty of using 2-D SHP recursive DALFs to 
construct a 2-D recursive QQMF bank is that the resulting 2-D 
recursive QQMF bank provides better performance than the existing 
2-D recursive QQMF banks. Simulation results are also presented for 
illustration and comparison. 

 
Keywords—All-pass digital filter, doubly complementary, lattice 

structure, symmetric half-plane digital filter, quincunx QMF bank. 

I. INTRODUCTION 

D QMF banks have been widely considered for processing 
image and video data in the literature [1], [2]. Without 

implementing subband coding, a 2-D QMF bank is required to 
have an exactly linear-phase response without magnitude 
distortion, i.e. the perfect reconstruction (PR) characteristics. 
The design problem of 2-D QMF banks with the PR 
characteristics has been considered in the literature [3], [4]. 

Recently, a 2-D recursive SHP digital all-pass filter (DAF) 
has been successfully used for 2-D recursive filter design [5]. A 
parallel structure using the 2-D recursive SHP DAF to construct 
the analysis and synthesis filters of a recursive two-channel 
quincunx QMF (QQMF) bank has been presented in [6]. This 
QQMF bank possesses the 2-D doubly complementary (DC) 
half-band (HB) property. This property leads to the favorable 
results that almost half of the required filter coefficients can be 
set to zero and only either the passband or stopband response 
must be approximated during the design of the 
analysis/synthesis filters. Both advantages reduce the amount 
of numerical computation during the design process. For image 
processing, the 2-D QQMF bank can avoid transmission nulls 
[7] without using additional delays and satisfy the frequency 
constraints [8], [9] that avoid the aliasing artifacts. However, an 
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extra SHP DAF used as a phase equalizer must be added at the 
output of the synthesis system to eliminate the phase distortion 
induced by the 2-D recursive SHP DAFs in the analysis and 
synthesis systems. 

Similar to 1-D digital lattice filter structure, 2-D digital 
lattice filters also exhibit the attractive advantages of low 
passband sensitivity and robustness to quantization error. 
Moreover, 1-D digital lattice filter structure requires lower 
computational cost than 1-D direct-form digital filter with 
similar design specifications. The minimal delay realization for 
a 2-D digital lattice structure has been presented in [10]. 

In this paper, we present a novel structure for the design of 
recursive two-channel quincunx QMF (QQMF) banks using 
2-D recursive SHP DALFs. The proposed 2-D QQMF bank 
possesses the advantages as those presented by [6]; namely, (i) 
the resulting analysis/synthesis filters possess the 2-D DC 
properties, i.e. 2-D allpass-complementary and power- 
complementary properties, (ii) the proposed analysis/synthesis 
filters possess an attractive DC symmetry with respect to the 
half-band frequency (ω1,ω2) = (π/2,π/2) in the first quarter of 
the frequency plane, i.e. the DC-HB property, (iii) the proposed 
2-D QQMF bank can achieve no magnitude distortion. The 
frequency characteristics totally depend on the phase responses 
of the 2-D recursive SHP DALFs. However, the proposed 2-D 
QQMF bank avoids the need of extra SHP DAF used as a phase 
equalizer like [6] to achieve satisfactory linear-phase response. 
Using the stability constraints presented by [11] to guarantee 
the stability of the 2-D recursive SHP DALFs, we focus the 
design problem on the least-squares phase approximation. A 
novel objective function is derived for the phase approximation. 
As a result, the problem of minimizing the objective function 
can be solved by using the trust-region Newton conjugate- 
gradient algorithm [12]. From the simulation results, we 
observe that the proposed design method outperforms the 
method of [6]. 

This paper is organized as follows. Section II presents the 
theory of 2-D SHP recursive digital all-pass lattice filters 
(DALFs). In Section III, we propose a novel 2-D QQMF bank 
based on the 2-D SHP recursive DALFs. We also describe the 
2-D DC-HB characteristics possessed by the proposed 2-D 
SHP recursive DALFs and formulate the least-squares design 
problem in Section III. Section IV presents an iterative 
technique for designing the 2-D QQMF bank. We also present 
the phase constraints to guarantee the stability of the designed 
results. Section IV provides simulation results for confirming 
the theoretical work. Finally, we conclude the paper in Section 
V. 
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II. 2-D SHP RECURSIVE DIGITAL ALL-PASS FILTERS 

