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Abstract—Terminal localization for indoor Wireless Local Area
Networks (WLANS) is critical for the deployment of location-aware
computing inside of buildings. A major challenge is obtaining high
localization accuracy in presence of fluctuations of the received signal
strength (RSS) measurements caused by multipath fading. This paper
focuses on reducing the effect of the distance-varying noise by spatial
filtering of the measured RSS. Two different survey point geometries
are tested with the noise reduction technique: survey points arranged
in sets of clusters and survey points uniformly distributed over the
network area. The results show that the location accuracy improves
by 16% when the filter is used and by 18% when the filter is applied
to a clustered survey set as opposed to a straight-line survey set.
The estimated locations are within 2 m of the true location, which
indicates that clustering the survey points provides better localization
accuracy due to superior noise removal.

Keywords—Position measurement, Wireless LAN, Radio naviga-
tion, Filtering

I. INTRODUCTION

EVERAL applications have been proposed for wireless
Snetworks that require knowledge of terminal location.
The uses of terminal localization include providing user nav-
igation, supplying location context for web browsing, and
aiding network resource allocation [1]-[3]. Low cost Global
Positioning System (GPS) receivers have been shown to give
good localization accuracy in outdoor locations but they cannot
be used indoors or in dense urban environments since GPS
satellite signals are received only intermittently in these loca-
tions [4], [5]. For these reasons, indoor radio location based on
measuring the radio received signal strength (RSS) of several
wireless access points (WAPs) at the terminal is proposed
[6], [7]. Location estimates are calculated by comparing the
radio RSS values at the terminal with radio RSS values
measured at known locations during radio surveys [8]-[12].
Several location schemes based on this technique have been
demonstrated to provide accurate localization [13]-[15].

The accuracy of localization is limited by the measurement
noise which can cause two separate locations to appear iden-
tical with respect to RSS measurements. This noise is created
by thermal noise and random variations of the RSS created
by multipath propagation. The presence of noise increases
the number of survey points required to achieve the desired
localization accuracy, thereby increasing the required cost of
survey collection. Survey data collection is labor intensive
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and expensive, so significant effort has been expended on
finding noise removal techniques to reduce the required survey
collection cost. Past efforts on noise removal have processed
the RSS measurements over time, with several filters being
proposed [16]-[19]. If a mobile terminal is immobile during
data collection, much of the measurement noise created by
multipath propagation is time-invariant over the period of sur-
vey data collection [20], [21]. In the indoor environment, there
are radio signal scatterers and reflectors such as furniture and
doors which create multipath propagation and are immobile
during the period of a data collection session, but are unlikely
to all remain in the same position from the time of survey data
collection to the time of terminal localization. The effects of
these scatterers on the survey measurements is considered as
time-invariant measurement noise. The time-averaging filtering
algorithms proposed in the previous literature will not remove
this portion of the noise so radio location accuracy is still
below optimal levels.

The multipath propagation noise that is time invariant over
the period of survey collection can be removed by collecting
several survey sets at points significantly separated in time,
i.e. several hours or days, and then averaging the RSS mea-
surements over the multiple survey sets, but this significantly
increases the cost of survey data collection. In this paper,
a spatial domain filter is proposed to process the collected
RSS survey data to remove more multipath propagation noise
than the previously proposed filtering techniques. The lower
level of measurement noise in the survey data provided by
this filter creates a substantial accuracy improvement in the
localization. A new geometry of survey data collection for
RSS radio location is proposed where survey data points are
collected in small clusters of points located close together
with the clusters uniformly distributed over the network area.
It is shown that this new survey geometry, when used with
the spatial domain filter, provides an 18% improvement over
the standard survey data collection of points uniformly spaced
over the network area. The efficiency of the noise removal and
new survey data collection is tested via radio location over two
floors of the engineering classroom building at the University
of Victoria, British Columbia, Canada. The main contributions
of this paper are:

o Introduction of a spatial domain noise reduction tech-
nique to reduce time-invariant measurement noise caused
by multipath propagation and improves radio location
root mean square error (RMSE) by 16%.

o Proposes survey data collection at uniformly distributed
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Fig. 1. Radiolocation System Architecture

tight clusters of locations, as opposed to at locations
uniformly distributed over the network area, to facilitate
efficient noise removal. This improves mean radio loca-
tion RMSE by 18%.

