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Delay-independent Stabilization of Linear Systems
with Multiple Time-delays

Ping He, Heng-You Lan, and Gong-Quan Tan

Abstract—The multidelays linear control systems described by
difference differential equations are often studied in modern control
theory. In this paper, the delay-independent stabilization algebraic
criteria and the theorem of delay-independent stabilization for linear
systems with multiple time-delays are established by using the
Lyapunov functional and the Riccati algebra matrix equation in the
matrix theory. An illustrative example and the simulation result, show
that the approach to linear systems with multiple time-delays is
effective.

Keywords—Linear system, Delay-independent stabilization, Lya-
punov functional, Riccati algebra matrix equation.

I. INTRODUCTION

THE CE-2 spacecraft is the second of a series of Chinese
missions to the moon. The tasks performed by the guid-

ance, navigation and control (GNC) system are very complex
due to the requirements for real time control, high reliability,
and high accuracy, This is the time-delays of the GNC system.

Furthermore, the multidelays linear control systems de-
scribed by difference differential equations are often re-
searched in modern control theory (see, for example, [1], [2]).
If this sore of control system is unstable, then its essential to
introduce appropriate state feedback control law to make that
the controlled closed-loop linear systems with multiple time-
delays is asymptotically stable (see [3]), and its asymptotically
stabilization does not rely on the free choosing of time-
delays constants, which is the delay-independent stabilization
of linear systems with multiple time-delays.

These time-delays problems had been discussed by
Amemiya [1], Akazawa [2], Datk [4], Kamen [5] and Lewis
& Anderson [6], etc. And an inherent limitation for the
stabilization problem of state feedback stabilization for linear
discrete systems with transmission delays is obtained (see [7]).
The exact and approximate spectrum assignment properties
associated with realizable output-feedback pole-placement-
type controllers for single-input single-output linear time-
invariant time-delay systems with commensurate point delays
is investigated [8]. Further, Sen [8] dealted with the synthesis
problem of pole-placement-based controllers for systems with
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point delays. A delay-dependent solution has been derived
using a special Lyapunov-Krasovskii functional, the result is
based on a sufficient condition and it thus entails an over
design (see [9]). A delay-dependent stabilization criterion is
devised by taking the relationship between the terms in the
Leibniz-Newton formula into account based on the Lyapunov
(see [10]). A characterization of delay-independent stability,
stability of rays in the delay-interference phenomenon was
made (see [11]).

But the most of the accomplished achievement is related
to the freely choosing of time-delays constants and of which
the problems discussed is relatively simple and the methods
investigated is relatively complex, so it is far away from the
development of modern spaceflight control theory.

Based on the above work, the main purpose of this paper is
to provide a new design technique of state feedback control,
and to show that the designed state feedback control ensures
the dynamic responds of closed-loop linear systems with
multiple time-delays to be asymptotically stable, which is
extended to a general and large of linear systems. Then,
in order to obtain the desirable properties, we combine the
Lyapunov functional and the Riccati algebra matrix equation
in the matrix theory. Next, the delay-independent stabiliza-
tion algebraic criteria and the theorem of delay-independent
stabilization for linear systems with multiple time-delays are
established in this paper. At last, an illustrative example and
the simulation result show that the approach to this sore of
control system is effective and convenient and some open
questions are given.

II. PROBLEM FORMULATION

The modern trend in engineering systems is toward greater
complexity, due mainly to the requirements of complex tasks
and good accuracy. Complex systems may have multiple inputs
and multiple outputs and may be time varying.

In the conventional approach to the design of a multiple
inputs and multiple outputs control system, we design a
controller (compensator) such that the dominant closed-loop
poles have a design damping ratio ξ and an undamped natural
frequency ωn. In this approach, the order of the system may be
raised by 1 or 2 unless pole-zero cancellation takes place. Note
that in this approach we assume the effects on the responses
of non-dominant closed-loop poles to be negligible.

Consider the following control system{
ẋ = Ax+Bu,
y = Cx+Du,

(1)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

281

where x ∈ Rn is the system state variables group, u ∈ Rp is
the system input variables group, y ∈ Rq is the system output
variables group, A is called the state matrix (n × n), B is
called the input matrix (n× p), C is called the output matrix
(q × n), D is called the direct transmission matrix (q × p).