A. Conventional Direct-Form 2-D SHP Recursive DAFs 

Consider a 2-D recursive direct-form DAF with order M×N 
with its transfer function given by [6]: 
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Assume that ),( 21   and ),( 21  represent the 

phases of A(z1,z2) and D(z1,z2) respectively. e can obtain from 
(1) that: 
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The denominator polynomial D(z1,z2) has the SHP support 

region for its coefficients and is given by [6] 
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B. 2-D SHP Recursive DAFs with a Lattice Structure 

Let the coefficients d(-m,n) = d(m,n), we rewrite (3) as 
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where c(n,z1) is given by: 
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for n = 1, 2, …, N. Based on (5), we present a lattice structure as 
shown in Fig. 4 for realizing a 2-D SHP recursive DAF. The 
input/output relationship of the pth lattice section in Fig. 4 is 
expressed by: 
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for p = 1, 2, …, N, where 
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for p = 1, 2, …, N. By setting Q0(z1,z2)= R0(z1,z2)=U(z1,z2) and 
using the forward recursion given by (6), we can derive 
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As a result, the overall transfer function of Fig. 1 is given by: 
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We note from (10) that Fig. 4 generates a lattice-form 2-D 

SHP recursive DAF A(z1,z2) with order M×N. As the 1-D lattice 
filters, if |kp(z1)|<1, for p =1, 2, …, N, then LN(z1,z2) will be a 
minimum-phase polynomial [11]. 

C. The Relationship between the Direct Form and the Lattice 
Form 

Let a conventional 2-D SHP recursive DAF with transfer 
function be given by (1). We can find an equivalent transfer 
function with the proposed lattice structure. As shown by Fig. 4, 
the polynomial kp(z1) can be derived by inverting the recursion 
(6) as follows: 
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Initially, for p = N, we set: 
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As a result, we can have 
 

))(,()(0,),()( 1

1

111
m

M

m

m
N zzNmdNdzNczk 



        (14) 

 
Moreover, we can utilize (11) to recursively derive Qp-1(z1,z2) 

and Rp-1(z1,z2). Then, one calculates the required function kp(z1) 
to construct the proposed lattice filter structure for p = N-1, 
N-2, …,1. 

III. PROPOSED 2-D TWO-CHANNEL QQMF BANKS 

A. Conventional 2-D Two-Channel Quincunx QMF (QQMF) 
Banks 

The conventional 2-D two-channel QQMF system is shown 
in Fig. 2, where H0(z1,z2) and H1(z1,z2) designate the lowpass 
and highpass analysis filters, respectively, F0(z1,z2) and 
F1(z1,z2) designate the lowpass and highpass synthesis filters, 
respectively. M denotes the quincunx decimation/interpolation 
matrix. The desired frequency specifications for the 2-D 
two-channel analysis and synthesis systems are given in Fig. 3.  
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 The analysis filters H0(z1,z2) and H1(z1,z2) of Fig. 2 are 
constructed by [6] as follows: 
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respectively, where Ai(z1,z2), for i = 1, 2, are two 2-D DAFs 
with transform function given by 
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where the denominator polynomial Di(z1,z2) of the 
(Mi×Ni)th-order DAF Ai(z1,z2) with SHP support regions for its 
coefficients is given by 
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We note from (15) and (16) that 
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Hence, H0(z1,z2) and H1(z1,z2) simultaneously satisfy the 

allpass-complementary (19) and power-complementary (20) 
properties, i.e., H0(z1,z2) and H1(z1,z2) form a 2-D 
doubly-complementary (DC) filter pair. From (15) and (16), it 
is easy to show that the 2-D two-channel QQMF system has the 
transfer function given by 
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Equation (21) reveals that the QQMF bank possesses perfect 

magnitude response, i.e. there is no magnitude distortion, and 
eliminates the aforementioned transmission nulls [7]. 

B. Proposed 2-D Two-Channel QQMF Banks 

First, we use the following decimation/interpolation matrix 
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for generating a quincunx lattice. To facilitate design and 
implementation, we expect that the proposed 2-D QQMF bank 
holds the properties possessed by the 2-D QQMF banks of [6] 
without imposing additional constraints like those of [6] on the 
values of M1, M2, N1, and N2. Then, a new two-channel QQMF 
bank is constructed by setting the analysis filters H0(z1,z2) and 
H1(z1,z2) of Fig. 2 as follows: 
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Hence, H0(z1,z2) and H1(z1,z2) simultaneously satisfy the 

