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Abstract—This paper describes a strategy to develop an energy
management system (EMS) for a charge-sustaining power-split hybrid
electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit
from the advantages of both parallel and series architecture. However,
it gets relatively more complicated to manage power flow between the
battery and the engine optimally. The applied strategy in this paper is
based on nonlinear model predictive control approach. First of all, an
appropriate control-oriented model which was accurate enough and
simple was derived. Towards utilization of this controller in real-time,
the problem was solved off-line for a vast area of reference signals
and initial conditions and stored the computed manipulated variables
inside look-up tables. Look-up tables take a little amount of memory.
Also, the computational load dramatically decreased, because to find
required manipulated variables the controller just needed a simple
interpolation between tables.

Keywords—Hybrid electric vehicles, energy management system,
nonlinear model predictive control, real-time.

I. INTRODUCTION

FOSSIL fuel powered engines in transportation sector have

made some severe consequences such as various lung

and heart diseases, greenhouse gas emission, and increasing

health expenses for governments. These factors have led

the governments to consider strict standards on engine fuel

efficiency and emission of the vehicles. One of the short-term

approaches of car manufacturers to these new standards and

demands of costumers is improving new technologies on

sustainable transportation such as (HEVs) hybrid electric

vehicles. It is predicted that 90% of consumed energy in

transportation will still be provided by fossil fuels in 2030 [1].

Therefore, trying to improve HEVs seems really reasonable.

Generally, HEVs are categorized in three different

architectures: series, parallel, and power-split (series-parallel).

Despite the complexity of the power-split, it is the most

popular architecture among car manufacturers since the

power-split architecture can operate in both series and parallel

modes. The power-split architecture has schematically shown

in Fig. 1.

As it can be seen in Fig. 1, HEVs benefit from two energy

converters: internal combustion engine (ICE) and Electrical

motor which respectively use fuel and electric as the energy

source. Combining these two sources of energy in a vehicle is

not a new idea, However, the new generation of HEVs have

become more successful than their ancestors because of the

M. Roohi, B.Sc student, and A. Taghavipour, Assistant Professor, are with
the Mechanical Engineering at K. N. Toosi University of Technology, Tehran,
Iran (e-mail: msdroohi@email.kntu.ac.ir, taghavi@kntu.ac.ir).

Fig. 1 Power-split HEV architecture

advent of new technologies in terms of electronics and control

systems [2].

Addition of an energy storage device to the vehicle

introduces new flexibility and complexity for the control

system. Intelligently utilization and control of this new

degree of freedom can lead to fuel economy and decrease

emission improvement. The energy management strategy

is the high-level control or supervisory control layer uses

this flexibility to accomplish the above tasks along with

maintaining vehicle drivability [2].

Energy management system controls the power flows from

sources to satisfy the control objectives while considering

global and local constraints of the power-train. Usually, the

primary control objective is the minimization of the vehicle

fuel consumption, while minimizing engine emissions and

maintaining or enhancing drivability [3]. Towards solving the

energy management problem, two general approaches have

been introduced. First one is the heuristic approach which has

attempted to offer some improvements in the HEV energy

efficiency by using expertise. Therefore heuristic approaches

may not guarantee either an optimal result in real vehicle

operational conditions, or a robust performance if system

parameters deviate from their nominal operating points [4]. On

the other hand, model-based approaches are inherently more

flexible than heuristic approaches and they can fully exploit

the potential for energy consumption reduction at the cost of

complexity and computational load [5]. Several model-based

energy management strategies can be mentioned such as

dynamic programming (DP), stochastic dynamic programming

(SDP), equivalent fuel consumption minimization strategy

(ECMS), and model predictive control (MPC) [6].
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MPC can deal with processes with numerous manipulated

variables, outputs, and constraints [7]. In addition, MPC is

particularly interesting among model-based approaches since it

can maintain the robustness of a feedback controller. However,

with the limited capabilities of commercial control hardware,

the heavy computational cost has become a drawback in

practice [8].

The theory of the applied approach is described in Section

II. The control-oriented model that is very important in a

model-based approach is derived in Section III. Designing

the energy management system is explained in Section IV.

Simulation results are laid out in Section V followed by the

conclusions in Section VI.

II. THEORY

It is possible to define several criteria for a control system

such as being fast, suppressing overshoot, considering the

limitation on manipulated variables. Any reasonable criterion

can be defined to be achieved by the predictive controller.

