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Abstract—This paper proposes an adaptive sliding mode 

controller which combines adaptive control and sliding 
mode control to control a nonlinear robotic manipulator 
with uncertain parameters. We use an adaptive algorithm 
based on the concept of sliding mode control to alleviate the 
chattering phenomenon of control input. Adaptive laws are 
developed to obtain the gain of switching input and the 
boundary layer parameters. The stability and convergence 
of the robotic manipulator control system are guaranteed 
by applying the Lyapunov theorem. Simulation results 
demonstrate that the chattering of control input can be 
alleviated effectively. The proposed controller scheme can 
assure robustness against a large class of uncertainties and 
achieve good trajectory tracking performance. 
 

Keywords—Robotic manipulators, sliding mode control, 
adaptive law, Lyapunov theorem, robustness.  

I. INTRODUCTION 

large number of robotic manipulators have been designed 
over the last half century[1]. There has been tremendous 

progress in the development of controllers for robotic systems, 
such as sliding mode control, fuzzy control, PD output feedback 
control, neural network, finite-time control, and so on [2-8]. It is 
well known that robotic manipulators have to encounter 
nonlinearities and various uncertainties in their dynamic models, 
such as friction, disturbance, and load changing, and it is very 
difficult to reach excellent performance when the control 
algorithm is simply based on the inaccurate plant model. Thus, 
designing a robotic manipulator controller is a serious challenge 
for engineers. 

In the last few decades, the sliding mode control strategy has 
received much attention because this method provides a 
systematic approach to retaining asymptotic stability and robust 
performance. The sliding mode control is a robust technique to 
control nonlinear systems operating under uncertainty 
conditions and it can reduce the sensitivities to the variations of 
uncertain parameters and to external disturbances [9-12]. The 
sliding mode control is based on the design of a high-speed 
switching control law that drives the system’s trajectory onto a 
user-chosen hyperplane in the state space, also known as sliding 
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surface. The main feature of sliding mode control are the 
following: (1) fast response and good transient performance; (2) 
robustness against a large class of perturbations or model 
uncertainties; and (3) the possibility of stabilizing some 
complex nonlinear systems which are difficult to stabilize by 
continuous state feedback laws. But, the discontinuous nature of 
the control law of sliding mode control creates chattering which 
may excite un-modeled high-frequency dynamics. The 
boundary-layer method, which attempts to eliminate the 
chattering phenomena, would require a trade-off between 
performance and chattering. 

This paper proposes the solution to the problem of designing 
an adaptive controller for a nonlinear robotic manipulator with 
uncertain parameters. The controller comprises of sliding mode 
and adaptive components for uncertainty compensation. The 
adaptive algorithm is continuously refined based on sliding 
mode in order to improve the chattering phenomenon. It will be 
proven that the tracking error can converge to zero. Simulation 
results will be given to verify the effectiveness of the proposed 
scheme for high-performance trajectory tracking. 

II. DESCRIPTION OF THE ROBOTIC MANIPULATOR 

Consider the dynamics of a general two-link robot 
manipulator with external disturbances to be described by the 
following Lagrange form [13]:  

 ( ) ( ) ( ) τTqGqqq,CqqM d =+++ &&&&  (1) 

where 2Rq ∈  is the joint position of robotic manipulator, 
2Rq ∈&  is the joint velocity vector of robotic manipulator, 
2Rq ∈&&  is the joint acceleration vector of robotic manipulator, 

( ) 22×∈ RqM  is the inertia matrix, ( ) 22, ×∈ RqqC &  is the 

Coriolis and centrifugal torques, ( ) 2RqG ∈  is the gravity 

vector, 2RTd ∈  is the external disturbance, and 2Rτ∈  is the 

control vector representing the torque exerting on joints. Figure 
1 shows the two-link robotic manipulator, where 1q  is angle 

displacement of first joint, 2q  is angle displacement of second 

joint, 1q&  is angle displacement velocity of first joint, 2q&  is 

angle displacement velocity of second joint, 1m  is the mass of 

first joint, 2m  is the mass of second joint, 1I  is rotary inertia of 

first joint, 2I  is rotary inertia of second joint, 1l  is length of 

first joint, 2l  is length of second joint, 1cl  is distance of the 

starting point of first joint to the centroid, and 2cl  is the distance 
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of the starting point of second joint to the centroid. 
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Fig. 1 Two-link robotic manipulator 

The functions )(⋅M , )(⋅C , and )(⋅G  are assumed to be 

continuous and defined on an appropriate open subset of the 
),( qq & phase space and assumed to be unknown. For simplicity, 

we assume that the above dynamics have the following 
properties [2]. 