allpass-complementary (19) and power-complementary (20) 
properties, i.e., H0(z1,z2) and H1(z1,z2) form a 2-D 
doubly-complementary (DC) filter pair. The H0(z1,z2) and 
H1(z1,z2) of Fig. 2 are replaced by (23) and (24) to form the 
structure of a novel 2-D QQMF bank as shown in Fig. 4. Using 
(23) and (24), (21) becomes 
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Equation (25) reveals that the proposed 2-D QQMF bank 
also possesses perfect magnitude response, i.e. there is no 
magnitude distortion, and eliminates the transmission nulls as 
mentioned in Section III. Moreover, from (25), we have the 
frequency response of the proposed 2-D QQMF bank given by 
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and from (10), we note that the 2-D SHP DALFs Ai(z1,z2), for i 
= 1, 2, have frequency responses given by 
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Hence, the phase response ),( 21  i of Ai(z1,z2) is given 

by 
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where Re{x} and Im{x} denote the real and imaginary parts of 
x, respectively. Accordingly, we note from (26) that the phase 
response ),( 21  of the proposed 2-D QQMF bank is 

given by 
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Hence, the frequency response of the proposed 2-D QQMF 

bank is given by 
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Let the desired group delays of (31) be g1 = M1 + M2 and g2 = 

N1 + N2 +1 in the ω1 and ω2 axes, respectively. According to 
(23), (24), and (31), we note that the phase responses for the 
2-D recursive DALFs A1(z1,z2) and A2(z1,z2) must satisfy the 
following constraints: 
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respectively. The desired phase responses for the denominator 
polynomials ),( 211

zzLN  and ),( 212
zzLN  can be obtained from 
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respectively. From (35) and (36), we note that 
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C. The Design Problem for the Proposed 2-D Two-Channel 
QQMF Banks 

Based on (7) and (37), we can see that the design problem for 
the proposed 2-D QQMF bank is finding the real coefficients 
rpi(mi) for the 2-D recursive SHP DALFs Ai(z1,z2), i = 1 , 2,  pi = 
1, 2, …., Ni and mi = 1, 2, … , Mi, such that the following two 
constraints can be approximately met in some optimal sense: 

 
(i) ),(  allfor     0,  ),( ),( 21212211             (39) 

 

(ii) ),( 21
0

 jj eeH = 0,  for s21 Ω  ),(           (40) 

 
As to the stability of the 2-D recursive DALFs Ai(z1,z2), the 

authors in [11] have extended the stability constraints for 1-D 
IIR DAFs [13] to 2-D case. For simplicity, by specifying the 
desired phase response ),( 21  id  to satisfy the stability 

constraints, we can neglect the stability problem and focus on 
the approximation problem given by (39) and (40) only. As a 
result, we can formulate the least-squares design problem as 
follows: 

s21p21 ),(
2

210),(
2

212211 ),(),(),(        HMinimize (41) 

IV. PROPOSED DESIGN TECHNIQUE 

In this section, we present a design technique for solving the 
minimization problem (41). This is an iterative approximation 
scheme to find the optimal real coefficient rpi(mi) for the 2-D 
recursive SHP DALFs Ai(z1,z2), i = 1 , 2,  pi = 1, 2, …., Ni and mi 
= 1, 2, … , Mi. Finding the optimal coefficients is a highly 
nonlinear optimization problem. However, it is appropriate to 
employ the trust-region Newton conjugate gradient method 
[12] to iteratively solve this problem. In the following, we 
summarize the iterative design procedure step by step. 
Step 1. Specify the ideal phase response )( 21  ,id which 

satisfies the stability criterion as presented in Section III 
for ensuring the stability of the designed 2-D recursive 
SHP DALFs. 

Step 2. At the initial iteration, we set the iteration number l = 0 
and the coefficients (0)rpi(mi) = 0 for the 2-D recursive 
SHP DALFs Ai(z1,z2), i = 1 , 2,  pi = 1, 2, …., Ni, and mi = 
1, 2, … , Mi. 

Step 3. At the kth iteration, we compute 
)( ),( 2121 z,zQz,zR

ii NN , and its corresponding 

lattice-form polynomial )( 21 z,zL
iN  from (6) and (7) by 
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calculating the forward recursion as presented in Section 
II. 

Step 4. Compute the objective function defined by (41) over a 
finite set of discrete frequencies )( 21 ji , , where 

)( 21 ji , denotes the (i,j)th discrete frequency point 

taken on the 2-D )( 21  ,  plane. 

Step 5. Utilize the trust-region optimization method of [12] to 
compute the adjustment in (l) rpi(mi), for the 2-D 
recursive SHP DALFs Ai(z1,z2), i = 1 , 2,  pi = 1, 2, …., 
Ni, and mi = 1, 2, … , Mi. 

