
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3513

Design of Domain-Specific Software Systems with
Parametric Code Templates

Kostyantyn Yermashov, Karsten Wolke, and Karl Hayo Siemsen

Abstract— Domain-specific languages describe specific solu-
tions to problems in the application domain. Traditionally they
form a solution composing black-box abstractions together. This,
usually, involves non-deep transformations over the target model.
In this paper we argue that it is potentially powerful to operate
with grey-box abstractions to build a domain-specific software
system. We present parametric code templates as grey-box
abstractions and conceptual tools to encapsulate and manipulate
these templates. Manipulations introduce template’s merging
routines and can be defined in a generic way. This involves
reasoning mechanisms at the code templates level. We introduce
the concept of Neurath Modelling Language (NML) that operates
with parametric code templates and specifies a visualisation
mapping mechanism for target models. Finally we provide an
example of calculating a domain-specific software system with
predefined NML elements.

Keywords— software design, code templates, domain-specific
languages, modelling languages, generic tools

I. INTRODUCTION

THE role and importance of software systems in industry

is crucial. The way from problem definition to software

solution typically includes coherent phases of requirements

specification, design, construction, testing and maintenance.

Generally, the quality of the resulted software depends on how

each phase is gone through.

Design is one of most challenging phases. During the

software design process a solution that meets predefined

requirements is produced. Modern implementations require

more and more work to produce huge amount of source code.

A designer regularly operates by architecturally the same or

similar source code structures. It is true especially if the

developer works within a strictly defined application domain.

Various techniques have been suggested in the literature to

domain-specific development. Benefits of domain-specific de-

velopment are amplified when using a visual notation instead

of textual one. Many problem domains can be modelled more

successfully by experts using visual notations as they often

represent problems more intuitively. Traditional implementa-

tions of domain-specific (visual) languages (DSLs) are based

on a composition, where simpler objects are combined into

more complex ones. For example a DSL, based on components

composition allows composition of domain-specific systems

Kostyantyn Yermashov and Karsten Wolke are with Laboratory of Par-
allel Processes, University of Applied Sciences, Constantiaplatz 4, DE-
26721, Emden, Germany, and Software Technology Research Laboratory,
De Montfort University, Leicester, LE1 9BH, United Kingdom (e-mail:
konstant,wolke@ossi.fho-emden.de).

Karl Hayo Siemsen is with Laboratory of Parallel Processes, University of
Applied Sciences, Constantiaplatz 4, DE-26721, Emden, Germany, (e-mail:
siemsen@ossi.fho-emden.de).

with predefined pieces. Often the developer needs to con-

trol, configure and modify features distributed over different

components or classes within the target software system. For

example, he may want to apply the observer mechanism

feature over a group of components when object components

will notify subject components under certain circumstances.

The routine of this feature implementation and automatic code

generation may involve a sequence of activities such as code

templates encapsulation, annotation, reasoning and merging.

We have defined Neurath Modelling Language (NML) - a

method to visually design domain-specific software systems

by means of templates merging, their configuration and trans-

formation. Elements of NML are parametric code templates,

referred to as Neurath Modelling Components (NMCs), and

operations. Operations represent rules to manipulate NMCs.

The rationale of the NML is not only to ease the design process

for the end-user or domain-expert, but also to give them more

ownership and control over the design process.

This article introduces the concept of NML. We will con-

centrate on the specification of language elements and their

application to build a target software system. The visualization

mapping mechanism is out of scope for this article.

The next section will give an overview to domain-specific

(visual) languages, and black-box and gray-box abstractions.

After this we describe the concept of Neurath Modelling

Language. The article ends with an example and conclusion.