A block diagram representation of (1) is show in Fig. 1. We
shall choose the state feedback control law as follows

u(t) = Kx(t). (2)

Fig. 1. Block diagram of the linear, continuous-time control system.

This means that the control signal u(t) is determined by an
instantaneous state. Such a scheme is called state feedback.
The (n×n) matrix K is called the state feedback gain matrix.
We assume that all state variables are available for feedback.
In the sequel, we assume that u(t) is unconstrained. A block
diagram for this system is shown in Fig. 2.

Fig. 2. Closed-loop control system with u(t) = Kx(t).

This closed-loop system has no input. Its objective is to
maintain the zero output. Because of the disturbances that may
be present, the output will deviate from zero. The nonzero
output will be returned to the zero reference input because of
the state feedback scheme of system. Such a system where
the reference input is always zero is called a regulator system
(that is, the system is always a nonzero constant, the system
is also called a regulator system.).

Substituting the state feedback control law (2) into the
system (1), we have

ẋ = (A+BK)x,

which implies
x = e(A+BK)x(0),

where x(0) is the initial state caused by external disturbances.
The stability and transient-response characteristics are deter-
mined by the eigenvalues of matrix A + BK. If matrix K
is chosen properly, the matrix A + BK can be made an
asymptotically stable matrix, and for all x(0) �= 0, it is
possible to make x(t) approach 0 as t approaches infinity.
The eigenvalues of matrix of A+BK are called the regulator
poles. If these regulator poles are placed in the left-half s plane

(see [3]), then x(t) approaches 0 as t approaches infinity. The
problem of placing the regulator poles (closed-loop poles) at
the desired location is called a pole-placement problem.

In what follows, we shall prove that arbitrary pole placement
for linear systems with multiple time-delays is possible and
establish that delay-independent stabilization of linear systems
with multiple time-delays if and only if the system is com-
pletely state controllable.

The following a general form of the dynamic equation of
linear control system with multiple time-delays was introduced
and considered in [1], [2] and [4]-[6]:⎧⎨

⎩ ẋ(t) = Ax(t) +
m∑
i=1

x(t− τi) +Bu(t),

y(t) = Cx(t) +Du(t),
(3)

where x(t) ∈ Rn is the system state variables group,
u(t) ∈ Rp is the system input variables group, y(t) ∈ Rq

is the system output variables group, A,Ai(i = 1, 2, · · · ,m)
are respectively real matrixes of (n × n) dimensional, B is
respectively real matrix of (n × p) dimensional, m is a any
real and positive number and τi(i = 1, 2, · · · ,m) is a arbitrary
nonnegative real number.

Suppose that the open-loop system (3) is unstable when
u(t) ≡ 0, the task of this paper is to find the appropriate
choice for the state feedback control law (2) such that the
ordinary solution of the closed-loop system⎧⎨

⎩ ẋ(t) = Ax(t) +
m∑
i=1

x(t− τi) +BKx(t),

y(t) = Cx(t) +DKx(t).
(4)

is asymptotic stable and the stabilization is irrelevant with
the selection of nonnegative time-delay constants τi(i =
1, 2, · · · ,m).

III. PRELIMINARIES

Definition 1: For (1), if there is a matrix K which makes
all characteristic values of A + BK have negative real part,
then (A,B) is able to be stable.

Definition 2: ([3]) For (1), (C,A) is observable if
rank[CT , ATCT , · · · , (AT )n−1CT ] = n.

Definition 3: ([12]) For any time t ≥ 0, let x : K → Rn be
a continuous mapping. If xt(s) = x(t + s), s ∈ [−τ, 0], then
xt(s) ∈ C0(J,Rn), that is, xt(s) is continuous on the interval
(J,Rn). Denote the norm of xt(s) by ‖xt(s)‖ = supt∈J |x(t+
s)| for all J = [−τ, 0] and K = [−τ,+∞).

Lemma: ([13]) For (1), if the following conditions are
satisfied:

(i) CTC = Q is positive definite symmetric matrix,
(ii) (A,B) is able to be stable,
(iii) (C,A) is observable,

then there is a unique solution matrix P, which is positive def-
inite symmetry matrix for the Riccati algebra matrix equation

ATP + PA− PBBTP +Q = 0. (5)

Definition 4: The system (3) is called delay-independent
stable if and only if its zero solution is asymptotically stable
for all τi(i = 1, 2, · · · ,m).
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Definition 5: If there is a state feedback control law (2)
such that the controlled closed-loop system (4) respect to the
system (3) is asymptotically stable, and the stabilization is
irrelevant with the selection of nonnegative real time-delays
constants τi(i = 1, 2, · · · ,m), we say that the system (4) is
the delay-independent stable and the state feedback control
law (2) is the delay-independent stabilization.

