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Abstract—This paper focuses on a critical component of the 
situational awareness (SA), the neural control of autonomous 
constant depth flight of an autonomous underwater vehicle (AUV). 
Autonomous constant depth flight is a challenging but important task 
for AUVs to achieve high level of autonomy under adverse 
conditions. The fundamental requirement for constant depth flight is 
the knowledge of the depth, and a properly designed controller to 
govern the process. The AUV, named VORAM, is used as a model 
for the verification of the proposed hybrid control algorithm. Three 
neural network controllers, named NARMA-L2 controllers, are 
designed for fast and stable diving maneuvers of chosen AUV model. 
This hybrid control strategy for chosen AUV model has been verified 
by simulation of diving maneuvers using software package Simulink 
and demonstrated good performance for fast SA in real-time search-
and-rescue operations. 

Keywords—Autonomous underwater vehicles, depth control, 
neurocontrollers, situational awareness. 

I. INTRODUCTION

ITUATION awareness has been formally defined as “the 
perception of elements in the environment within a 

volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future” 
1 . As the term implies, situation awareness refers to 

awareness of the situation. Grammatically, situational 
awareness (SA) refers to awareness that only happens 
sometimes in certain situations. 

SA has been recognized as a critical, yet often elusive, 
foundation for successful decision-making across a broad 
range of complex and dynamic systems, including emergency 
response and military command and control operations 2 .

The term SA have become commonplace for the doctrine 
and tactics, and techniques in the U.S. Army 3]. SA is 
defined as “the ability to maintain a constant, clear mental 
picture of relevant information and the tactical situation 
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including friendly and threat situations as well as terrain”. SA 
allows leaders to avoid surprise, make rapid decisions, and 
choose when and where to conduct engagements, and achieve 
decisive outcomes. 

In 4  a two stage flight control procedure using two 
adaptive neural networks to address the dynamics variation 
and performance requirement difference in initial and final 
stages of flight trajectory for small-scale unmanned helicopter 
model was proposed. The chosen helicopter model in terms of 
a state variable representation comprising five states, two 
inputs and two outputs. The proposed control strategy for 
chosen helicopter model has been verified by simulation of 
descending and landing maneuvers using software package 
Simulink and demonstrated good performance for fast SA in 
real-time search-and-rescue operations. 

This paper concentrates on issues related to the area of 4 ,
but demonstrates another field for application of these ideas, 
i.e., research technique using hybrid control system modeling 
and simulation on the basis of state-space equations of vertical 
motion of chosen model of an autonomous underwater vehicle 
(AUV) for fast SA. 

The characteristics of an AUV’s motion depend on mode of 
maneuvering, forward speed, instantaneous attitude, and 
outside appendages such as measuring instruments. In 
addition, it is hard to model the system disturbances, cross-
flow effects, and the coupling effects. Due to these reasons, a 
neural network controller is needed to control AUV’s motion. 

The AUV is the underwater maneuver commander's 
primary day and night system. The AUV provides the 
commander with a number of capabilities including: 

Enhanced SA. 
Target acquisition. 
Enhanced management capabilities (assessment of surface 
damage and visualization of blockage far and near). 

The combination of these benefits contributes to the 
commander's dominant SA allowing him to shape the field of 
vision to ensure mission success and to maneuver to points of 
positional advantage to conduct decisive operations. Some 
conditions for conducting underwater reconnaissance with 
AUVs are as follows. 

Time is limited or information is required quickly. 
Detailed reconnaissance is not required. 
Extended duration surveillance is not required. 
Target is at extended range. 
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Verification of a target is needed. 
Threat conditions are known; also the risk of collisions 
with an obstacle of rough-surfaced sea bottom is high. 
Sea bottom relief restricts approach by large-scale 
underwater vehicles. 

A small size AUV offers many advantages, including low 
cost, the ability to fly at constant depth levels within a narrow 
space and the unique diving characteristics. 

Autonomous constant depth flight is an important task for 
AUVs to avoid human intervention under adverse conditions. 
The fundamental requirement for diving control flight is the 
knowledge of the depth under the sea surface, and a properly 
designed controller to govern the process. 

In this paper our research results in the study of depth flight 
controls of AUV which make such SA task scenario as “go-
search-find-return” possible are presented. 

The contribution of the paper is twofold: to develop new 
schemes appropriate for SA enhancement by hybrid neural 
control of vertical trajectory of AUVs in real-time search-and-
rescue operations, and to present the results of diving 
maneuvers for chosen model of the AUV for fast SA in 
simulation form using the MATLAB/Simulink environment. 

II. AUTONOMOUS UNDERWATER VEHICLE MODEL

The AUV, named VORAM 5 , is 2.82 m in length, 1.10 m 
in width, and 0.40 m in height. It weighs 357 kg in air and has 
neutral buoyancy in water, and the flooded mass of VORAM 
in water is about 887 kg. The maximum speed in calm water is 
1.25 m/s. 