« Presentation of a cross-validation technique to find the
parameters for the noise removal and location estimation
algorithms from survey data.

The total gain from the application of clustered survey set col-
lection and spatial-averaging improves radio location RMSE
by 23% (reducing the RMSE to 193.3 cm from 250.5 cm for
radio location on one floor of a standard office building).

The remainder of this paper is arranged as follows. Sec-

tion II describes the data collection methods for the survey
and how noise removal is performed. Section III describes the
localization algorithm. Section IV presents the results from use
of the new noise removal. Section V presents the conclusions
of the paper and describes future research directions.

II. DATA COLLECTION AND TRAINING

The localization system proposed in this paper consists of
a number of elements: (a) the WLAN to provide the radio
RSS measurements, (b) the mobile terminal whose location is
to be estimated, (c) the survey database, (d) the localization
algorithm. The localization system architecture is presented in
Figure 1.

The location-sensing system operates in three phases: data
collection, training, and localization. During the data collection
phase, an ultrasonic sensory network provides accurate true
locations for a set of survey points [22], while the WLAN
provides radio RSS measurements. The ultrasonic sensors can
locate the survey terminal to within 5 cm of its true location
which is better than what is needed for radio location [23]. The
survey point locations and radio RSS measurements are com-
bined and stored in a survey database. The ultrasonic sensors
are only used for localization during survey data collection.
After the completion of the data collection phase, the acoustic
sensors are removed. In the training phase, the parameters of
the localization algorithm are found. During the localization
phase, mobile terminals at unknown locations make RSS
measurements which the estimation algorithm processes using
the survey database to provide estimated locations.

Ideally, the RSS measurements stored in the survey database
are not contaminated with measurement noise. During data
collection, one of the prior art time filtering algorithms is

employed to remove the time-variant noise from the survey
RSS measurements [16]-[19]. The reduction of time-varying
noise is well studied with many algorithms presented in the
literature [24]-[28]. These algorithms cannot remove time-
invariant noise created by the multipath propagation by averag-
ing measurements collected at a single location over a window
of time [20], [21]. Thus, there will be some noise remaining in
the survey set. This paper proposes the use of spatial-averaging
of the survey RSS data during the training phase to remove
the remaining time-invariant multipath propagation noise.

The goal of the localization system is to estimate the
wireless terminal location vector 8 = [z y]T from the mea-
sured radio RSS vector v where superscript 7' denotes matrix
transpose. The estimated location given the radio RSS vector,
v, is denoted as 0 (v; P) where P is a vector containing
the parameters of the estimation algorithm. The parameters P
are a function of the network environment and are obtained
survey data sets [13]-[15], [23], [29], [30]. More information
on the exact form of the estimator used to generate the reported
accuracy results is provided in Section III. The survey database
entries contain the ground truth coordinates for each survey
point, the information on all WAPs currently detected by
the mobile terminal, and the RSS measurements for each
WAP detected at each survey point. For a given selection of
measuring WAPs, the i*" survey point is specified as (8;, v;)
where v; is the vector of radio RSS measurements made at
location ;. The total number of survey points is denoted as
N.

A. Noise Removal

Key to the design of our noise removal algorithm and
estimator is the assumption that the terminal locations, 6, are
samples of a random vector ® and the measured radio RSS
vectors, v, are samples of the random vector V' which have the
joint probability density function (PDF) of terminal locations
and measurements denoted as fg v (6, v).

