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Delay-range-dependent exponential synchronization
of Lur’e systems with Markovian switching

Xia Zhou, Shouming Zhong

Abstract—The problem of delay-range-dependent exponential syn-
chronization is investigated for Lur’e master-slave systems with
delay feedback control and Markovian switching. Using Lyapunov-
Krasovskii functional and nonsingular M-matrix method, novel delay-
range-dependent exponential synchronization in mean square cri-
terions are established. The systems discussed in this paper is
advanced system, and takes all the features of interval systems, Itô
equations, Markovian switching, time-varying delay, as well as the
environmental noise, into account. Finally, an example is given to
show the validity of the main result.

Keywords—Synchronization, Delay-range-dependent, Markov
chain, Generalized Itô’s formula, Brownian motion, M-matrix.

I. INTRODUCTION

CHAOS is very interesting nonlinear phenomenon and has
been intensively studied in the last three decades. It is

found to be useful or has great potential in many disciplines.
Since Pecora and Carroll [1] addressed the synchronization
problem of chaotic systems using a drive-response conception,
the subject of chaotic synchronization has received consid-
erable attentions [2-11]. Synchronization has been widely
explored in a variety of fields, such as physical, chemical
and ecological systems, human heartbeat regulation, secure
communications, and so on.

Recently, the effect of delay on synchronization between
two chaotic systems has been reported in many literatures due
to the unavoidable signal propagation delay. In [12], Yalcin
ME, Suykens JAK, and Vandewalle studied the master-slave
synchronization of Lur’e systems with time-delay of the form

M :

{
ẋ(t) = Ax(t) +Bf(Cx(t))
p(t) = Hx(t)

(1)

S :

{
ẏ(t) = Ay(t) +Bf(Cy(t)) + u(t)
q(t) = Hy(t)

(2)

G : u(t) = K(x(t)− y(t)) +M(p(t− τ1)− q(t− τ1)). (3)

with master system M, slave system S and controller G,
where the time delay τ1 > 0 is constant, state vectors
x, y ∈ Rn, outputs of subsystems p, q ∈ Rl, H,A,B,C
are real matrices, f(.) is a sector condition. They are derived
some delay-independent and delay-dependent synchronization
criteria. In [13], Jinde Cao , H.X.Li b, Daniel W.C. Ho,
studied the systems (1)–(3), employed model transformation,
which leads to some conservative synchronization criteria
for inducing additional terms. In [14], Ji Xiang, Yanjun Li,
WeiWei used Integral inequality approach studied the same
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systems and again improved synchronization condition. In
[15], Tao Li, Jianjiang Yu, and Zhao Wang, they considered
the time-varying delay which often arises and may vary in a
range, they studied the system of the form

M :

{
ẋ(t) = Ax(t) +Bf(Cx(t))
p(t) = Hx(t)

(4)

S :

{
ẏ(t) = Ay(t) +Bf(Cy(t)) + u(t)
q(t) = Hy(t)

(5)

G : u(t) =M(p(t− d(t))− q(t− d(t))). (6)

where the time-delay h1 ≤ d(t) ≤ h2 and ˙d(t) < μ. And de-
rived the delay-range-dependent asymptotical synchronization
criteria.

The hybrid systems combine a part of the state that takes
values continuously and another part of the state that takes
discrete values, an important class of hybrid systems is the
semi-linear stochastic differential equation with Markovian
switching of the form

M :

{
ẋ(t) = A(r(t))x(t) +B(r(t))f(Cx(t))
p(t) = Hx(t)

(7)

S :

{
ẏ(t) = A(r(t))y(t) +B(r(t))f(Cy(t)) + u(t)
q(t) = Hy(t)

(8)

G : u(t) =M(p(t− d(t))− q(t− d(t))). (9)

where r(t) is a Markov chain taking values in S =
{1, 2, ..., N}. Continuous-time Marlov chains are used to
model the abrupt changes in system structure and parameters.
If we also take the environmental noise into account, the
systems (7)–(9)becomes

M :

⎧⎨
⎩

dx(t) = [A(r(t))x(t) +B(r(t))f(Cx(t))]dt
+D(r(t))x(t)dw(t)

p(t) = Hx(t)
(10)

S :

⎧⎨
⎩

dy(t) = [A(r(t))y(t) +B(r(t))f(Cy(t))
+ u(t)]dt+D(r(t))y(t)dw(t)

q(t) = Hy(t)
(11)

G : u(t) =M(p(t− δ(t))− q(t− δ(t))). (12)

In this paper, we will discuss (10)–(12), which is advanced
system, and takes all the features of interval systems, Itô
equations, Markovian switching, time-varying delay, as well as
the environmental noise, into account. Then we will give the
delay-range-dependent exponential synchronization criteria.