II. PRELIMINARY

A. Domain Specific Languages

Domain-specific Languages (DSL) or little languages are

those that are tailored to a particular problem domain. Through

the appropriate use of notations and abstractions they provide

the expressive power to better describe specific solutions

to problems in that domain [1]. Advantages of DSL are

expression at an appropriate level of abstraction, employment

of the concepts familiar to practitioners and better valida-

tion and optimisation at the domain level. DSL examples

are Graphviz, HTML (HyperText Markup Language), SQL

(Structured Query Language). DSL can be seen as composition

of DSL components designed by domain expert. According

to [2], DSL components describe properties of a language,

e.g. parts of the lexical or syntactical structure, scope rules,

typing, or the mapping to a target language. Visual notations

and abstractions for DSLs are more appropriate to model

systems. When using visual notations instead of textual ones

for DSLs we speak about Domain-specific Visual Languages

(DSVL) [3]. The quality of visual representations and the level



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3514

of how they are accessible to the human intuition depend

on information visualisation technique used. Information vi-

sualisation is the visual presentation of abstract information

spaces and structures to facilitate their rapid assimilation and

understanding [4]. The complexity of information can be

reduced by means of information visualisation methodologies

and concepts [5]–[7].

B. Black-box and Grey-box abstractions

Software systems are designed by composing existing pre-

defined elements. A developer uses design entities of different

level of abstraction, like for example, classes, components and

functions. Classes and functions do represent relatively atomic

level of abstraction. Quite successfully visual languages based

on the component concept were specified. There are many

definitions of components. According to Souza and Wills in [8]

a component is a reusable part of software, which is indepen-

dently developed and can be combined with other components

to build larger units. Components fall more in the black-box

category of abstraction [9]. This category concentrates more

on the implementation of the problem. Grey-box abstractions,

like patterns or source code templates, do represent part of the

implementation. However they contain not yet refined abstract

parts. The ongoing research on DSVLs that use grey-box

abstractions is quite extensive. In this article we discuss the

approach that uses code templates to build domain-specific

software systems.

We integrate concepts of parametric templates, operations

and domain-specific (visual) languages into the Neurath Mod-

elling Language concepts. This is introduced in the following

section.

III. NEURATH MODELLING LANGUAGE

The aim of the Neurath Modelling Language (NML) is to

visually build domain-specific software using parametric, an-

notated programming code templates. Generally, the idea is to

encapsulate these templates by hierarchically organising them

in a tree or graph structure, describing them with ontologies,

and providing visualisation and mapping mechanisms.

NML is a visual language, elements of which are Neurath

Modelling Components (NMC) and operations. Different sets

of NMCs and operations may form families of domain-specific

languages.

Figure 1 depicts a simple example of NML from the

developer point of view. It shows two states of the pro-

gramming code written in Java and possible visual semantic

interpretation. Elements defined for NML to model this do-

main bring the system from the state ”A” to the state ”B”.

The initial state ”A” represents a Sensor entity defined as

class which is simplified to a public class with constructor.

Visual representation of the code template’s meaning is the

rectangle with the letter ”S”. After applying the operation

”insert new property” supplied with input parameters the target

system comes to the state ”B”. At this state the Sensor entity

implements a new feature - the ability to hold, initialize and

access property temperature of the type double. At this state,

the visual representation of code template’s meaning is the

Fig. 1. Example of a program transformation

Fig. 2. Architecture of NMC

rectangle with the letter ”S” , the thermometer isotype, the

default value field and the measurement notation. The next

section gives more details to NMCs and operations.

A. Neurath Modelling Components

Neurath Modelling Component (NMC) is an encapsulated

- hierarchically organized, structured and annotated program

code of some language. NMCs represent parametric code tem-

plates supplied with meta-information which specify system

and design requirements. These requirements play a crucial

role in the system composition and visualisation mapping

during the design (modelling) process. It is up to the domain-

expert to specify those requirements. Figure 2 depicts the basic

architecture of NMC.

Organisation and structuring the programming code assumes

splitting the code into the smallest primitive constructs, clas-

sify them, annotate and then provide primitive operations over

them. We take the Abstract Syntax Language Tree (ASLT)

framework, defined by Wolke in [10] and [11], as a convenient

way to encapsulate programming code constructions. ASLT

is characterized as a generic concept. It works with tree or

graph nodes as manipulation targets and provides primitive

operations to manipulate a tree. The ASLT framework provides

forward/reverse engineering tools as well as, meta-information

processing tool (MIPT) to generically define manipulations

over tree nodes. ASLT may be suited to encapsulate code

of different languages. At the moment we have defined a

complete taxonomy to encapsulate Java (version 1.4) con-

structs. Figure 3 depicts the basic architecture of the ASLT

Framework. The ASLT API gives a lot of freedom to modify

the source code. Tools can use that API to analyze source

code, mark it, generate or manipulate it in other ways.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3515

Fig. 3. ASLT Framework

Fig. 4. NMC example

NMC uses the power of ASLT to bring entities and ma-

nipulations to the code template level. Figure 4 shows an

example of NMC described in form of the ASLT structure

for the following source code example written in Java:

package test;
public class A{

public void send(B b, String input){
b.receive(input);

}
}

Each node of the tree represents a primitive construction of

the programming logic this ASLT tree holds. In this article

we propose a notation for the ASLT types, see Table I.