In this section, a discrete Wiener filter is developed to
reduce the time-invariant noise and to complement the time-
variant noise reduction algorithm already in place in the data
collection phase. For a location, 6, the random vector of noisy
RSS measurements V' (0), is composed of a deterministic
portion, ¥ (0), and an additive random portion, N (8), so that

V(0)=v(0)+N(0). ¢y

The objective of the noise reduction technique developed
in this paper is to decrease the random noise process over
location, IN (@), in the RSS. The measured survey RSS for
location ; is one sample value of the random vector V (6;)
The goal of noise removal is to obtain an estimate of v (6;)
for 1 =1,..., N from the noisy measurements v;.

Noise removal is done for the RSS measurements for each
WAP independently. For the m!" WAP, a random vector V,,
is defined. The measured survey data for the m'* WAP,
Uy, 1s one sample vector of the random vector V,,. This
vector is modelled as the sum of two processes: ¥,,, which
is the deterministic RSS signal for radio location created by
immobile features in the network area, and IV,,, which is the
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measurement noise not useful for radio location. IN,,, reflects
the influence of furniture, shadowing effects, and the opening
and closing for doors on the RSS in the network environment.
N,, is time-invariant over the measurement period when the
survey data is measured at 6;, but it is unlikely to have the
identical value when a mobile terminal moves to this position
during radio location. The measurement model for the m!"
WAP is given by

Vm =Upm + Nm (2)

A discrete filter matrix, W, is derived so that noise reduced
measurements for the m** WAP are calculated with

‘A/'m = WTVnL R U (3)

The method we propose in this paper is to use a Wiener-Hopf
formulation of W. It is assumed that the measurement noise
vector is independent of v,,, so the Wiener-Hopf solution for
W is given by

W = [Cov (V)] Cov (B,n) 4)

where Cov () is the covariance operator [31], [32]. In (4), Dy,
is treated as a random vector.

The covariance matrix of ¥, is assumed to be exponential
with respect to separation distance of two points so that if
C%s 1, K] refers to the k" entry of the j** row of Cov (,,)
then

d

where d is a correlation distance constant. Exponential correla-
tion of RSS signals is often used for shadow fading in outdoor
locations [33]. The optimal correlation for indoor locations
is not known but it will be shown in Section IV that the
correlation in (5) provides good noise removal performance.
The measurement noise is assumed to be identically distributed
and independent for each survey point measurement so that

Cov (V;,) = CT2yy + 02T (6)

6,6
Cin i, K] = exp @M) “

where o2 is the mean noise power for each survey RSS

measurement normalized to the mean squared value of the
deterministic portion of the RSS and I is an appropriately
sized identity matrix. To remove noise from the measurements,
the covariances calculated from (5) and (6) are substituted into
(4) to obtain W which is then applied as demonstrated in (3)
to the vector of RSS measurements for each WAP. The noise
removal is performed on a given survey set once and the noise
reduced survey set is then used for radio location. The cost of
online radio location is not increased.

In Section IV, the results of this noise removal are presented
and compared with the use of uniform survey point collection.
It is known that noise removal works better if the correlation
of the components of the RSS signals v,, is higher; i.e. the
noise removal is more efficient for a given survey point if
many other survey points are located in close proximity. If
survey points are spread uniformly over a network area, the
noise removal for the RSS signal of each point will work
less effectively than if survey points are clustered together. It
will be demonstrated in the next section, that clustering points

for better noise removal provides substantial gains in location
accuracy.

B. Training

The accuracy of the radio location is a function of the noise
removal algorithm parameters d and o2 and the estimation
algorithm parameters P.