Numerical simulations and experiments on depth control of 
the VORAM AUV are carried out using the quasi-sliding 
mode controller 5 . This controller is composed of a linear 
feedback input and switching inputs where the switching 
inputs are determined separately. Experiments are performed 
in a towing tank. In general, the experimental results agree 
with the simulation results. 

The mission of VORAM AUV in a given context is 
research and monitoring in deep sea and is aimed to follow the 
sea bottom by keeping constant altitude or constant water 
depth and may be called appropriate for SA enhancement 
using AUVs. It is supposed that this vehicle is operating 
around a desired forward speed. 

The dynamic model for control in the vertical plane yields 
the general form of state equations for VORAM AUV 5

dBuAxx                               (1) 
            

wCxy                                                          (2) 

where wvdyux ,,,,,  are the state, 
control input, output, disturbance, process noise and 
measurement noise vectors, respectively. 

The variables of this model are: 
1x pitch rate (radn/sec), 

2x pitch angle (radn), 

3x depth (m), 
u elevator angle (radn), 
y vertical position (m). 

Note that vertical position represents the depth of vehicle 
with the negative sign.  

The matrix structure of dCBA ,,,  for the state-space model 
of system (1)-(2) is given by 
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III. SIMULATION

Since the depth of AUV is most critical for diving 
maneuvers, the control mechanization of the vertical trajectory 
profile will be demonstrated. 

To illustrate the performance of the neural control design 
procedure for the model given by (1)-(2), the simulation 
example with using of three neurocontrollers to control the 
desired diving trajectory of given AUV was presented. 

The goal of the following simulations is twofold. First, we 
verify that these neural network controllers are able to control 
the diving trajectory. Second, we observed the effect of 
enhancing SA because by variety of such trajectory 
parameters as maximal depth and constant depth flight easily 
can be changed the possible diving trajectory of AUV. 

Initial and desired constant depths for control subsystems 
are chosen to be: 

0z 0 m, 0
1z -12 m, 0

2z -50 m, 0
3z -26 m. 

Simulation results for the offered block scheme (see Fig. 1) 
are shown in Figs. 5-8.
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Fig. 1. Block diagram of hybrid control system. 

A structure of the VORAM AUV model (1)-(2) is 
illustrated in Fig. 2. 

In 6  the two approximations to the nonlinear 
autoregressive moving average (NARMA) model called the 
NARMA-L1 and the NARMA-L2 are proposed. From a 
practical stand-point, the NARMA-L2 model is found to be 
simpler to realize than the NARMA-L1 model. 

The controllers used in this section are based only on the 
NARMA-L2 approximate model 6 .

Block diagram of the NARMA-L2 Controller 1 from Fig. 1 
is given in Fig. 3. This controller can be implemented with the 
previously identified NARMA-L2 plant model, as shown in 
Fig. 4. 
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Fig. 2. The internal structure of the Subsystem 1. 

Fig. 3. The block diagram of the NARMA-L2 Controller. 

Fig. 4. Structure of a neural network representation for the NARMA-
L2 approximate model. 
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Fig. 5. Depth trajectory of diving control. 
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Fig. 6. Depth trajectory near the first lag. 
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Fig. 7. Depth trajectory near the second lag. 
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Fig. 8. Depth trajectory near the third lag. 

Some advantages of this example are as follows. 
Opportunity of smooth switching of regulation from one 
neurocontroller to another. 

Possibility to consider a rough-surfaced sea bottom in a 

place of a constant depth flight. 
Possibility of lag in the various constant depth levels. 
Fine and simplified adjustment of these neurocontrollers 
for any changes of desired constant depths. 

These results support the theoretical predictions well and 
demonstrate that this research technique would work in real-
time diving conditions. 

IV. CONCLUSIONS

The need for accurate and directionally stable diving for 
AUV class autonomous vehicles has increased morbidly for 
critical situations in real-time search-and-rescue operations for 
fast SA. 

Three NARMA-L2 neural controllers are designed for fast 
and stable diving maneuvers of the VORAM AUV model. 
The effectiveness of the proposed depth neural control 
technique has been verified in field of diving simulation tests 
for chosen model of the AUV using software package 
Simulink. 

From the simulation studies of diving tests, the following 
can be observed: 

The block diagram of depth neural control is very useful for 
graphic representation of the depth trajectory. 
The depth trajectory tracking display forms give a 
researcher an immediate view of a VORAM AUV motion 
with a range of such depth trajectory parameters as 
maximal depth and constant depth flight. This enhancing 
the researcher’s understanding of diving maneuvers. 
The control using three neurocontrollers works more 
qualitatively than the control using only one 
neurocontroller. 
From the applications viewpoint, we believe that this 

flexible and effective neural control furnish a powerful 
approach for enhancing SA in applications to AUV class 
autonomous vehicles in real-time search-and-rescue 
operations. 
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