Nodes denoted as α, β and χ are meta-information nodes and

represent an ontology. In software engineering an ontology

defines classes of objects and relations among them and

enables their automated reasoning and inference [12]. Noy and

McGuinness in [13] specified basic reasons to use ontology in

software engineering. Each node in ASLT, if it is not a meta-

information node, represents a correspondent construct of Java

and it is restricted to the number of children and their types.

Parent-child relations represent hierarchy in the source code.

For example, the class node Cl can contain only one class body

node CB and this node can contain multiple method signature

TABLE I

NOTATION FOR PROGRAMMING LANGUAGE CONSTRUCTS

Sign. Description Sign. Description

CFS Set of source code files CF Source code file

P Package CS Set of classes

Cl Class Id Identifier

Mod Modifier CB Body of a class

MS Set of methods M Method

MSg Method signature MB Method body

TR Reference to a type PL List of parameters

PrT Primitive type Par Parameter

VI Identifier of the variable JLT Library type

B Block ES Expression statement

MI Method invocation IdE Identifier expression

AL Argument list

TABLE II

GROUPINGS OF ASLT NODES

Groupings Information grouped
(templates)

α Ontology related to the grouping a

a class A { <body> }

A relates a and α together

β Ontology related to the grouping b

b public void send(B b, String input)

{ <body> }

B relates b and β together

χ Ontology related to the grouping c

c b.receive(input)

C relates c and χ together

nodes MS.
Certain nodes of the example are grouped and form a tem-

plate. Templates are potential targets for manipulation routines,

for example extraction, injection and refactoring operations.

Table II explains all groupings from the example. For instance,

α and β groupings represent meta-information nodes which

form an ontology. Grouping denoted as a unifies the source

code template class A { <body> }. Groupings α and a
are grouped in one group denoted as A.

B. Operations
The design process based on NMCs is expressed by the

transformation steps. In this article we use the term trans-

formation to denote an act of changing one program into

another. When we speak about transformation we also mean,

for example, program synthesis, refinement and calculation.

An operation in NML is a rule of how target NMC(s) will

be transformed. Such operations are characterized by the

following:

1) Formal specification

a) Preconditions - requirements for a target entity (any

concern encapsulated via NMC)

b) Transformation rule - a formal description of the

transformation of a concern

c) Postconditions - requirements to prove semantic

integrity of the model after a transformation



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3516

Fig. 5. Specification of the ”property composition” operation

2) Code templates to be used when applying an operation

3) Other resources, for example resources related to visu-

alisation routines

Figure 5 shows the conceptual specification example of the

operation ”property composition”. The operation transforms

the A template into the B template so that the resulting B
implements a property described by the input parameters n, t
and v, where n is a property name, t is a property type and v is

an initial value. The transformation is defined as a composition

of operators ⊕V D, ⊕AM , ⊕V I . Similar operations with more

concrete definition of transformation rules can be found in the

section III-C. With postconditions the semantic integrity can

be proved.

We separate between domain-specific, molecular and atomic

operations. Atomic operations are composed of primitive

ASLT operations and represent manipulations with templates,

for example find template match in a tree. We developed and

unified atomic operations in the ASLT atomic manipulation

library. For example, the following operations are provided:

• Find first/all node(s) by type and/or value

• Find first/all sub-tree(s) by tree-pattern

• Find all sub-tree roots from the given hierarchy level

• Insert/replace/extract a sub-tree

• Extract linkage defined by meta-information nodes

• Inject values defined by some tree-pattern into a tree

A molecular operation is any operation composed of atomic

ones. For example, the operation ”find method called send
and extract it”. Domain-specific operations represent transfor-

mations which implement domain features defined or directly

used by the domain expert. For example, the operation ”con-

nect tubes with pipes” belongs to the group of domain-specific

operations.