The technique to calculate the optimal parameters for radio
location accuracy uses two independent survey sets A and B of
RSS measurements taken at known locations [34]. Dataset A
is the survey set and dataset B is a so-called validation set. The
location of each data collection point in dataset B is estimated
using the estimation algorithm using survey set A after noise
removal for a several sets of parameter values. The parameter
that produces the minimum error are then used for location
estimation in the localization phase. If the sample locations for
validation dataset B are drawn from the same density fg ()
as the probability density function of terminal locations during
the localization phase then the parameter values found during
the training phase will approach the optimal value as the size
of the validation dataset B goes to infinity. In practice, only
finite size data sets may be used so sub-optimal calculations
of parameter values are performed.

Because collecting multiple datasets is costly and time
consuming, it is useful to determine the parameter values
using only the survey dataset with a so-called cross-validation
approach [34]. The cross-validation involves removing a single
point from the survey set, performing noise removal on the
remaining survey set and then localizing that survey point
using the rest of the survey points and their measurement
vectors. The localization error for the survey point is then
calculated. This process is iterated for all points in the survey
set and the cross-validation error value is calculated. For a
suitably large survey set, the noise removal and estimation
algorithm parameter values that produces the minimum cross-
validation error will be approximately equal to the optimal
values.

III. WLAN TERMINAL LOCALIZATION

This section describes how this survey data is used by the
location estimation algorithm shown in Figure 1. In indoor
locations, the relationship between RSS characteristics and
location is non-linear due to multipath and non-line-of-sight
radio signal propagation [20]. For terminal localization, a
Minimum Mean Square Error (MMSE) estimator using an
approximate joint density function of the RSS measurements
and terminal location created using the Parzen window esti-
mator is described below. For processing purposes, a subset
of the survey database is created by selecting all survey points
with the same measuring WAPs as the terminal to be located.
This selection method must be consistent from the survey
data collection procedure and the mobile terminal localization
procedure or otherwise an unwanted bias is created. A typical
selection method is to choose those m WAPs belonging to a
publicly maintained network that have the highest RSS viewed
by the mobile computing device; all survey points that have
visibility to these m WAPs make up the subset of survey points
used for localization.
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A. Parzen Window Estimator

The Parzen Window Estimator is an approximation to the
MMSE estimator. The Mean Square Error (MSE) of mobile
terminal localization, defined as

MSE:E{‘@(v)—@‘Q}, (7)

where |-| is the Euclidean length operator, is used as the crite-
rion to determine the quality of our localizations. The MMSE
which minimizes the expected MSE estimator is known to
be Orrnse (v) = E[O|V = wv] where E[-|[V = v] denotes
the expectation operator conditioned on the measured RSS
vector taking the value V' = v [29]. The MMSE estimation
is expanded as

Orivise (V) = /Of@(G\V:v)dO
S

B fSOf@y (6,v)de ®)
fS f@‘V (9, 'U) dO

where S is the region where the mobile terminal is known to
reside determined by the measuring WAP selection procedure
[29], [35]. The difficulty with mobile terminal localization
via direct application of (8) is the joint PDF, fg , (6, v), of
locations, ®, and RSS measurements, V', must be known. This
problem is circumvented by using a Parzen window technique
to approximate the joint PDF as a sum of kernel functions
with each kernel function centered on the joint location vector
and RSS measurement vector for each survey point [36]—
[38]. The approximate joint PDF of terminal locations and
measurements based on the survey data using the Parzen
window technique is given by

f@ﬁv (9,1)) =
(ho) " (he) 7 & v — v 00,
e 2}K< T >K6< W ) ©)

where K, (+) is the kernel function for measurements, Ky (-)
is the kernel function of terminal locations, N is the number
of survey points, and L is the number of RSS measurements
in each measurement vector. The constants h, and hg are
smoothing parameters known in the PDF approximation lit-
erature as kernel widths. For the kernel functions, we use the
standard multivariate Gaussian density functions:

K,(v) = (2r) "?exp(—vTv/2),and  (10)
Ky (8) (27) 2 exp (—-6760/2) . (11)

We use the properties of the first and second moments of
a Gaussian random vector to substitute (10) and (11) into (9)
and perform the integrations in (8). The terminal localization
calculation is then

N
6(v)=> w;(v)6; (12)
i=1

with the weight w; (v) for each survey point being given by

__ U (v;:,,) . (13)
Za K ()

The value of the smoothing parameter h, determines the
accuracy of the localization procedure. The optimal value of
h, is determined by the spatial correlation of the RSS vectors.
Small values of h, indicate that the RSS vector is subject
to large deterministic changes if the mobile devices moves a
small distance, while larger values of h, indicate that the RSS
vector undergoes only small deterministic changes with small
movements of the terminal.