(1) Property 1: The inertia matrix ( )qM  is symmetric and 

positive definite. It is assumed to be 

 2
2221 ,)( RqImqMIm ∈∀≤≤  (2) 

where 1m  and 2m are positive constants, and 22
2

×∈ RI  is the 

identity matrix. 
(2) Property 2: The matrix of Coriolis and centrifugal forces 
( )qqC &,  is bounded, 

 ( ) 2,,, RqqqqqC c ∈∀≤ && ξ  (3) 

where cξ  is positive. 

(3) Property 3: ( ) ( )qqCqM && ,2−  is a skew symmetric matrix 

and satisfies 

 ( ) ( )[ ] 2,0,2 RxxqqCqMxT ∈∀=− &&  (4) 

where x  is a nonzero vector. 

III.  SLIDING MODE CONTROLLER DESIGN 

Sliding mode control design approach consists of two phases: 
(1) selection of a sliding surface so as to achieve the desired 
system behavior, when the control system reaches the sliding 
surface; and (2) selection of a control law such that the existence 
of sliding mode can be guaranteed. 

In order to easier derivate the control law, let 
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. Therefore, the dynamics of a general 

two-link robot manipulator (1) can be rewritten as 

 ( ) ( ) wτxbxfx ++=&  (5) 

For tracking control purpose, the error state is defined as 

 dxxe −=  (6) 

where [ ]Teeee 2121e  &&= , [ ]Tddddd xxxxx 4321=  

[ ]Tdddd qqqq 2121 &&= , diq 2,1, =i , represents the desired 

tracking of the first joint and second joint. 
Implementing the sliding mode control scheme to control a 

robotic manipulator generally involves two steps. An 
appropriate sliding surface must be selected first, capable of 
ensuring the stability of the equivalent dynamics in the sliding 
mode such that the error dynamics can converge to zero. A 
sliding mode control must then be determined to ensure not only 
the reaching of the sliding surface in finite time, but also that the 
state trajectory can remain on the sliding mode thereafter even 
when undergoing the system uncertainties. As mentioned earlier, 
a proper sliding surface must be designed to ensure the system 
stability in the sliding mode. The next step involves designing 
an adaptive sliding mode control scheme to drive the extended 
error system trajectories onto the sliding surface. 

Firstly, the sliding surface is defined as 

 ( ) ets Λ=  (7) 

where 







=Λ

100

010

2

1

λ
λ

, 0>iλ . 

Consider the situation of parameters perturbation in the 
system, denoted as fff ∆+= 0 , bbb ∆+= 0 . Let the subscript 

‘ 0 ’ means the system nominal value, and symbol ‘∆ ’ means the 

system uncertain value, i.e., and it is supposed and satisfied as 
follows [14]. 

Assumption 1: ( ) ( )xxf ζ≤∆ , ( ) ( )xxb ε≤∆  and ξ≤w , 

where ( )xζ , ( )xε  and ξ  are the upper limit of parameter 

perturbations and miscellaneous information. 
Assumption 2: ( ) 0det 0 ≠Λb . 

Assumption 3: ( )( ) ( )( ) 11
0 <<Λ∆Λ − δxbxb , where δ  is a 

positive real number. 
Next, determinate the control law by satisfying the sliding 

condition 0<ssT
& . The control input is 
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 sτττ += 0  (8) 

where 0τ  is the nominal control input and sτ  is the switching 

control input. 0τ  takes care of the nominal part in (5), and sτ  

deals with the plant parameter variations and the external 
disturbances. 