The rest of this paper is organized as follows. In section
2, we introduce the basic notation, lemma’s and some
definitions. In section 3, give our main results and corollary’s.
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In section 4, an example is given to show the effectiveness
and less conservatism of the proposed criterion.

II. NOTATION AND PRELIMINARIES

Throughout this article, unless otherwise specified, we use
the following notations. Let |.| be the Euclidean norm in Rn. If
A is a vector or matrix, its transpose is denoted by AT . If A is
a matrix, its trace norm is denoted by |A| =

√
trace(ATA)

while its operator norm is denoted by ‖A‖ = sup{|Ax| :
|x| = 1}. If A is a symmetric matrix, denote by λmax(A) and
λmin(A) its largest and smallest eigenvalue, respectively.

Let R+ = [0,∞) and τ > 0. Let C([−τ, 0];Rn) denote
the family of continuous functions ϕ from [−τ, 0] to Rn with
the norm ‖ϕ‖ = sup−τ≤θ<0|ϕ(θ)|. Let δ(t) : R+ → [0, τ ] be
a continuous function which will stand for the time delay of
the systems discussed in this paper. As a standing hypothesis,
we shall always assume that δ(t) is differentiable and its
derivative is bounded by a constant less than one, namely
˙δ(t) ≤ δ0 < 1, ∀t ≥ 0. Let {Ω,F ,P} be a complete prob-

ability space equipped with some filtration {Ft}t≥0 satisfying
the usual conditions, i.e., the filtration is right continuous
and F0-contains all P-null sets. Cb

F0
([−τ, 0];Rn) : the family

of all bounded, C([−τ, 0];Rn)-valued, F0measurable random
variables. Let W(t) be a standard n-dimensional Brownian
motion defined on the probability space. Let r(t), t ≥ 0 be a
right-continuous Markov chain on the probability space taking
values in a finite state space S = {1, 2, ..., N} with generator
Γ = (rij)N×N given by

P{r(t+Δ) = j|r(t) = i} =

{
rijΔ+ o(Δ), if i 	= j

1 + riiΔ+ o(Δ), if i = j

where Δ > 0. Here rij ≥ 0 is the transition rate from i to j
if i 	= j, while rii = −

∑
j �=i rij . We assume that the Markov

chain r(t) is independent of the Brownian motion w(t). It is
well known that almost every sample path of r(t) is a right-
continuous step function with a finite number of simple jumps
in any finite subinterval of R+. In other words, there is a
sequence of stopping times 0 = τ0 < τ1 < ... < τk → ∞
almost surely such that r(t) =

∑∞
k=0 r(τk)I[τk, τk+1), where

IA denotes the indicator function of set A.
If A and B are symmetric matrix, by A > B and A ≥ B

we means that A − B is positive and nonnegative definite,
respectively. If A1 is a vector or matrix, by A1 
 0 we mean
all elements of A1 are positive. If A1 and A2 are vectors
or matrices with same dimensions, we write A1 
 A2 if
and only if A1 − A2 
 0. Moreover, we also adopt here the
traditional notation by letting ZN×N = {A = [aij ]N×N :
aij ≤ 0, i 	= j}. Now defining the synchronization error as
e(t) = y(t) − x(t), (10)–(12) has the error-dynamics system
of the form⎧⎪⎪⎨
⎪⎪⎩

de(t) = [A(r(t))e(t) +B(r(t))η(Ce, x)
+MHe(t− δ(t))]dt
+D(r(t))e(t)dw(t), ∀t ≥ 0

e(t) = ξ(t), t ∈ [−τ, 0]

(13)

where ξ(t) = ψ(t) − φ(t), t ∈ [−τ, 0], η(Ce, x) := f(Ce +
Cx) − f(Cx) and assume η(Ce, x) ≤ KCe(t). State vectors

x, y ∈ Rn, outputs of subsystems p, q ∈ Rl, and matrices
H ∈ Rl×n, Ar ∈ Rn×n, Br ∈ Rn×nh , C ∈ Rnh×n, Dr ∈
Rn×n,K ∈ Rn×nh , r(t) is a Markov chain taking values in
S = {1, 2, ..., N}.

