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Abstract— In this paper we present a novel approach for density 
estimation. The proposed approach is based on using the logistic 
regression model to get initial density estimation for the given 
empirical density. The empirical data does not exactly follow the 
logistic regression model, so, there will be a deviation between the 
empirical density and the density estimated using logistic regression 
model.  This deviation may be positive and/or negative. In this paper 
we use a linear combination of Gaussian (LCG) with positive and 
negative components as a model for this deviation. Also, we will use 
the expectation maximization (EM) algorithm to estimate the 
parameters of LCG. Experiments on real images demonstrate the 
accuracy of our approach.  

Keywords—Logistic regression model, Expectation 
maximization, Segmentation. 

I. INTRODUCTION

Density estimation is a core operation of virtually all 
probabilistic learning methods (as opposed to 

discriminative methods). Approaches to density estimation 
can be divided into two principal classes, parametric methods 
and nonparametric methods. While neither choice should be 
universally preferred for all situations, a well-known benefit 
of nonparametric methods is their ability to achieve good 
estimation for any input distribution as more data are 
observed, but these methods have a serious drawback, that is, 
there many parameters need to be tuned  [1, 2].  

A previous approaches for nonparametric density estimation 
such as the approaches proposed in [3,4] are based on the k -
nearest neighbor method. It functions by saving the number of 
distance evaluations for finding the k nearest neighbors. As 
for kernel-based density estimates, such as the Parzen density 
estimate [2], by noting that the amount of computation is 
directly related to the number of training samples, Fukunaga 
and Hayes [5] extracted a representative subset of the training 
samples to achieve computational saving. The reduced subset 
of training samples was selected in such a way that the Parzen 
density estimate with the reduced set matches as closely as 
possible with that of the full data set in the sense of an entropy 
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measure of similarity between the two estimates. Silverman 
[6] proposed an efficient algorithm based on the fast Fourier 
transform (FFT) for evaluating univariate Parzen density 
estimates on regular grids. In the case of plotting a density 
estimate, for example, the estimate would be evaluated over 
equally spaced locations. Silverman noted that the Fourier 
transform of the density estimate can be considered as a 
product of the Fourier transforms of the kernel function and 
the data. A modified discretization scheme was employed later 
by Jones and Lotwick [7] to reduce errors related to the 
Fourier transform of data. Notice that this fast algorithm based 
on FFT can not be applied to the general cases of density 
estimates over irregularly spaced locations. For instance, 
suppose Parzen density estimates are used for non-parametric 
classification [8], then the density values must be estimated 
for the samples to be classified, and in general, the samples 
are not regularly spaced. In [9] they proposed an approach  
similar to the efficient density estimate based on the k-nearest
neighbors [3], they used a simple branch-and-bound 
procedure is applied to the Parzen density estimation to reduce 
the number of kernel evaluations.  In [10] they proposed fast 
algorithm for density estimation based on using the Parzen 
window density estimator which employs a reduced set of the 
available data sample. 

The basic problem in density estimation is to get accurately 
approximate, to within the data range, not only the peaks, or 
modes of the probability density function for the 
measurements but also its behavior between the peaks.  

In this paper we introduced a new approach for density 
estimation that addresses the above problem. In the proposed 
approach we integrate the expectation maximization (EM) 
algorithm and logistic regression model to get accurate density 
estimation for the given empirical density (normalized 
histogram for the given data). The proposed approach consists 
of two main steps. First, the logistic regression model is used 
to get initial estimation. Then we used a linear combination of 
Gaussian (LCG) with positive and negative components to 
model this deviation.  In order to estimate the parameters of 
this LCG (e.g weights, covariance, and means) we use EM 
algorithm. The final density estimation will be the summation 
of the density estimated using the logistic model and the error 
model obtained by the LCG.  

Logistic regression model is a very important member of the 
family of generalized linear model. It became a useful tool in 
the 1950s in application in biostatistics.  
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Expectation maximization algorithm is one of the most 
important algorithms that are used in density estimation. The 
algorithm appeared first in the late 1960s both in the general 
form [11] (see also [12]) and for a normal mixture [13]. EM 
algorithms became very popular a decade later, after the 
pivotal paper [14] extended this technique to a general 
problem of parameter estimation from an incomplete data set. 
Today a variety of EM-algorithms exist to find the maximum 
likelihood estimates (MLE) of parameters for mixed 
distributions [15-17].  

II. THE PROPOSED MODEL

Given a random vector Y , the relation: 

)()( yYY PP

defines the cumulative probability distribution function, CDF, 
of the random vector Y . The probability density function, 

PDF, )(yp , of the random vector Y  at a specific point y  is 

a nonnegative quantity and it is related to the CDF by the 
relation: 
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The density estimation problem can be stated as follows: 
given a random sample }...,,,{ 21 nD yyy  drawn from an 

unknown random distribution function and has empirical 

density function )(yf (normalized histogram), estimate the 

density function defined in Eq. (1) which underlies the 

distribution of the sample D .

The proposed model to estimate the probability density 
function from any empirical density is as follows: 
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Where the term m

T yy 1110 ...y is called the 

linear predictor, and m  is the number of feature in observed 
vector y .

In order to make the model shown in Eq. (2) suitable also for 
EM algorithm, instead of estimating the cumulative 
probability distribution, we will estimate the probability 
density function. So the model of Eq. (2) can be also used for 
density estimation by differentiating Eq. (2) with respect to y .

So the proposed model will be as follows:  
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Now in order to find )(yp , first we need to estimate the 

parameters of logistic regression model , and to find an 

accurate model for the error term )(y .  In the following 

sections we will explain in details how we can estimate these 
parameters. 