IV. MAIN RESULTS

Theorem: For (3), assume that the following conditions are
satisfied:

(i) (A,B) is able to be stable,
(ii) (C,A) is observable,
(iii) there are a output matrix C and positive definite

symmetric matrix Pi(i = 1, 2, · · · ,m) such that
(a) CTC = Q is positive definite symmetric matrix,
(b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q−
m∑
i=1

P1 −PA1 −PA2 · · · −PAm

−AT1 P P1 0 · · · 0
−AT2 P 0 P2 · · · 0

...
...

...
. . .

...
−ATmP 0 0 · · · Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= E (6)

where P is the solution matrix of the Riccati algebra matrix
equation (5), and E is a positive definite matrix.

Then there must be K = − 1
2B

TP in (2) such that the
controlled closed-loop linear system (4) respect to (3) is delay-
independent stable. That is, the state feedback control law (2)
determined by such that (3) delay-independent stabilization.

Proof: From (i), (ii) and (iii) and the lemma, it’s easy to
know that about subpositive symmetric matrix Q, there is
a unique positive definite and symmetric solution P for the
Riccati algebra matrix equation (5). According to this, we can
construct a Lyapunov functional

V (xt) = x(t)TPx(t) +

m∑
i=1

∫ t

t−τi
x(ξ)TPix(ξ)dξ. (7)

Then

λmin(P )|x(t)|2
≤ V (xt)

≤ λmax(P )|x(t)|2 +
m∑
i=1

λmax(Pi)

∫ t

t−τi
|x(ξ)|2dξ, (8)

where λmin(P ) is the smallest characteristic of the matrix P ,
λmax(P ) is the maximum characteristic of the matrix P .

Letting K = − 1
2B

TP in (4), it follows from (i), (ii) and

(iii) that

V̇(4)(xt)

= x(t)T (ATP + PA− PBBTP +
m∑
i=1

Pi)x(t)

+
m∑
i=1

x(t)T (ATi P + PAi)x(t− τi)

−
m∑
i=1

x(t− τi)
TPix(t− τi)

= −ωTEω, (9)

where V̇(4)(xt) is all derivatives of V (xt) along the track of
(4) when the parameter t change, E determined by condition
(iii) is a positive definite symmetric matrix and

ω =

⎡
⎢⎢⎢⎣

x1(t) x2(t) · · · xn(t)
x1(t− τ1) x2(t− τ1) · · · xn(t− τ1)

...
...

. . .
...

x1(t− τm) x2(t− τm) · · · xn(t− τm)

⎤
⎥⎥⎥⎦ .

It follows from the Cayley-Hamilton theorem in [14] that
and λmin(E) > 0 and

V̇(4)(xt)

≤ −λmin(E)(| x(t) |2 +

m∑
i=1

x(t− τi)
2)

≤ −λmin(E) | x(t) |2 . (10)

From (8), (10) and the results in [15], now we know that the
controlled closed-loop linear system (4) respect to the system
(3) is asymptotically stableand the stabilization does not rely
on the selection of nonnegative time-delay constant τi(i =
1, 2, · · · ,m).

Hence, the state feedback control law (2) determined by
K = − 1

2B
TP such that (3) delay-independent stabilization.

This completes the proof.
Remark: We only make equation transformation at (9)

without the inequality of expanding and shrinking for the proof
of the above theorem, we can see that the condition of the
criterion in this paper is expanded compared to pre-existing
criterions [1], [2], [4]-[6], and the stabilization problem of (3)
is become more generalized.