The purpose of this paper is to find the condition made
the erro-dynamics systems (13) exponential stable in mean
square, which means that the system described by (10)–(12)
exponential synchronization in mean square.

We still denote by x(t, ξ), it is known that {x(t, ξ), r(t)}t≥0

is a C([−τ, 0];Rn)× S-valued Markov process. Its infinitesi-
mal operator L, acting on functional V :C([−τ, 0];Rn)× S ×
R+ → R, is defined by

LV (x(t), i, t) = lim
Δ→0+

1

Δ
[E(V (x(t +Δ), r(t +Δ),

t+Δ)|x(t), r(t) = i)− V (x(t), i, t)]. (14)

Definition 2.1. The master-slave system (10)–(12) can be
exponentially synchronized in mean square, if the trivial solu-
tion of equation (13) is exponentially stable in mean square,
i.e.

lim
t→∞

sup
1

t
ln(E(|e(t; ξ)|2) < 0 (15)

for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn)

Definition 2.2. A square matrix A = [aij ]N×N is
called a nonsingular M -matrix if A can be expressed
in the form A = sI − B with s > ρ(B) while all the
elements of B are nonnegative, where I is the identity matrix
andρ(B) the spectral radius of B. It is easy to see that a
nonsingular M -matrix A has nonpositive off-diagonal and
positive-diagonal entries, that is aii > 0, while aij ≤ 0, i 	= j.

lemma 2.1. (See Ref.[16]) If A ∈ ZN×N , then the following
statements are equivalent.
1) A is a nonsingular M -matrix.
2) A is semipositive; that is, there exists x 
 0 in RN such
that Ax
 0.
3) A−1 exists and its elements are all nonnegative.
4) All the leading principal minors of A are positive; that is∣∣∣∣∣∣∣
a11 · · · a1k
...

...
ak1 · · · akk

∣∣∣∣∣∣∣
> 0, for every k = 1, 2, ..., N

lemma 2.2. Let x ∈ Rn,y ∈ Rn, matrix B has the suitable
dimensional, constant ε > 0 and Q > 0. Then, we have

2xTQBy ≤ εxTQx+ ε−1yTBTQBy

III. MAIN RESULTS

Theorem 3.1. Assume that there are two constants λ1 and
λ2 such that

λ1 > τλ2 (16)
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Assume also that there are symmetric matrices Qi > 0,Ei ≥ 0
and constants εi > 0(1 ≤ i ≤ N) such that

λmax(QiAi +AT
i Qi + 2QiBiKC +DT

i QiDi

+
N∑
j=1

rijQj + Ei + εiQi) ≤ −λ1 (17)

λmax(

N∑
j=1

rijEj) ≤ λ2 (18)

Ei ≥
1

1− δ0
ε−1
i HTMTQiMH (19)

for all i ∈ S. Then, for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn),

the solution of (13) has the property that

lim
t→∞

sup
1

t
ln(E(|e(t; ξ)|2) < −λ < 0 (20)

In other words, (13) is exponentially stable in mean square
and Lyapunov exponent is not greater than −λ. Moreover, the
positive number λ is the unique root to

αλ + (λ2 + α1λ)τe
λτ = λ1 (21)

where α = max1≤i≤N λmax(Qi),
α1 = max1≤i≤N λmax(Ei)
Proof. Let us first show that (21) does has a unique root λ > 0.
Choose i for λminEi to be the smallest of λminEj(1 ≤ i ≤
N), i.e., λminEi = min1≤i≤N λminEj . Let v 	= 0 be the
corresponding eigenvector of Ei, i.e., Eiv = λmin(Ei)v. Then
vTEiv = λmin(Ei)|v|

2. Moreover

vT (

N∑
j=1

rijEj)v =

N∑
j �=i

rijv
TEjv + riiv

TEiv

≥

N∑
j �=i

rijλmin(Ej)|v|
2 + riiλmin(Ei)|v|

2

≥ λmin(Ei)|v|
2

N∑
j=1

rij

= 0.

