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Abstract—In this paper, we are concerned with the design and
its simulation studies of a modified extremum seeking control for
nonlinear systems. A standard extremum seeking control has a simple
structure, but it takes a long time to reach an optimal operating point.
We consider a modification of the standard extremum seeking control
which is aimed to reach the optimal operating point more speedily
than the standard one. In the modification, PD acceleration term
is added before an integrator making a principal control, so that it
enables the objects to be regulated to the optimal point smoothly. This
proposed method is applied to Monod and Williams-Otto models to
investigate its effectiveness. Numerical simulation results show that
this modified method can improve the time response to the optimal
operating point more speedily than the standard one.

Keywords—Extremum seeking control, Monod model, Williams-
Otto model, PD acceleration term, Optimal operating point.

I. INTRODUCTION

NONLINEAR control methods have been studied in vari-
ous fields for many years. An extremum seeking control

problem is classified in a category of adaptive control problems
[1-10]. Mainstream methods of adaptive control deal only
with regulation to known set points or reference trajectories.
However, extremum seeking controls are designed so as to
operate at unknown set points that optimize the value of
an evaluation function. There are lots of studies such as
optimizing the yield of a product in chemical engineering and
biotechnology [1-3, 6-8], adjusting the spark ignition angle of
an automotive engine [4], and controlling a chip refiner motor
[5]. In all applications, it is desirable to have rapid response
to the optimal operating point.

In this paper, we consider a modification of the standard
type method for the extremum seeking control problems.
It is aimed at shortening a time response to the optimal
operating point. This modification is designed by adding a
PD (Proportional and Derivative) acceleration term in front
of an integrator which makes a principal control, so its
structure is quite simple. This proposed method is applied to
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Monod model of bioreactor [1, 2] and Williams-Otto model of
chemical reactor [6]. Simulation results show that this method
enables to regulate the objects around the optimal operating
point more speedily.

II. STATEMENT OF PROBLEM

We consider a nonlinear control system of single-input-
single-output:

ẋ(t) = f(x(t), α(t), u(t)), (1)

y(t) = h(x(t), α(t), u(t)) + w(t), (2)

J(t) = J(x(t), α(t), u(t)), (3)

where • = d/dt, x ∈ Rn is the state vector, α ∈ Rm is the
unknown parameter, u ∈ R is the control, y ∈ R is the output,
f ∈ Rn and h ∈ R are the unknown nonlinear functions,
J ∈ R is the evaluation function, and w ∈ R is the noise.

The aim of this problem is to design an extremum seeking
control scheme which achieves speedily to the optimal oper-
ating point. That is, this approach enables the given system to
operate around the optimal operating point of the performance
speedily, without requiring the knowledge of the functions f
and h, and the parameter α.

In the following sections, we consider the standard ex-
tremum seeking control (SESC) and its modified extremum
seeking control (MESC).

III. STANDARD EXTREMUM SEEKING CONTROL

The standard extremum seeking control (SESC) is designed
as shown in Fig. 1, which has a high-pass filter (HPF) s/(s+
ωh), a low-pass filter (LPF) ωl/(s+ωl), an integrator k/s, and
a compulsory perturbation term of sine wave β sin ωt [1]. This
consists of a feedback scheme without requiring the knowledge
of a plant dynamic equation from the concept of frequency
domain. In the following, the SESC method is described in
detail.

It is impossible to conclude that a certain point is a maxi-
mum without visiting the neighborhood on both sides of the
maximum. For this reason, this scheme employs a compulsory
perturbation term of sine wave β sin ωt which is added to the
principal control signal û. The persistent nature of β sin ωt
may be undesirable, but it is necessary to maintain a maximum
even if the functions of a plant are changed.

This SESC scheme may be analyzed as follows. The com-
pulsory perturbation term β sin ωt creates a periodic response
of output y. The HPF eliminates the DC component of y. And
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then, the product of the sine wave β sin ωt produces (β 2/2)×(1
- cos2 ωt), and its DC component ξ ∝ β2/2 is extracted by the
LPF. The sign of this ξ provides the direction to the integrator
û = ξ k /s moving û toward the optimal operating point u∗.
Due to this, the output y gradually approaches the maximum
output value y∗ = J(u∗).

Although it has the merit of easy implementation to practical
systems, the SESC method usually takes a long time to reach
the optimal operating point u∗, namely, the maximum output
value y∗. Therefore, we consider a modification of the SESC
to shorten a time response in the next section.

Fig. 1. SESC scheme.

IV. MODIFIED EXTREMUM SEEKING CONTROL

A modified extremum seeking control (MESC) is added a
PD term on the SESC as shown in Fig. 2, which is aimed at
shortening a time response for an optimal operating point.

Fig. 2. MESC scheme.

The derivative of the principal control action û is ξ̂ = (kp

+ TDs)ξ where û = ξ̂k/s, so that the derivative values of
the control function u could increase than those by the SESC
(see Fig. 3). The additive term TDs should be exchanged by
TDs /(τDs +1) in noisy cases. It needs to properly select the
parameters kp, TD, k, and τD as well as ωh, ωl, and β when
applied to practical systems.

Fig. 3. Time responses of ξ̂.

V. NUMERICAL SIMULATIONS

A. Monod model

We consider the problem of optimizing the yield for a
bioreactor which is described by Monod model [1, 2]:

ẋ1 = f1(x, α, u) = x1

(
x2

α + x2
− u

)
, (4)

ẋ2 = f2(x, α, u) = u(1 − x2) − x1x2

α + x2
, (5)

y = h(x, α, u) + w = x1u + w, (6)

where x = [x1, x2]T and 0 ≤ u ≤ 1.
The steady state output (evaluation function) is

J =
u(1 − (1 + α)u)

1 − u
(7)

which is derived by substituting a solution (x, u) of ẋ1 =
ẋ2 = 0 in Eqs. (4) and (5) to Eq. (6), where α is fixed.