To perform radio location and noise removal effectively, it is
necessary to use proper values of of the estimation algorithm
parameter P = {h,}; and the noise removal paremeters d and
o2, To obtain these values, the cross-validation of Section II-B
is used. Good search spaces for each value have been found
experimentally to be 0.25 < d < 1.50 metres, 0 < 02 < 1,
and 0.1 < h, < 6.0. The search foor good values via cross-
validation may be time consuming but it is performed offline
and only needs to be performed once for a given survey set.
The computational cost of online localization is not increased.

w; (v)

IV. RESULTS

Our experimental testbed is located on the fifth and sixth
floors of the six storey Engineering and Computer Science
Building (ECS) at the University of Victoria. The ECS building
has an architectural design with an open atrium structure in
the middle of the building extending from the first floor to
the top of the sixth floor. Radio RSS measurements from
WLAN wireless access points (WAPs) are collected at known
locations within the network area. Netstumbler, a software
utility for low-level interface access to a mobile terminal’s
RSS values, was used to gather the radio RSS data from the
WLAN wireless terminal [39]. Time-averaging was performed
over 30 seconds for all collected RSS values to remove time-
variant noise.

Radiolocation is performed with measurements from the
WAPs of the university’s public access WLAN that is con-
figured to maximize network coverage at minimum cost and
is not optimized for localization accuracy. Although private
WAPs, which can be readily identified by their SSIDs, could
potentially provide additional information that can be used
for improved estimation, they are not a reliable source of data
because private WAPs could be moved or shut off at any time.
In addition, the public access WAP antennas are fixed to the
ceilings giving them superior area coverage. The university
has installed four WAPs for the public WLAN on every floor
of the building.

Each floor has dimensions of 65.5 m by 33.5 m and includes
more than 40 rooms. The experiments were conducted in the
public conference rooms and hallways. The total size of these
restricted areas sums to 336 m?. Network access from the other
areas, such as offices, are more likely to be done via wired
LAN, as opposed to WLAN, so radio location is currently less
critical in these areas.
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TABLE 1
COMPARISON OF KERNEL WIDTH CALCULATIONS
Number of WAPs h, from h, from
Validation Set Cross-Validation

3 2.1 1.4
4 1.8 1.6
5 2.2 1.9
6 2.3 2.3
7 2.3 2.3
8 2.3 2.4
9 2.6 2.6
10 2.8 2.8
11 2.9 3.0
12 2.8 3.1

The survey database of the ECS sixth floor includes 261
survey point locations, while the survey database of the ECS
fifth floor contains 200 survey point locations. For all surveyed
points on both floors, more than 35 unique WAPs from the
university WLAN were visible to the mobile terminal, with
a minimum of 12 WAPs being visible at all survey points.
Except where otherwise noted, radio location was performed
with measurements from 12 WAPs.

A comparison of the best h, values obtained from the
two training set method and the cross-validation approach are
presented in Table 1. This table lists the optimal h, value
for when location is performed using only a given number
of measuring WAPs. In many cases, both approaches provide
identical values and in cases where they are not identical,
the kernel widths are very close. This verifies that the cross-
validation may be used to obtain good kernel widths without
the requirement of an extra survey set.

