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Delay-dependent stability analysis for uncertain
switched neutral system

Lianglin Xiong, Shouming Zhong, and Mao Ye

Abstract—This paper considers the robust exponential stability
issues for a class of uncertain switched neutral system which delays
switched according to the switching rule. The system under consider-
ation includes both stable and unstable subsystems. The uncertainties
considered in this paper are norm bounded, and possibly time varying.
Based on multiple Lyapunov functional approach and dwell-time
technique, the time-dependent switching rule is designed depend on
the so-called average dwell time of stable subsystems as well as the
ratio of the total activation time of stable subsystems and unstable
subsystems. It is shown that by suitably controlling the switching
between the stable and unstable modes, the robust stabilization of the
switched uncertain neutral systems can be achieved. Two simulation
examples are given to demonstrate the effectiveness of the proposed
method.

Keywords—Switched neutral system, exponential stability, mul-
tiple Lyapunov functional, dwell time technique, time-dependent
switching rule.

I. INTRODUCTION

ASwitched system is a dynamical system that consists
of a finite number of subsystems and a logical rule

which orchestrates switching between these subsystems. Such
system has gained a great deal of attention mainly because
various real-world systems, such as chemical processing [1],
communication networks, traffic control [2]-[4], control of
manufacturing systems [5]-[6], automotive engine control and
aircraft control [7] can be modeled as switched systems. In
the past, large number of excellent papers and monographs on
the stability of switched systems have been published[8]-[13],
and the reference therein. Dwell time technique is an effective
tool for analyzing the stability of switched systems.

On the other hand, time-delay is a common phenomenon
in engineering control design. During recent decades, great
efforts have been made by mathematicians as well as engineers
to study the stability of neutral systems. Various analysis
techniques have been utilized to derive asymptotical stability
criteria for neutral systems [14]-[22]. Generally speaking, the
current results for this time-delay systems can be classified
into two categories: delay-independent and delay-dependent
conditions. Delay-independent criteria do not employ any
information on the size of the delay; while delay-dependent
criteria make use of such information at different levels. Delay-
dependent stability conditions are generally less conservative
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than delay-independent ones especially when the delay is small
[15]. To the best of our knowledge, it seems that few people
have studied the problem of stability for switched neutral
control system besides [23]-[25]. With single Lyapunov ap-
proach and multiple approach, delay-independent stabilization
conditions for the switched neutral system were obtained in
[23]. Lately, with single Lyapunov approach, delay-dependent
stability conditions for the switched neutral system are derived
in [24] and [25]. All switching rules designed in these papers
are trajectory dependent. However, it is very practical to
obtain the time-controlled switching rule for the switched
neutral systems. Moreover, the delays are remained the same
according to the switching rule in [23]-[25]. All of those have
motivated our research.

In this paper, we are interested in the robust exponential
stabilization synthesis for switched neutral system that consists
of stable and unstable modes. The delays in the systems
are switched according to the switching law. New classes of
multiple Lyapunov functionals are constructed for new delay-
dependent exponential stability condition of the switched sys-
tem, and dwell-time technique is used to analyze the stability
property, as a result the criterion on delay-dependent stability
is derived in terms of linear matrix inequalities. The switching
rule designed in this paper depends on not only the ratio of
the total activation time of stable modes and unstable modes
but also the so-called average dwell time of stable modes.
This paper is organized as follows. Section 2 describes the
switched neutral system and introduces some notations and
lemmas that will be used in the rest of this paper. Section
3 gives our main results in this paper. Simulation examples
are given to demonstrate the effectiveness of our theoretical
results in section 4. Some conclusions are drawn in Section 5.

A. Problem statement and preliminaries

Nomenclature
Rn n-dimensional real space
Rn×n set of all real n by n matrices
xT or AT transpose of vector x (or matrix A)
P > 0 (respectively, P < 0) matrix P is symmetric

positive (respectively, negative) definite
P ≥ 0 (respectively, P ≤ 0) matrix P is symmetric

positive (respectively, negative) semi-definite
* the elements below the main diagonal of a symmetric

block matrix
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Consider the following switched uncertain neutral system:

Ξ0 :

⎧⎨⎩
ẋ (t) − Cσ(t)(t)ẋ

(
t − τσ(t)

)
=

Aσ(t)(t)x (t) + Bσ(t)(t)x
(
t − rσ(t)

)
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0]

(1)

where x (t) ∈ Rn is the state vector , rσ(t), τσ(t) > 0
are constant time delays, τ = max {τi : i ∈ σ(t)}, r =
max {ri : i ∈ σ(t)}, ρ = max {τ, r} and ϕ (θ) is the initial
condition function. σ(t) ∈ M = {1, 2, · · · ,m} is piece-
wise constant switching signal. This means that the matrices
(Aσ(t)(t), Bσ(t)(t), Cσ(t)(t)) are allowed to take values, at an
arbitrary time, in the finite set