 ( )( ) ( )( )dxxfxbτ &Λ−ΛΛ−= −
0

1
00  (9) 

 ( )( )
s

s
xbτ s β1

0
−Λ−=  (10) 

 
δ

δξζ
β

−
−Λ++Λ

>
1

))(())(( 0 xfxx d&  (11) 

Taking the derivative of )(ts  with respect to time yields 

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )[ ]

s

s
xbxbI

xfxxbxbwxfts d

βΛ∆Λ+−

−ΛΛ∆Λ++∆Λ=

−

−

1
02

0
1

0)( &&

 (12) 

where 2I  is the 22×  identity matrix. Multiplying both side of 

(14) by Ts  obtains 

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

( )( )( )
( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( )
s

s
xbxbIs

xfxxbxbs

wxfs

wxfxxbxbs

s

s
xbxbIsxfsss

T

d

d
T

TTT

β

β

Λ∆Λ+−

−ΛΛ∆Λ+

+∆Λ≤
Λ+−ΛΛ∆Λ

Λ∆Λ+−Λ∆=

−

−
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−

1
02

0
1

0

0
1
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1
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&

 (13) 

Applying Assumptions 1 to 3 yields  
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&&

 (14) 

The result of (14) implies that the system trajectories will 
asymptotically converge to sliding surface from any non-zero 
initial error, and guarantees the robust stability of the 
closed-loop system. 

IV. DESIGN OF ADAPTIVE SLIDING MODE CONTROLLER 

It is well known that the parameter variations of the system, 

such as mass and inertia, are difficult to measure. And the exact 
value of the external disturbance is also difficult to measure in 
advance for practical applications. However, the application of 
control law given in Eqs. (9) to (11) is limited due to the 
chattering and the unknown bounds of the uncertainties. Also, it 
was generally selected conservatively based on the bounds of 
uncertainties. In this study, the goal is to replace the term β  to 

alleviate chattering. The adaptive sliding mode control law is 
proposed as follows: 

 asτττ += 0  (15) 

 ( )( ) ( )( )xfxbτ 0
1

00 ΛΛ−= −  (16) 

 ( )( ) ( )sxbτas ,ˆˆ1
0 αφβ−Λ−=  (17) 

( ) ( )
( ) ( ) ( )

( ) .2,1,
ˆexp1

ˆexp1
,ˆ,

,ˆ

,ˆ
,ˆ

222

111 =
−+
−−

=







= i

s

s
s

s

s
s

ii

ii
iii α

ααφ
αφ
αφ

αφ (18) 

The adaptive laws are 

 ( ) ( )( ) e
τ

x
xbs

T
T










∂
∂Λ= sgn,ˆˆ

01 αφηβ&  (19) 

 ( )( ) 1
1

1
111021 sgnˆ s

τ

x
exb 









∂
∂Λ=ηα&  (20) 

 ( )( ) 2
2

2
222032 sgnˆ s

τ

x
exb 









∂
∂Λ=ηα&  (21) 

where iη  are positive constants, 3,2,1=i . 

The following discussion establishes that if the control input 
τ  is appropriately designed as (15)-(18) with adaption laws 
(19)-(21), then the trajectory of the error dynamics converges to 
the sliding surface. Now consider the following Lyapunov 
function candidate 

 ( )2
2

2
1

2
2

2
12

1

2

1
eeeeeeV T
&& +++==  (22) 

The derivative of Lyapunov function is  

t

τ

τ

x

x

e

e

V

dt

dV

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂= β

β

ˆ

ˆ
 

 ( )( ) ( ) ( )( )( )
t

sxfxb
τ

x
e

∂
∂+ΛΛ−

∂
∂

∂
∂= − βαφβ

β

ˆ
,ˆˆ

ˆ 0
1

0  

( )( ) ( )( )βαφ &̂
,ˆ1

0 sxb
τ

x
e −Λ−

∂
∂=  (23) 

Substituting (19) into (23) yields  
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By direct computation [15], 
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Substituting (20) into (25) yields 
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With the same procedure, the derivative of Lyapunov function 
is found to be 

 
( )( ) ( )

( )( ) 22
22

2221
220

2

2
2

2

2

2

2

2

2

2

2

ˆ
ˆexp1

ˆexp2ˆ

ˆ

ˆ

α
α
αβ

α
α

&

s

ss
xb

τ

x
e

t

τ

τ

x

x

e

e

V

dt

dV

−+
−Λ

∂
∂−=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂=

−
 (27) 

Substituting (21) into (27) yields 
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Since 0<
dt

dV
 while 0>V , as defined, V reaches zero in finite 

time, and 0=e . Therefore, the elimination of tracking error can 
be guaranteed. 