The next section gives an example of NMCs and operations

which form a subset of NML to model the ”event driven

communication” domain.

C. Example

In this section we give a simple example of components and

operations of NML to model a system within a certain domain.

The domain is referred to as ”event driven communication”

domain. Within the domain a software system can be com-

posed together by connecting components with the observation

mechanism defined by Gamma in [14] as observer pattern.

The domain defines three types of components - neutral, event

source, event listener and mixed. Neutral components do not

Fig. 6. A model sample for the ”event driven communication” domain

send nor receive events as they do not apply any event-fire-

listen mechanism. Event source components are transformed

neutral components with implemented event-fire mechanism.

Event listener components are transformed neutral components

with implemented event-listen mechanism. Mixed components

are transformed neutral components with implemented event-

fire-listen mechanism. Within the domain it is possible to

model a static system consisting of multiple components (event

sources, listeners or mixed) which can be potentially connected

with events.

Figure 6 shows an example of a domain-specific sys-

tem. It depicts an event source Generator and event listener

Controller components. Connection between them with the

directed arrow means establishing an observer mechanism for

potential communication between these components. Signature

E denotes an event object which is transmitted on an event.

The target programming language is Java. First we specify

twelve parametric templates encapsulated with NMCs, which

are used to design a domain-specific software system. Then we

define operations involved to manipulate the design. Finally,

the predefined templates and operations are used to build a part

of domain-specific software system. The following NMCs are

defined:

1) ”Class” NMC is referred to as NMCclass (name). It

represents the source code template for a class entity in

Java programming language. The parameter name during

the instantiation of the NMC is set to the name of the

class. First big letter of a parameter means demand to

have the first letter of the value the parameter holds in

upper case, to make generated code meet programming

language agreements. Using terms mentioned above, a

class is initially a neutral entity. The following code

template is encapsulated:

public class <Name>{
public <Name>(){}

}

2) ”Event source interface” NMC is referred to as

NMCisrc (event type). The component represents an in-

terface that an event source should implement. Specified

methods represent register/remove listener and fire event

mechanisms. The parameter event type holds the value

that denotes an event type. The following source code

template is encapsulated:

public interface <Event type>Source{
public void add<Event type>Listener(

<Event type>Listener listener);
public void remove<Event type>Listener(

<Event type>Listener listener);
public void fire<Event type>(<Event type> event);

}

3) ”Add method” NMC is referred to as

NMCadd (event type). The component represents

the addXxxListener method to register new listeners

in registry listenerList. The following source code

template is encapsulated:



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3517

public void add<Event type>Listener(
<Event type>Listener listener){
listenerList.add(<Event name>Listener.class,
listener);

}

4) ”Remove method” NMC is referred to as

NMCrem (event type). The component represents

the removeXxxListener method to remove listeners. The

following source code template is encapsulated:

public void remove<Event name>Listener(
<Event name>Listener listener){
listenerList.remove(<Event name>Listener.class,
listener);

}

5) ”Fire method” NMC is referred to as

NMCfire (event type). The component represents

the fireXxx method to notify all registered listeners. The

following source code template is encapsulated:

public void fire<Event type>(<Event type> event){
Object[] listeners;
listeners = listenerList.getListenerList();
for(int i=0; i<listeners.length; i+=2) {
if(listeners[i]==<Listener name>Listener.class){

((<Listener name>Listener)listeners[i+1]).
<event type>Occurred(event);

}
}

}

6) ”Listener interface” NMC is referred to as

NMCilst (event type). The component represents

the event listener interface. All listeners of an event

defined by the parameter event type implement this

interface. The specified method is called for each

listener when an event is fired. The following source

code template is encapsulated:

public interface <Event type>Listener
extends java.util.EventListener{
public void <event type>Occurred(<Event type>
event);

}

7) ”Listener registry” NMC is referred to as NMCreg . The

component represents the variable listenerList declara-

tion and initialisation, that holds all registered listeners.