Step 6. Repeat Steps 3 − 5 and increase the iteration number by 
one per iteration until a satisfactory design result is 
achieved. 

V. COMPUTER SIMULATION RESULTS 

A. The Design Specifications 

This example is similar to that considered by [6]. We use the 
following specifications for the design example: The passband 
edge frequency 21  .p   and the stopband edge 

frequency 1.2  s . The desired magnitude response of 

)( 21
0

 jj e,eH  is given by: 
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
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Only uniformly sampled passband frequency grid points are 

taken during the design process. Based on the proposed 2-D 
SHP recursive DALFs, the 2-D QQMF bank is designed by 
setting M1 = M2 = 7 and N1 = N2 = 8. Thus, the number of 
independent parameters is 64 which is less than 66 of [6]. 
Moreover, according to (35) for M1 = M2 = 7 and N1 = N2 = 8, 

the resulting desired phase specification for )( 21
0

 jj e,eH  
satisfies the phase stability conditions described in Section III. 
We would expect that the stability of the designed 2-D SHP 
recursive DALF is ensured. The 2-D fast Fourier transform 
used during this design is 70×70. The relative weight   is set 
to 30000 for the design. Table I lists the comparison of the 
significant design results in terms of the following performance 
parameters: 

Passband Magnitude Mean-Squared Errors (PMSE): 
 

passband in the points grid ofnumber 
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Stopband Magnitude Mean-Squared Errors (SMSE): 
 

passband in the points grid ofnumber 

)()(

SMSE
),(

2

00

21

2121 






 

 



S

jj
d

jj e,eHe,eH

 

 
Peak Stopband Attenuation (PSA): 
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Passband Phase Mean-Squared Error (PPMSE) 
 

  
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Peak Phase Distortion (PPD) 
 

  ))(maxPPD 2211
),(

21
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For the design of using the proposed 2-D recursive SHP 

DALFs, Fig. 5 shows the magnitude response of the designed 

)( 21
0

 jj e,eH . Fig. 6 shows the magnitude response of the 

designed )( 21
1

 jj e,eH . Fig. 7 depicts the absolute phase 

error of the designed denominator )( 21

1

 jj
N e,eL , whereas 

Fig. 8 plots the absolute phase error of the designed 

denominator )( 21

2

 jj
N e,eL . Finally, the phase response 

error of the resulting 2-D QQMF bank is shown in Fig. 9. From 
the simulation results, we observe that the design method using 
the proposed 2-D recursive SHP DALFs can provide better 
results than the existing conventional direct-form design [6]. 
 

TABLE I 
SIGNIFICANT DESIGN RESULTS FOR THE DESIGN EXAMPLE 

 
The Proposed 

Lattice-Form Design 
The Direct-Form 

Design of [6] 
PMSE 2.6779×10-19 1.9916×10-15 

SMSE 5.5099×10-10 4.4356×10-8 

PSA 81.9028 61.1614 

PPD 0.0125 0.0608 

PPMSE1 7.4678×10-7 3.7283×10-8 

PPMSE2 7.4633×10-7 7.4001×10-10 

Number of iterations 10 0 
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Fig. 1 The proposed 2-D SHP recursive DALF 
 

 

Fig. 2 The structure of conventional 2-D QQMF banks 
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Fig. 3 The ideal frequency band splitting for 2-D QQMF banks 
 

 

(a) Analysis Bank 
 

 

(b) Synthesis Bank 

Fig. 4 The analysis/synthesis banks of the proposed 2-D QQMF bank 
 

 

Fig. 5 The magnitude response of the designed ),( 2
0

1  jj eeH
 

 

 

Fig. 6 The magnitude response of the designed ),( 2
1

1  jj eeH  

 

 

Fig. 7 Phase response error of the denominator of ),( 2
1

1  jj eeA  
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Fig. 8 Phase response error of the denominator of ),( 2
2

1  jj eeA  

 

 

Fig. 9 Phase response error of the design filter bank ),( 21  jj eeT  

VI. CONCLUSION 

This paper has presented a lattice structure of 2-D 
two-channel quincunx QMF (QQMF) banks using 2-D 
recursive SHP digital all-pass lattice filters (DALFs). The 
proposed 2-D SHP QQMF bank possesses a favorable 2-D DC 
half-band (DC-HB) property that allows about half of the 2-D 
recursive SHP DALF’s coefficients to be zero. The computer 
simulation results show the effectiveness of the proposed 2-D 
QQMF bank as compared to the existing conventional 2-D 
QQMF banks. 
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