V. SIMULATION RESULTS 

In this section, we show the design process of the proposed 
adaptive sliding mode control algorithm on a two-link 
manipulator. The equation of motion for this robot system is 
defined as in [16]. The desired trajectories are given by 

 
( ) ( )
( ) ( )
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d 8exp8.128exp6.16.1

8exp8.128exp6.16.1

2

1  (29) 

The external disturbance is 

 
( )
( )







+
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=
t

t
Td 02.0sin7.15.3

02.0cos22.3
 (30) 

The proposed sliding mode controller, (9)-(11), is applied. 
The gain matrix of control input and the gain matrix of sliding 
function are 

 







=Λ








=

10100

01010
,

300

030
β  (30) 

Figures 2 to 5 show the simulation results of the sliding mode 
control. The output tracking results of joint 1and joint 2 are as 
shown in Fig. 2, the solid line is the joint position and the dashed 
line is the desired position. Fig. 3 demonstrates the control 
inputs performance of joint 1 and joint 2. It shows that the 
control inputs have high frequency chattering phenomenon. 
This result of chattering control input will cause machinery 
damage in practical application. Figure 4 illustrates sliding 
surfaces time response of joint 1 and joint 2. Fig. 5 shows the 
tracking error of joint 1 and joint 2. 
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Fig. 2. Output tracking of sliding mode control 

0 1 2 3 4 5 6 7 8 9 10

-500

0

500

1000

1500

2000

2500

3000

Time (sec)

τ 1 (
N

m
)

0 1 2 3 4 5 6 7 8 9 10

-200

0

200

400

600

800

1000

Time (sec)

τ 2 (
N

m
)

 
Fig. 3. Control input of sliding mode control 
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Fig. 4. Sliding surface of sliding mode control 
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Fig. 5. Tracking error of sliding mode control 

For comparison purpose, the performances of adaptive 
sliding mode control law (15)-(21) are demonstrated next. The 

initial value of adaptive law is 200)0(ˆ =β , 300)0(ˆ =Γ , 

[ ]T0220)0(ˆ =α , and 001.0=α . The learning rates are 

11 =η , 12 =η , 13 =η . The simulation results of the adaptive 
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sliding mode control are shown in Figs. 6 to 9. From Fig. 6, we 
can see that joint 1 arrives steady state after 1≥t  s and joint 2 
enters steady state after1≥t . Figure 7 shows the performance of 
control law without chattering phenomenon. We can see the 
performance of adaptive sliding mode control is better than the 
sliding mode control in the presence of the external disturbance. 
Figure 8 shows sliding surfaces time response. Figure 9 
illustrates the position tracking errors with the proposed 
adaptive sliding mode controller. 
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Fig. 6. Output tracking of adaptive sliding mode control 
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Fig. 7. Control input of adaptive sliding mode control 
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Fig. 8. Sliding surface of adaptive sliding mode control 
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Fig. 9. Tracking error of adaptive sliding mode control 

VI.  CONCLUSION 

This paper proposes a novel control method for a robotic 
manipulator with external disturbance. Using the Lyapunov 
stability method, the proposed method guarantees robustness as 
well as tracking performance. A self-tuning law enables the 
automatic adaptation of the adjustable control gain parameter 
and the adjustable boundary layer width to the terminal values. 
The control input chattering is eliminated effectively. Smooth 
control activity and excellent tracking performance are shown. 
Simulations performed on a two-DOF robot demonstrate the 

effectiveness of the proposed controller.  
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