As it was mentioned in the introduction section, there can

be several control objectives to be achieved in the energy

management problem. In this case, the major control objective

is improving fuel economy while maintaining the drivability of

the vehicle. Therefore, a possible criterion of predictive control

would be the minimization of a quadratic cost function of the

control error and the controlled signal, respectively, during

the prediction and control horizons. Hence, the quadratic cost

function will be [9]:

J =

N2∑
i=N1

λyi[yr(k + i)− ŷ(k + i|k)]2

+

nu∑
j=1

λuju
2(k + j − 1)

(1)

where yr(k+ i) and ŷ(k+ i|k) are the reference and predicted

output signal i steps ahead and u(k+ j − 1) is the controlled

signal j − 1 steps ahead. N1 and N2 are first and last points

of the prediction horizon and nu is the length of the control

horizon. Also, λyi and λuj are weighting factors of the control

error and controlled signal, respectively.

In order to satisfy the control objectives, in this case, yr
would be equal to Er which is drivers required energy and

ŷ equal to E which is the predicted produced energy by the

powertrain. Also, towards minimizations of fuel consumption,

u would be equal to the Peng which is produced power by ICE,

the only consumer of the fuel in the powertrain. Therefore, the

mentioned cost function can be written as:

J =

N2∑
i=N1

λEi[Er(k + i)− Ê(k + i|k)]2

+

nu∑
j=1

λPengjPeng
2(k + j − 1)

(2)

Note that the control objectives should be satisfied while

considering several constraints. It is desirable to use the

battery energy as much as possible to improve fuel economy.

However, if the energy recovered by regenerative braking is

not enough to sustain the battery charge, this performance

can leave the battery completely discharged at the end of the

mission [10]. Thus, the integral constraint of the problem is

that the state of charge of the battery (SOC) should be really

close to the nominal SOC at the end of the mission. It means:

|SOC(tf )− SOCtarget| < ε (3)

where ε is a small quantity which will be defined in the

simulation. To avoid complexity in the problem, it was decided

to consider this integral constraint as a soft constraint and add

the corresponding penalty function quadratically to the cost

function:

J =

N2∑
i=N1

λSOCi[SOCr(k + i)− ˆSOC(k + i|k)]2

+ λEi[Er(k + i)− Ê(k + i|k)]2

+

nu∑
j=1

λPengjPeng
2(k + j − 1)

(4)

Based on a set of trial and error it was decided to take

N1 = 1 and N2 = 10. Also, SOCr in all the moments would

be equal to SOCtarget, so it is a constant. In this case, if the

cost function gets translated to matrix, J would be:

J = [
SOC(k + 1)− SOCr . . . SOC(k + 10)− SOCr

]

ωSOC

⎡
⎢⎣
SOC(k + 1)− SOCr

...

SOC(k + 10)− SOCr

⎤
⎥⎦

+
[
E(k + 1)− Eri . . . E(k + 10)− Eri

]

ωE

⎡
⎢⎣
E(k + 1)− Eri

...

E(k + 10)− Eri

⎤
⎥⎦

+
[
Peng,1 . . . Peng,10

]
ωeng

⎡
⎢⎣
Peng,1

...

Peng,10

⎤
⎥⎦

(5)

Because of the limitations of the powertrain’s components,

there are several local constraints which are summarized as:

SOCmin ≤ SOC(k + i) ≤ SOCmax

Peng,min ≤ Peng(k + j − 1) ≤ Peng,max

Pbat,min ≤ Pbat(k + j − 1) ≤ Pbat,max

Pbrk,min ≤ Pbrk(k + j − 1) ≤ Pbrk,max

(6)

where Pbat and Pbrk are produced power by the battery and

the braking system. The parameters written with min and

max subscripts present the minimum and maximum of the

corresponding variables.

III. CONTROL-ORIENTED MODEL

Since a model-based approach has been used, it was needed

to derive a precise model to calculate accurate prediction of
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Fig. 2 Electric circuit of the battery

the output signals. Also, to design a real-time implementable

controller, the model should be relatively simple. Towards this

end, (7) is considered as the longitudinal dynamics of the

vehicle:

Ftrac = Fpwt − Fbrk (7)

where Ftrac is the tractive force generated by the powertrain

and the brake system. Fpwt is the force produced by the power

train and Fbrk is the force produced by the brakes.