Thus

λmax(

N∑
j=1

rijEj)|v|
2 ≥ vT (

N∑
j=1

rijEj)v ≥ 0

Since |v| > 0, we have

λmax(
N∑
j=1

rijEj) ≥ 0

so we obtain λ2 ≥ 0, with (16), we see that λ1 > 0, so (21)
does has a unique root λ > 0. Next, we show that the solution
of (13) has the property of (20). Fix any initial data ξ and
write e(t; ξ) = e(t). Let us define the Lyapunov functional
V : C([−τ, 0];Rn)× S ×R+ → R by

V (e(t), i, t) = e(t)TQie(t) +

∫ t

t−δ(t)

e(s)TEie(s)ds

while by (14)

LV (e(t), i, t) = 2e(t)TQi[A(r(t))e(t) +B(r(t))η(Ce, x)

+MHe(t− δ(t))] +

N∑
j=1

rije(t)
TQje(t))

+ (D(r(t))e(t))TQiD(r(t))e(t)

− (1− ˙δ(t))e(t− δ(t))TEie(t− δ(t))

+

N∑
j=1

rij

∫ t

t−δ(t)

e(θ)TEje(θ)dθ

+ e(t)TEie(t)

Using the assumptions,(17), (18), (19), and lemma 2.2, we
compute

LV (e(t), i, t) ≤ e(t)T (QiAi +AT
i Qi)e(t) + e(t)TEie(t)

+ 2e(t)TQiBiKCe(t) + e(t)T (DT
i QiDi)e(t)

+ 2e(t)TQiMHe(t− δ(t))

+ e(t)T (

N∑
j=1

rijQj)e(t)

− (1− δ0)e(t− δ(t))TEie(t− δ(t))

+

∫ t

t−δ(t)

e(θ)T (

N∑
j=1

rijEj)e(θ)dθ

≤ e(t)T (QiAi +AT
i Qi + 2QiBiKC

+DT
i QiDi

N∑
j=1

rijQj + Ei + εiQi)e(t)

+ e(t− δ(t))T [ε−1
i HTMTQiMH

− (1− δ0)Ei]e(t− δ(t))

+

∫ t

t−δ(t)

e(θ)T (

N∑
j=1

rijEj)e(θ)dθ

≤ −λ1|e(t)|
2 + λ2

∫ t

t−δ(t)

|e(θ)|2dθ

(22)

Let us define the Lyapunov functional V1 : C([−τ, 0];Rn) ×
S ×R+ → R by

V1(e(t), i, t) = eλtV (e(t), i, t)

By the generalized Itô formula, we have

EV1(e(t), i, t) = EV1(ξ, r(0), 0)+E

∫ t

0

LV1(e(s), r(s), s)ds

(23)
and it is straightforward to see that

LV1(e(t), i, t) = eλt[λV (e(t), i, t) + LV (e(t), i, t)] (24)

we note that

V (e(t), i, t) ≤ α|e(t)|2 + α1

∫ t

t−δ(t)

|e(θ)|2dθ (25)
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Substituting (22), (24), (25) into (23) we obtain that

EV1(e(t), i, t) ≤ EV1(ξ, r(0), 0) + E

∫ t

0

eλsλ(α|e(s)|2

+ α1

∫ s

s−δ(s)

|e(θ)|2dθ)ds

+ E

∫ t

0

eλs(−λ1|e(s)|
2

+ λ2

∫ s

s−δ(s)

|e(θ)|2dθ)ds

= (λ2 + α1λ)E

∫ t

0

eλs(

∫ s

s−δ(s)

|e(θ)|2dθ)ds

− (λ1 − αλ)E

∫ t

0

eλs|e(s)|2

+ EV1(ξ, r(0), 0)

(26)

We compute∫ t

0

eλs(

∫ s

s−δ(s)

|e(θ)|2dθ)ds ≤

∫ t

0

eλs(

∫ s

s−τ

|e(θ)|2dθ)ds

≤

∫ t

−τ

∫ θ+τ

θ

eλsds|e(θ)|2dθ

≤ τeλτ
∫ t

−τ

eλθ|e(θ)|2dθ

(27)