A. Parameter Estimation of Logistic Regression model  

In this paper, we introduced fast and accurate method to 
estimate the parameters of logistic regression model. This 
method based on finding the regression parameters that 
minimize the square error between the estimated density 

)(yp  and empirical density )(yf  as follows: 
2

1
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n
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ii yfyp                (4) 

To find 
*
that minimize Eq. (4) we need nonlinear 

optimization approach. In this paper we used Genetic 
algorithm as a nonlinear global optimization approach to 
estimate the logistic regression parameters [18].  

B. Parameter estimation for the error term )(y

Because the empirical density for each feature does not 
exactly follow the logistic model, there will be deviation 
between the empirical density and the estimated density. This 

deviation is represented in the error term )(y , which can be 

modeled by linear combination of Gaussian (LCG) with 
positive and negative components. The number of positive 
and negative components and the estimated parameters for 
each component is obtained using EM algorithm.  The 
proposed model for the error term is as follows: 
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where pC is the number of positive Gaussian components, 

nC  is the number of negative Gaussian components, w  is the 

mixing proportion (weights), and )|( y  is a Gaussian 

density having a shorthand notation ),( .

To estimate the parameters of the model shown in Eq. (5) we 
use the following algorithm 
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2. Compute the scaling factor for the deviations:
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3. If the factor s is less than an accuracy threshold, 

terminate and return the model 
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4. Otherwise consider the scaled-up absolute deviations 

)(
1

yp
s

and )(
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yn
s

 as two new “empirical 

densities” and use iteratively the conventional EM-
algorithm [16] to find the sizes of the Gaussian 
mixtures and their parameters. 

a. The size of each mixture corresponds the 
minimum of the integral absolute error 
between the scaled-up absolute deviation 

)(yp (or )(yn ) and its model  )(ypp

)(or ynp . The number of the 

components is increasing sequentially by 
unit step while the error is decreasing. 

b. Due to multiple local maxima, such a search 
may be repeated several times with different 
initial parameter values in order to select the 
best approximation. 

5. Scale down the subordinates models 

)(ypp and )(ynp (i.e. scale down the weights of 

their components ) and add the scaled model )(ypp

to 
y

y

T
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e
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 and subtract the scaled model 

)(ynp form 
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in order to form the desired 

model )(yp  as shown in Eq. (2). 

We use the Levy distance [19], ))(),(( yy FP , between 

the estimated model )(yP and the empirical distribution 

)(yF to evaluate the approximation quality. The distance is 

defined as the minimum positive value such that the two-
sided inequalities 
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III. EXPERIMENTAL RESULT AND CONCLUSIONS

The application domain in this case is medical screening of 
the bi-modal LDCT images having two dominant regions: the 
darker lungs and the brighter background consisting of the 
surrounding anatomical structures (e.g., chest, ribs, and liver). 
The lung tissues have to be accurately separated from the 
background in such a way that the lung borders closely 
approach the borders outlined by a radiologist. Figure 1 shows 
a typical CT slice (a) and its empirical density for both the 
lung and chest tissues (b). Note that these two empirical 
densities are calculated from 75% of the given data and the 
remaining 25% will be used for testing. Figure 2(a) shows the 
initial estimated logistic model for the empirical density of the 
lung tissues shown in Fig. 1(b). In this example we use only 
one feature (gray level intensity) so the logistic model has 

only two parameters ][ 10 . These two parameters 

are estimated using genetic algorithm and their values are 
shown in Table 1. The Levy distance of 0.16 between these 
two distributions (see Eq. (6)) indicates a large mismatch 
between the empirical distribution and the initial density 
estimation obtained by logistic model. Figure 2(b) shows the 
scaled absolute deviation between the estimated density using 
the logistic regression model and the empirical density of lung 
tissues and its estimated model using LCG. Figure 2(c) shows 
the components used for density estimation (logistic model, 
and LCG components).  The final estimated density for the 
lung empirical density is shown in Fig. 2(d). The resulting 
Levy distance of 0.0094 is notably smaller than before (0.16) 
indicating the close approximation. In the same way we will 
follow the same procedure to estimate the density for the chest 
tissues. The results for density estimation for the chest tissues 
is shown in Fig.3 and Table 1. Figure 4(a) shows the result of 
lung segmentation obtained by using Bayes classifier with 
equal a priori probability. The proposed approach achieves 
segmentation with accuracy 3.1% with respect to radiologist 
segmentation shown in Fig. 4(b). Figure 5 shows more results 
obtained by the proposed approach.  

These results and other experiments with multimodal medical 
images and remote sensing data show that the proposed 
approach produces accurate density estimation if it is 
compared with other existing approaches and this can help in 
many applications in image processing field such as image 
segmentation. The computations of the proposed approach is 
so simple and it takes few seconds for estimating any density 
(e.g. the algorithm takes 21 second to estimate the density for 
the lung tissues) 
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Fig. 1 (a) Typical CT slices, (b) Empirical density for both the 

lung tissues )(yLf , and the chest tissues )(yCf .
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Fig.2 (a) Initial estimated density for the lung tissues, (b) 

Estimated density for the absolute scaled deviation, (c) All 
components used for estimating the intensity of lung tissues, 

(d) Final density estimation for the lung tissues. 
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Fig. 3 Final density estimation for the lung tissues using the 
proposed approach. 

Fig.4 (a) Segmentation by the proposed approach (Error 3.1%), (b) Ground 
truth generated by radiologist. 

Table 1. Estimated parameters for logistic regression model for both lung and 
chest empirical densities. 

                                                                                      Error = 1.9% 

                                                                                     Error = 1.7% 

Fig. 5 (a) The original images, (b) The segmentation obtained by the proposed 
approach 

Parameters Lung tissues Chest tissues 

0 -4.1 -12.1 

1
1.05 0.21 

 