To use the concept of power and energy, (7) can be

multiplied by the velocity of the vehicle. Also, by utilizing

the approximate relation between power and energy and the

fact that Ppwt = Peng + Pbat it can be written as:

ΔEtrac = Δt(Peng + Pbat − Pbrk) (8)

One of the key components of a HEVs’ powertrain is

the battery (or in some cases super-capacitors). Discharging

or overcharging can be harmful to the battery. To

protect the battery from damage, EMS should monitor the

battery state-of-charge (SOC) and keep it in a safe range

between a predefined SOCmin and SOCmax. Also, in a

charge-sustaining HEV, SOC should be equal to a specified

number at the end of the mission.

A simple model of the battery with constant resistance Rbat

and without any R-C branch would be like Fig. 2 [11] where

Voc and VL are open circuit and load voltage and I is the

current. By considering this model, the battery power can be

written as:

Pbat = VL.I = VocI −RbatI
2 (9)

It is also known that the nominal battery capacity Qnom

and the current are related through the equation [12]:

˙SOC = − I

Qnom
(10)

By solving (9) for I and replacing (10) in it, time variation

of SOC can be written as:

˙SOC = −Voc −
√
V 2
oc − 4RbatPbat

2RbatQnom
(11)

Since the controller is meant to be digitally implementable,

the equations get descretized. Thus, the discretiezd state

equations can be summarized as:

Fig. 3 Divided region to four sub-region

E(k + 1) =

E(k) + Peng + Pbat − Pbrk

(12)

SOC(k + 1) =

SOC(k)− Voc −
√

V 2
oc − 4RbatPbat(k)

2RbatQnom

(13)

In these equations, state variables, manipulated variables,

and outputs are X , U , and Y respectively:

X =

[
E(k)

SOC(k)

]

U =

⎡
⎣Peng(k)
Pbat(k)
Pbrk

⎤
⎦

Y =

[
E(k)

SOC(k)

]
(14)

IV. ENEREGY MANAGEMENT SYSTEM

In this section, to design a controller, it is just needed to tune

the weighting factors in the cost function to achieve the control

objectives and satisfying the constraints while trying to make

a compromise between them according to their priorities. To

this end, it won’t be very difficult to tune the weighting factors

for a specific drive cycle. However, this tuning won’t be very

suitable for other drive cycles, since the controller has been

tuned to attain an optimal manipulated variable for a certain

drive cycle. Moreover, it takes relatively long time to compute

the manipulated variables for each reference signal, specially

because the state equations and constraints are nonlinear. Thus,

it is not possible to implement the controller in real-time. To

decrease the computational load in real-time, it was decided

to compute the manipulated variables for a vast horizon of

reference signals and initial conditions off-line. In this case,

Er and E1 were considered to vary from -50000 J to 50000
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Fig. 4 Peng vs E1 and SOC1 while SOCr = 0.5 and Er = 0J

Fig. 5 Pbat vs E1 and SOC1 while SOCr = 0.5 and Er = 0J

Fig. 6 Pbrk vs E1 and SOC1 while SOCr = 0.5 and Er = 0J

J, SOCr varies from 0.3 to 0.9, and SOC1 varies from 0.2 to

0.9. After a set of trial and error, it got clear that tuning the

weighting factors for the whole horizon of reference signals

and initial conditions is not practical. Thus, the whole region

gets divided to four sub-region based on the amount of Er,

SOCr, E1, and SOC1 with respect to each other.

The first sub-region is the area in which E1 ≤ Er and

SOC1 ≤ SOCr. In this case, powertrain has to generate

power, however, state-of-charge is lower than its desired

amount. So, it would be ideal that the difference between E1

and Er can be produced only by the engine.

At the second sub-region where E1 ≤ Er and SOC1 ≥
SOCr, batterys charge is higher than its required amount,

so to reduce the fuel consumption, EMS should provide the

demanded energy by the battery and use the engine just in the

case that the battery won’t be able to generate whole difference

between E1 and Er. At the third sub-region power-train

doesn’t need to generate power because Er ≤ E1. However,

because SOC1 ≤ SOCr, an amount of Pbrk should be

regenerated to charge the battery. So Pbat should be negative

in this area.

Finally at the last sub-region where Er ≤ E1 and SOC1 ≥
SOCr, there is no need to generate or regenerate power.

Thus, Peng and Pbat should be equal to zero and Pbrk

should dissipate the whole difference between E1 and Er by

mechanical brake.