Substituting (27) into (26), and using (21) we get

EV1(e(t), i, t) ≤ EV1(ξ, r(0), 0)

+ (λ2 + α1λ)τe
λτ

∫ 0

−τ

eλs|ξ(s)|2ds

(28)

On the other hand, we also note that

EV1(e(t), r(t), t) = eλtE[e(t)TQr(t)e(t)

+

∫ t

t−δ(t)

e(θ)TEr(t)e(θ)dθ]

≥ eλtE[e(t)TQr(t)e(t)]

≥ eλt min
1≤i≤N

λmin(Qi)E|e(t)|2

(29)

By (28), (29), we know that

lim
t→∞

sup
1

t
ln(E(|e(t; ξ)|2) < −λ < 0

In other words, (13) is exponentially stable in mean square
and Lyapunov exponent is not greater than −λ.

If we let εi = 1, ∀i ∈ S in Theorem 3.1, we obtain the
following useful result.
Corollary 3.1. Assume that there are two constants λ1 and λ2
such that

λ1 > τλ2

Assume also that there are symmetric matrices Qi > 0, and
Ei ≥ 0(1 ≤ i ≤ N) such that

λmax(QiAi +AT
i Qi + 2QiBiKC+

DT
i QiDi +

N∑
j=1

rijQj + Ei +Qi) ≤ −λ1

λmax(

N∑
j=1

rijEj) ≤ λ2

Ei ≥
1

1− δ0
HTMTQiMH

for all i ∈ S. Then, for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn),

the solution of (13) is exponentially stable in mean square and
Lyapunov exponent is not greater than −λ.

Remark3.1. Corollary 3.1 is stated without εi, so it looks
neat, but Theorem 3.1 is more general since it allows to
choose different εi for different situations in practice, for
example, if we choose εi = ‖HM‖, we can get corollary 3.2.

Corollary 3.2. Assume there are symmetric matrices Qi >

0, and Ei ≥ 0(1 ≤ i ≤ N) such that

Ei ≥
1

1− δ0
‖HM‖−1HTMTQiMH

for all i ∈ S. Suppose we can verify λ1 > τλ2 where

λ1 =− max
1≤i≤N

{λmax(QiAi +AT
i Qi + 2QiBiKC

+DT
i QiDi + ‖HM‖Qi +

N∑
j=1

rijQj + Ei)}

λ2 = max
1≤i≤N

λmax(

N∑
j=1

rijEj)

Then, for any initial data ξ ∈ Cb
F0
([−τ, 0];Rn), the solution

of (13) is exponentially stable in mean square and Lyapunov
exponent is not greater than −λ. And the λ can be determined
in the same way as stated in Theorem 3.1. Let we define

β =
1

1− δ0
max

1≤i≤N
{λmax‖HM‖−1HTMTQiMH}

If we choose Ei = βI in corollary 3.2, we can easily get
corollary 3.3.

Corollary 3.3. Assume there are symmetric matrices Qi >

0(1 ≤ i ≤ N) such that

λmax(QiAi +AT
i Qi + 2QiBiKC

+DT
i QiDi + ‖HM‖Qi +

N∑
j=1

rijQj) < −β

Then the solution of (13) has the property

lim
t→∞

sup
1

t
ln(E(|e(t; ξ)|2) < −λ < 0

That is the solution of (13) exponentially stable in mean square
and Lyapunov exponent is not greater than −λ. Where the λ
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is the unique root to

λ(α+ βτeλτ ) = λ1

Where α is the same as defined in Theorem 3.1 but

λ1 =− max
1≤i≤N

{λmax(QiAi +AT
i Qi + 2QiBiKC

+DT
i QiDi + ‖HM‖Qi +

N∑
j=1

rijQj)} − β

Theorem 3.2. Define the matrix

K =diag(−λmax(A1 +AT
1 + 2B1KC)− ‖HM‖ − ‖D1‖

2,

...− λmax(AN +AT
N + 2BNKC)− ‖HM‖ − ‖DN‖2)

and the vector κ = (1 − δ0)

⎡
⎢⎣

‖HM‖−1

...
‖HM‖−1

⎤
⎥⎦

(Set a−1 = ∞ when α = 0 as ussal.)If K−Γ is a nonsingular
M -matrix and

κ
 (K − Γ)−1�1 (30)

where �1 = (1, ...1)T , then the solution of (13) exponentially
stable in mean square.