The x1 is biomass concentration and the initial value is
x1(0) = 0. The x2 is substrate concentration and the initial
value is x2(0) = 0. The u is dilution rate and the initial value
is u(0) = 0.4. The α is saturation constant. The y is biomass
production rate.

We should note that Eqs. (4) ∼ (7) are unknown during
experiments. The unknown parameter α is initially set to
α = 0.02, but it is changed to α = 0.1 repeatedly. The
corresponding optimal operating points are the broken lines
as shown in Figs. 4∼7, but they are unknown during the
experiments.

The purpose of this problem is to follow the output y to the
optimal operating points.

We set the parameters as follows. The cutoff frequencies of
HPF and LPF: ωh = 0.2 and ωl = 0.02, the gains: kp = 0.2,
TD = 8 and k = 5, the compulsory perturbation term: β
sin ωt = 0.03 sin 0.08t. Two types of simulations of 2500
and 10000[sec] are carried out here. w is white noise being
negligible small.

The results of the numerical simulations of control (u) and
output (y) are shown in Figs. 4∼5 when 0 ∼ 2500[sec] and
Figs. 6∼7 when 0 ∼ 10000[sec], respectively. OLD means
SESC, and NEW does MESC. Each figure indicates that this
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NEW approaches the optimal operating point more speedily
than OLD.

B. Williams-Otto model

We consider the problem of optimizing the yield for a
chemical reactor which is described by Williams-Otto model
[6]:

ẋ1 =
FA

W
− FA + FB

W
x1 − z1, (8)

ẋ2 =
FB

W
− FA + FB

W
x2 − (z1 + z2), (9)

ẋ3 = −FA + FB

W
x3 + (2z1 − 2z2 − z3), (10)

ẋ4 = −FA + FB

W
x4 + 2z2, (11)

ẋ5 = −FA + FB

W
x5 + 1.5z3, (12)

ẋ6 = −FA + FB

W
x6 + (z2 − 0.5z3), (13)

y = (FA + FB)(125.91x4 + 5554.1x6)
−(370.3FA + 555.42FB) + w, (14)

where z1 = k1x1x2, z2 = k2x2x3, z3 = k3x3x6, and

k1 = 1.6599× 106e−6666.7/(T+273.15), (15)

k2 = 7.2117× 108e−8333.3/(T+273.15), (16)

k3 = 2.6745× 1012e−11111/(T+273.15). (17)

The steady state output (evaluation function) is

J = (FA + FB)(125.91x4 + 5554.1x6)
−(370.3FA + 555.42FB), (18)

in which x4 and x6 are solutions of ẋ = 0.
This model has a more complex structure than Monod

model.
This model corresponds to Eqs. (1) ∼ (3).

x = [x1, x2, x3, x4, x5, x6]T , α = [FA, FB ]T , u = T , and w is
white noise being negligible small.

The x is system state function of mass fractions of six
chemical components and the initial value is x(0) = 0. The α
is fraction per unit time of source materials A and B which
are flown in a reactor. The relation between FA[kg/sec] and
FB[kg/sec] is assumed by Ref.[6] to be approximated as

FB =
14FA + 3

6
. (19)

The u is temperature (T degree centigrade) of the internal
reactor and the initial value is u(0) = 85.1. The W [kg] is
mass content of all the internal reactor of W = 2104.7.

The purpose of this problem is to follow the output y to the
optimal operating points. y[$/sec] stands for production per
unit time.

We set the parameters as follows. The cutoff frequencies
of HPF and LPF: ωh = 0.4 and ωl = 0.01, the gains: kp =
4.25, TD = 42.5 and k = 0.4, the compulsory perturbation
term: βsin ωt = 0.004 sin 0.12t, and the simulation time:
5 × 104[sec].

The results of the numerical simulations of control (u) and
output (y) are shown in Figs. 8∼10, where Fig. 9 is an enlarged
figure 8 during the first 5 × 103[sec]. OLD means SESC,
and NEW does MESC. Figure 10 indicates that this NEW
approaches the optimal operating point more speedily than
OLD.

VI. CONCLUSIONS

This paper has proposed a modification of the standard
extremum seeking control so as to regulate to the optimal
operating point more speedily. It is added the PD acceleration
term before the integrator. Thus the structure of the MESC is
quite simple like the SESC. The results of the numerical sim-
ulations indicate that this modified extremum seeking control
approach enables these systems of Monod and Williams-Otto
models to the optimal operating point more speedily than the
standard extremum seeking control. This new approach shall
be studied for the applications to other systems, selection of
better parameters, improvement of transient states, stability
proofs, and so on, in the future works.
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[1] H.-H. Wang, M. Krstić and G. Bastin, “Optimizing bioreactors by
extremum seeking,” International Journal of Adaptive Control and Signal
Processing, Vol. 13, pp. 651-669, 1999.
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Fig. 4. Time responses of control u ( 2500[sec] ).
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Fig. 5. Time responses of output y ( 2500[sec] ).

Fig. 6. Time responses of control u ( 10000[sec] ).

Fig. 7. Time responses of output y ( 10000[sec] ).

Fig. 8. Time responses of control u.

Fig. 9. Time responses of control u ( Enlargement ).

Fig. 10. Time responses of output y.
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