After some trial and error, a set of weighting factors

which satisfies objectives was obtained. Then, the optimization

problem with the resulted weighting factors is solved and the

achieved manipulated variables are stored as look-up tables.

Thus, in any instant with any reference signals and any initial

condition, the controller can interpolate between look-up tables
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TABLE I
VEHICLE CHARACTERISTICS

characteristic quantity
Effective mass 1300 kg

Frontal area 1.8 m2

Drag coefficient 0.32
Roling resistance coefficient 0.013

Fig. 7 Variation of SOC through the UDDS drive cycle

and compute the manipulated variables in real-time. Although

the difference between two adjacent chosen reference signals

is relatively high , the computed manipulated variables were

expected to be accurate enough because of the nonlinear

precise applied equations.

Fig. 4 shows Peng versus E1 and SOC1. This figure belongs

to the situation in which Er = 0 and SOCr = 0.5. As we

expected, Peng is higher in the first sub-region than the second

one. As the Fig. 5 shows, in the second sub-region EMS has

tried to provide the demanded energy by the battery. Also, in

the 3rd and the 4th sub-region Peng is equal with zero and

Pbat is maximum negative and zero respectively. As shown in

the Fig. 6, everything we expected about Pbrk has happened.

Pbrk is equal to zero in the 1st and the 2nd sub-region and

its amount is higher in 4th sub-region than 3rd sub-region. It

means some of Pbrk has regenerated in 3rd sub-region.

V. SIMULATION

For the simulation, the control-oriented model is being used

again. To use look-up table in every moment Er is taken from

the driver demand (in this case from drive cycle). SOCr is a

constant and predetermined quantity. Initial conditions have

to be measured from the powertrain. All of the information

in any instant are required to be fed into the controller so

that it can interpolate between look-up tables and calculate the

manipulated variables. As Er we used two drive cycle: UDDS

and HWYCOL. However, these drive cycles demonstrate the

velocity of the vehicle versus time. To make these drive cycles

usable for this controller, by the help of longitudinal dynamics,

they got translated to the profiles which show reference energy

versus time. In these simulations, the sample time is 1 second.

The initial SOC and target SOC are defined by SOC1 = 0.6
and SOCt = 0.7 respectively. The characteristics of the

vehicle are shown in Table I.

Figs. 7 and 8 show the variation of SOC through the drive

cycles. Figs. 9 and 10 show how the vehicle can track the

driver’s required energy.

Table III summarizes the initial and final SOC, fuel

economy, and mean square of error between reference and

generated energy. Final SOC is close enough to the target

Fig. 8 Variation of SOC through the HWYCOL drive cycle

Fig. 9 Tracking reference energy by generated energy through the UDDS
drive cycle

SOC. A little bit of difference between the target and final

SOC at the end of a cycle is acceptable and does not affect the

vehicle functionality [2]. As it is observable, the mean square

of error is very small compared with the order of reference

signal which it is a sign of high drivability of the vehicle.

VI. CONCLUSION

This research described an approach to design an energy

management system for a charge-sustaining power-split hybrid

electric vehicle based on the nonlinear model predictive

control. We did not use any knowledge related to the future

driving cycle. Thus, our controller is robust regarding the

driving condition. In charge-sustaining operation there is a

global constraint dictates that the battery state-of-charge can

not be deviate largely from its target value. So we’ve added

a nonlinear penalty function of the battery state-of-charge

deviation from its target value to the cost function. Our control

objectives are improving fuel economy while maintaining the

Fig. 10 Tracking reference energy by generated energy through the
HWYCOL drive cycle

TABLE II
RESULTS OF THE SIMULATION

Drive Initial Final Fuel economy Mean square
cycle SOC SOC (L/100km) of error (J2)

UDDS 0.6 0.68 3.14 1.4492
HWYCOL 0.6 .67 1.03 7.1227
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TABLE III
RESULTS OF THE SIMULATION

Drive Initial Final Fuel economy Mean square
cycle SOC SOC (L/100km) of error (J2)

UDDS 0.6 0.68 3.14 1.4492
HWYCOL 0.6 .67 1.03 7.1227

vehicle drivability which are totally achieved according to

the simulation section. Moreover, because for computing the

manipulated variables, the controller just needs to interpolate

in a database, which occupies a small amount of memory

and requires limited CPU capability. Therefore, it is totally

implementable in real-time.
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