V. ILLUSTRATE

In this section, in order to show that the approach of this
paper to this sore of control system is effective and convenient,
we give an illustrative example and the simulation result.
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Example: Considering the following second order system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ẋ1(t)
ẋ2(t)

]
=

[
8.5 12
12 8.5

] [
x1(t)
x2(t)

]

+

[
1 0
−1 −1

] [
x1(t− τ1)
x2(t− τ1)

]

+

[ −1 0
−1 1

] [
x1(t− τ2)
x2(t− τ2)

]

+

[
4 3
3 4

] [
u1(t)
u2(t)

]

y(t) =

[
2 −2
2 2

] [
x1(t)
x2(t)

]

+

[
3 −2
1 4

] [
u1(t)
u2(t)

]

(11)

Solution: Firstly,

A =

[
8.5 12
12 8.5

]
, B =

[
4 3
3 4

]
, C =

[
2 −2
2 2

]
,

so it is easy to know (11) is not stable when u(t) ≡ 0.
Secondly, we can know that (A,B) is able to stable and

(C,D) is observable.

Then, Q = CTC =

[
8 0
0 8

]
is positive definite symmetric

matrix and we have the Riccati algebra matrix equation as
follows [

8.5 12
12 8.5

]T
P + P

[
8.5 12
12 8.5

]

−P

[
4 3
3 4

] [
4 3
3 4

]T
P +

[
8 0
0 8

]
= 0

Thus, by using the soft MATLAB, we obtain

P =

[
1 0
0 1

]
.

Without loss of generality, let

P1 = P2 =

[
1 0
0 1

]
in the condition (c) of Theorem. Then from (6), we have

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

6 0 −1 0 1 0
0 6 1 1 1 −1
−1 1 1 0 0 0
0 1 0 1 0 0
1 1 0 0 1 0
0 −1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It’s easy to know E is positive. Hence, if the state feedback
control law

u(t) = −1

2
BTPx(t) = −1

2

[
4 3
3 4

]
x(t) (12)

is designed, then (11) is delay-independent stable.
Simulation: Suppose that simulation time is 20 second and

simulation step length is 0.01 second. We can intercalate that

the first step signal action time is begining at 1 second and the
second step signal action time is begining at 4 second. We can
intercalate that the first time-delay is 1 second and the second
time-delay is 2 second.

The simulation structure diagram of (11) is shown in Fig.
3.

(i) Structure diagram for (11).

(ii) Subsystem for block (A,B,A1 , A2 , T1 , T2 ).

(iii) Matrix structure.

Fig. 3. Simulation structure diagram of (11).

When u(t) ≡ 0, the dynamic response of (11) is shown in
Fig. 4.

When u(t) = − 1
2

[
4 3
3 4

]
x(t)

�
= u∗(t), the dynamic

response of the system (11) is shown in Figure 5.
From the Fig. 4, we can know that the opened-loop linear

system (3) is unstableand from the Fig. 5, we can know
that the controlled closed-loop linear system (4) of (3) is
asymptotically stable. That is, the approach presented in this
paper to linear systems with multiple time-delays is effective.

VI. OPEN QUESTION

In this paper, there are still many problems remain to be
dissolved.
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Fig. 4. Dynamic response of the system (11) at u(t) ≡ 0.

Fig. 5. Dynamic response of (11) at u∗ (t).

Question 1: For the matrix

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q−
m∑
i=1

P1 −PA1 −PA2 · · · −PAm

−AT1 P P1 0 · · · 0
−AT2 P 0 P2 · · · 0

...
...

...
. . .

...
−ATmP 0 0 · · · Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

in which Q,P and Ai(i = 1, 2, · · · ,m) are determined by
character of (3). In order to as possible that E is a positive
definite, we must choose proper Pi(i = 1, 2, · · · ,m). If we can
not find proper Pi(i = 1, 2, · · · ,m), then we may be mistaken
that (3) can’t stabilization. So we must present the generally
method of selection Pi(i = 1, 2, · · · ,m) in the future.

Question 2: Combining the matrix

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q−
m∑
i=1

P1 −PA1 −PA2 · · · −PAm

−AT1 P P1 0 · · · 0
−AT2 P 0 P2 · · · 0

...
...

...
. . .

...
−ATmP 0 0 · · · Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with (3), we can know that E is a (n2+n)× (n2+n) matrix.

The check computation of positive definite symmetric matrix
is too heavy to practical engineering application at system
order times rised. So we must present the generally succinctly
method of check matrix E positive definite in the future.

Question 3: In condition (iii) of Theorem, Q = CTC is a
positive definite symmetric matrix. Hence, the output matrix
in this paper is still limited by some conditions. Therefore, it
still needs to be further research.
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