The following source code template is encapsulated:
protected EventListenerList

listenerList = new EventListenerList();

8) ”Event type” NMC is referred to as

NMCevent (event type). The component holds the

class template which defines an event type. The event

object holds a reference to the event source. The

following source code template is encapsulated:

public class <Event type> extends EventObject{
public <Event type>(Object source){

super(source);
}

}

We will construct the model using parametric code templates

instantiations, domain-specific operations ”source injection”

and ”listener injection” - denoted as ⊕src and ⊕lst accordingly

- and several atomic ones. This will be shown on each

transformation iteration.

1) Initialisation of neutral elements with names Controller
and Generator:

NMCclass1 = NMCclass (Controller) (1)

NMCclass2 = NMCclass (Generator) (2)

System = ⊕aslt (root, NMCclass1) (3)

System1 = ⊕aslt (System, NMCclass2) (4)

The atomic operator ⊕aslt attaches templates as sub-

trees into the ASLT according to requirements specified

for node’s children, so that the syntax of generated java

programming code is sound. For example, in (3) the

NMCclass1 is attached to the root that represents the

root node of the ASLT.

2) Transformation of neutral component NMCclass1 into

the event listener component. This is done with the help

of ”listener injection” ⊕lst operation:

⊕lst (a, b) = ⊕ii1 (a, b) ∧ ⊕ii2 (a, b) (5)

where ∧ is a separator between operations, and ⊕ii1

and ⊕ii2 are defined as follows:

⊕ii1(a, b)=⊕aslt(fnd(b, nmcimp ), fnd(a, nmcin)) (6)

⊕ii1 extends an interface list of target b by the interface

a. Operation fnd is an atomic one, it searches sub-tree

defined by the constant. The constant pattern nmcin

specifies a pattern to find the interface name match, and

nmcimp - to find an interface implementation list match.

⊕ii2 (a, b)= ⊕aslt (fnd(b, nmcm), rvl(a, nmch)) (7)

⊕ii2 reveals methods from the interface a to be im-

plemented in b and generates correspondent method’s

declarations within b. The operation rvl in (7) is an

atomic one, it reveals from a sub-trees defined by

the constant. In this case it is the constant nmch that

characterizes all event handler method declarations. The

constant pattern nmcm specifies a pattern to find a place

where methods are declared.

Now in (5) we set the NMCclass1 instead of b and the

formula (8) instead of a, see (9).

NMCilst1 = NMCilst(AccEvt) (8)

NMClst1 = ⊕lst(NMCilst1 , NMCclass1) (9)

Additionally, in (10) the system is extended with newly

generated class NMCevt1=NMCevt(AccEvt) describing

events:

System3=⊕aslt( System2, NMCevt1 ) (10)

The word AccEvt is the name of an event type required

by the ”Event type” NMC.

3) Transformation of the neutral component NMCclass2

into the event source component. This is done with help

of ”source injection” ⊕src operation:

⊕src (a, b, evt)= ⊕ii1 (a, b)∧⊕mi1(b, evt) (11)

where b is a target class to implement the interface a,

evt is a type of the event and the operation ⊕mi1(b, evt)
is defined as follows:

⊕mi1 (b, evt)= ⊕reg (b)∧⊕add(b, evt)∧
⊕rem(b, evt)∧⊕fire(b, evt) (12)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3518

This domain-specific operation transforms the target

code entity so, that is meets requirements defined for

the event source. It produces an additional event source

interface, then a declaration of registry to hold registered

event listeners, and implementations of methods add,

rem and fire to register, remove and throw an event cor-

respondently. ⊕reg , ⊕add, ⊕rem and ⊕fire are defined

as follows:

⊕reg (b)=⊕aslt(fnd(b, nmcdecl), NMCreg) (13)

⊕add(b, e)=⊕aslt( fnd(b, nmcm ), NMCadd(e)) (14)

⊕rem(b, e)=⊕aslt(fnd(b, nmcm), NMCrem(e)) (15)

⊕fire(b, e)=⊕aslt(fnd(b, nmcm), NMCfire(e)) (16)

The ⊕reg operation inserts an event registry definition

to the position defined by the constant nmcdecl. The

constant specifies a pattern to find a place within the

ASLT where global variables are declared. The ⊕add,

⊕rem and ⊕fire operations insert methods implemen-

tations to the position defined by the constant nmcm.