A. Accuracy with Noise Removal

To find the values of h,, d, and o2 for the radio location
algorithm and noise removal algorithms, cross-validation was
performed. The parameter values obtained from the cross-
validation process were used for noise removal and then
localization was performed on an independent test set of over
400 points for each floor to evaluate the localization accuracy.
For each floor, the test sets are collected on multiple days with
the minimum time between survey set and dataset collection
being two weeks with some dataset points collected up to
three months after the survey set data collection. The test sets’
locations are uniformly distributed over the public areas on
each floor. In order to determine the best distribution of survey
points for a survey set, two point sets were used as survey sets
and the resulting localization accuracy compared. In the first
set, the location points were collected in a uniform straight-
line fashion. In the second set, the locations were collected in
clusters clusters of four points. The point locations for each
type of survey set for the fifth floor are plotted in Figure 2.
The uniform survey set contains 215 points spaced at 70 cm
apart. The clustered survey set has 208 points. Points inside of
a cluster are spaced at 60 to 70 cm apart and the approximate
distance between clusters is 120 cm. In both cases, the RSS

values were averaged for 30 seconds at each survey point to
remove time varying noise. To show the advantage of the noise
removal, radio location was also performed on a survey set
which had only time filtering noise removal performed on it.

The results of the radio location experiments are summa-
rized in Table II. It can be seen that the time averaging noise
removal technique provides an improvement in radio location
accuracy. This improvement is about 16% (193.3 cm from
236.1 cm) when using the clustered survey set on the fifth
floor and 11 % (248 cm from 280 cm) on the sixth floor. It
is also noted that the clustered survey set provides accuracy
improvements to the uniform set even when no spatial filtering
is performed. This is because the Parzen window estimator
includes some spatial filtering already by from the weighted
averaging performed in the location estimate calculations. The
lower accuracy on the sixth floor is due to the presence of large
meeting rooms in the test area. Large open spaces have a lower
density of significant RSS features over the location domain
compared to hallways so the accuracy of pattern recognition
based radio location is lower in these areas. The test sets’
points are uniformly distributed over the floor so the uniform
survey set points are a better match to the test sets’ point
distributions, the gain in accuracy for the clustered survey set
is provided by the superior noise removal.

A more thorough comparison of radio location accuracy
for the fifth floor is obtained from the plot the cumulative
distribution function (CDF) of the distance between the true
terminal location and the estimated terminal location in Fig-
ure 3. This plot shows the probability that the distance error is
below the specified value on the x-axis. This plot shows that
the estimated location is within 400 cm of the true location
for the noise-reduced clustered survey set about 90 % of the
time but without the noise reduction the distance increases to
450 cm and this distance is 500 cm for the uniform survey
set. It is clearly seen that the spatial domain filter improves
the localization accuracy. It is also seen that survey points
in clusters provide superior accuracy to a uniform distributed
survey set locations.

V. CONCLUSION

In this paper, a distance-averaging noise removal filter that
decreases the effect of multipath propagation noise on the
survey RSS measurements collected for indoor radio location
purposes has been presented. Noise reduction for two distinct
geometries used in data collection of survey points was
examined. The results presented in this paper show that the
location accuracy improved by 16% when the noise reduction
filter is used These results indicate that survey data collection
in clusters of points allow a survey set to better characterize
the RSS in an indoor environment when the spatial domain
noise removal filter is used. Future work will investigate the
number of points in each cluster for optimal noise removal
and the required geometry of the cluster locations needed to
obtain the highest localization accuracy.
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TABLE II
RADIOLOCATION ACCURACY SUMMARY
Normal Survey Set Filtered Survey Set
hy RMSE hy d o2 RMSE
Fifth Floor Uniform Survey 4.3 250.5 cm 3.6 1000 cm 0.28 236.1 cm
Fifth Floor Clustered Survey 5.1 229.1 cm 35 550cm 0.2 193.3 cm
Sixth Floor Clustered Survey 3.2 280 cm 34 850cm 024 248 cm
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