Proof. Since K − Γ is a nonsingular M -matrix, by lemma
2.1, we observe that K − Γ−1 exist and all the elements of
K−Γ−1 are nonnegative. K−Γ−1 is invertible, its each row
must have at least one nonzero, and hence positive element.
Let

�q = (q1, q2, ..., qN )T = (K − Γ)−1�1

then �q 
 0. By (30)

qi‖HM‖ < 1− δ0, ∀ i ∈ S

Let Qi = qI for i ∈ S. so,

λmax(‖HM‖−1HTMTQiMH) ≤ qi(‖HM‖) < 1− δ0

therefore β < 1. On the other hand

λmax(QiAi +AT
i Qi + 2QiBiKC +DT

i QiDi

+ ‖HM‖Qi +
N∑
j=1

rijQj)

≤ qi[λmax(Ai +AT
i + 2BiKC) + ‖Di‖

2I

+ ‖HM‖I] +
N∑
j=1

rijqj

= −[(K − Γ)�q]i

where [(K − Γ)�q]i stands for the ith element of the vector
(K − Γ)�q. Then

λmax(QiAi +AT
i Qi + 2QiBiKC +DT

i QiDi

+ ‖HM‖Qi +

N∑
j=1

rijQj) ≤ −1 < −β

for all i ∈ S. Therefore the result now follows from corollary
3.3.

Remark3.2. In [15], the authors studied the global
asymptotically synchronization results for Lur’e systems
with delay feedback control. However, the stochastic term
and Markovain switching were not taken into account in the
models. Therefore, our developed results in this paper are
more general than reported in [12].

Remark3.3. In [16], the author studied the exponential
stability of stochastic delay interval systems with Markovian
switching using Lyapunov-Krasovskii functional and
nonsingular M-matrix methods which the same in this
paper. But he studied the system is linear system, while we
studied the system is nonlinear.

Remark3.4. In [15], the authors studied the global
asymptotically synchronization results for Lur’e systems
with delay feedback control. But we studied the exponential
synchronization in mean square. So, our results are better
than reported in [12].

IV. AN ILLUSTRATIVE EXAMPLE

In this section we shall present one example to illustrate our
theory.

Example 4.1. Let w(t) be a 2-dimensional Brownian mo-
tion, let r(t) be a right-continuous Markov chain taking values
in S = {1, 2} with generator Γ = (rij)2×2:

−r11 = r12 > 0, −r22 = r21 > 0

of course w(t) and r(t) are assumed to be independent.
Consider the Lur’e systems with delay feedback control and
Markovian switching of the form

M :

⎧⎨
⎩

dx(t) = A(r(t))x(t)dt +D(r(t))x(t)dw(t)
p(t) = Hx(t)
x(t) = φ(t), t ∈ [−τ, 0]

S :

⎧⎨
⎩

dy(t) = [A(r(t))y(t) + u(t)]dt+D(r(t))y(t)dw(t)
q(t) = Hy(t)
y(t) = ψ(t), t ∈ [−τ, 0]

G : U(t) =M(p(t− δ(t))− q(t− δ(t))).

where δ(t) = 0.1 sin2 t and ˙δ(t) = 0.2 sin(t) cos(t) ≤

0.1 = δ0, A1 =

[
−1 0
0 −2

]
, A2 =

[
−2 −2
0 −1

]
,

D1 =

[
1 0
0 1

]
, D2 =

[
1
2 0
0 1

2

]
, M =

[
1
81 − 1

81
0 2

9

]
,

H =

[
9 1

2
0 1

2

]
. Then the solution of Lur’e systems

with delay feedback control and Markovian switching is
exponentially synchronization in mean square.

V. CONCLUSION

The problem of master−slave exponential synchronization
for Lure systems has been addressed by employing time-
delay feedback control techniques. By using the methods of
Lyapunov-Krasovskii functional and nonsingular M-matrix,
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some effective criterions for achieving synchronization have
been derived. Finally, an example has been given to illustrate
the validity theoretical results obtained in this paper.
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