The constant specifies a pattern to find a place within

the programming code encapsulation where methods are

defined. The parameter e holds a value that denotes an

event type, specified above. Now in the formula (11)

we replace a and b with NMCisrc1 defined in (17) and

NMCclass2 defined in (2) respectively, see (18).

NMCisrc1=NMCisrc(AccEvt)(17)

NMCsrc1=⊕src(NMCisrc1 ,NMCclass2 ,AccEvt)(18)

At this point the System3 represents a part of implemen-

tation of the domain software system. It describes the

implementation of static system within the ”event driven

communication” domain. System3 is characterized by the

event listener and the event source entity, which may be

dynamically connected in order to communicate with

simple events.

IV. CONCLUSION

We highlighted in this paper the concept of modelling

language for synthesis of domain-specific software systems

with parametric code templates. Encapsulation of such tem-

plates, which structures, deeply classifies, and annotates them,

together with generic reasoning and manipulation mechanisms

results an effective design of domain-specific software sys-

tems. The example showed steps to build such a system with

predefined elements.

Our future work will concentrate on the enhancement of the

provided tool-support for specification and analysis. Addition-

ally, we aim to concentrate on visual mapping strategies for the

NML as well as optimisation of calculation of domain-specific

software systems.

REFERENCES

[1] D. J.M. Taylor and L.J. Mazlack, Domain-Specific Ontology Merging for
the Semantic Web, NAFIPS 2005 Annual Meeting of the North American
Fuzzy Information Processing Society, 2005.

[2] P. Pfahler and U. Kastens, Configuring Component-Based Specifications
for Domain-Specific Languages, Proceedings of the 34th Hawaii Inter-
national Conference on System Sciences, 2001.

[3] R. Esser and J. W. Janneck, “A framework for defining domain-specific
visual languages,” In Workshop on Domain Specific Visual Languages,
in conjunction with ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications OOPSLA-2001, 2001.

[4] Information Visualisation. Tutorial Notes, http://www.iicm.edu/-ivis/-
ivis.pdf, 1998.

[5] P. Irani, M. Tingley, and C. Ware, “Using Perceptual Syntax to En-
hance Semantic Content in Diagrams,” IEEE Computer Graphics and
Applications, vol. Vol. 21, No. 5, pp. pp. 76–84, 2001.

[6] P. Honeywill, “A comparison between maya hieroglyphs and computer
icons,” AI & Society archive, vol. Vol. 14, Issue 3-4, pp. pp.395–410,
2000, iSSN: 09515666.

[7] O. Neurath, “Visual education: A new language,” Survey Graphic, vol.
Vol. 26, No. 1, 1937.

[8] D.D. Souza and A. C. Wills, Objects, Components and Frameworks:
The Catalysis Approach. Addison-Wesley, 1998.

[9] D. Alur, J.Crupi, and D.Malks, “Core J2EE Patterns, Best Practices
and Design Illusions,” Proceedings of the Twentieth Information Systems
Research Seminar in Scandinavia, 1997.

[10] K. Wolke, ASLT Framework, LaborPP, University of Applied Sciences,
Emden (Germany) and STRL, De Montfort University Leicester (UK),

http://www.karsten-wolke.de/public/aslt/ASLT 1.1.rar, 2006.
[11] K. Wolke, Meta Information in ASLTs, LaborPP, University of

Applied Sciences, Emden (Germany) and STRL, De Montfort
University Leicester (UK), http://www.karsten-wolke.de/public/aslt-
/ASLTMetaData.pdf, 2006.

[12] M. Solanki, A Compositional Framework for the Specification, Verifica-
tion and Runtime Validation of Reactive Web Services (PhD Thesis),
Software Technology Research Laboratory, De Montfort University,
2005.

[13] N. F. Noy and D. L. McGuinness, Ontology Development 101: A Guide
to Creating Your First Ontology, Stanford Knowledge Systems Labo-
ratory Technical Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880, 2001.

[14] E. Gamma, R. Helm, and E. Johnson, Ralph, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.Professional
Computing Series, 1994, iSBN: 0201633612.