(Aσ(t)(t), Bσ(t)(t), Cσ(t)(t)) ∈ {(A1(t), B1(t), C1(t),

· · · , (Am(t), Bm(t), Cm(t))}. (2)

The system matrices are assumed to be uncertain and satisfy

[Ai(t), Bi(t), Ci(t)] = [Ai, Bi, Ci] + DF (t)[Eai, Ebi, Eci],
(3)

where Ai, Bi, Ci, D, Eai, Ebi, Eci are constant matrices with
appropriate dimensions for i ∈ M , and and F (t) is an un-
known, real, and possibly time-varying matrix with Lebesgue
measurable elements, satisfying

FT (t)F (t) ≤ I. (4)

The following definitions are necessary.
Definition 1: ([11]) The equilibrium of system (1) is said

to be exponentially stable under the switching rules σ(t), if
there exist scalars α > 0 and γ ≥ 1 such that for all x (t) the
following inequality holds:

‖x (t)‖ ≤ γe−α(t−t0) ‖φ‖1ρ ,

where ‖·‖denote the Euclidean norm and ‖ϕ‖1ρ =

max
{

max
−ρ≤s≤0

‖ϕ (s)‖ , max
−ρ≤s≤0

‖ϕ′ (s)‖
}

.

Definition 2: ([11]) For any T2 > T1 ≥ 0, let Nσ(T1, T2)
denote the number of switching of σ(t) over (T1, T2). If
Nσ(T1, T2) ≤ N0 + (T2 − T1)/Ta holds for Ta > 0, N0 ≥ 0,
then Ta is called average dwell time. As commonly used in
the literature, we choose N0 = 0.
Before presenting the main result, we first state the following
lemmas which will be used in the proof of our main result.

Lemma 1: ([26]) Given matrices Q = QT , H and E of
appropriate dimensions, then

Q + HFE + ET FT HT < 0

for all F satisfying FT (t)F (t) ≤ I , if and only if exists an
ε > 0 such that

Q + εHHT + ε−1ET E < 0

Lemma 2: ([27]) For given matrices A11, A12, A22 with
appropriate dimensions,[

A11 A12

∗ A22

]
< 0

holds if and only if A22 < 0, A11 − A12A
−1
22 AT

12 < 0.
Lemma 3: For any constant matrices Q11, Q12, Q22 ∈

Rn×n,

(
Q11 Q12

∗ Q22

)
> 0, scalar h > 0, and vector function

ẋ : [−h, 0] → Rn such that the following integration is well
defined, then

−h

∫ t

t−h

[
x(t)
ẋ(t)

]T [
Q11 Q12

∗ Q22

] [
x(t)
ẋ(t)

]
dt

≤ −
⎡⎣ ∫ t

t−h x(s)ds

x(t)
x(t − h)

⎤⎦T

[
Q11 Q12 −Q12

∗ Q22 −Q22

∗ ∗ Q22

][

∫ t
t−h x(s)ds

x(t)
x(t − h)

]. (5)

Proof. Following Jensen’s integral inequality [28], one can
obtain

−h

∫ t

t−h

[
x(t)
ẋ(t)

]T [
Q11 Q12

∗ Q22

] [
x(t)
ẋ(t)

]
dt

≤ −
[ ∫ t

t−h x(s)ds∫ t
t−h ẋ(s)ds

]T [
Q11 Q12

∗ Q22

] [ ∫ t
t−h x(s)ds∫ t
t−h ẋ(s)ds

]

= −
[ ∫ t

t−h x(s)ds

x(t) − x(t − h)

]T [
Q11 Q12

∗ Q22

] [ ∫ t
t−h x(s)ds

x(t) − x(t − h)

]
. (6)

Re-arranging some terms of (6) yields (5). This completes the
proof.

From (1), the system discussed in this paper is a general
form of that considered in [23]-[25]. In addition, the switched
neutral system consists of both stable modes and unstable
modes. The aim of this paper is to find a new strategy for
the exponential stabilization of the switched neutral system.

B. Stability analysis

In this section, we establish exponential stability of switched
neutral systems incorporating stable and unstable modes. Let
i ∈ Ss and j ∈ Su be respectively the set of indices of stable
and unstable modes.

Firstly consider the nominal and stable switched neutral
subsystems{

ẋ (t) − Ciẋ (t − τi) = Aix (t) + Bix (t − ri)
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] , i ∈ Ss

(7)

Choose a new class of Lyapunov functionals candidate for
systems (7) as following

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t), (8)

where

Vi1(t) =xT (t)Pix(t),

Vi2(t) =ri

∫ 0

−ri

∫ t

t+θ

[
x(s)
ẋ(s)

]T

e−αi(t−s)

×
[

Qi11 Qi12

∗ Qi22

] [
x(s)
ẋ(s)

]
dsdθ,

Vi3(t) =
∫ t

t−τi

ẋT (s)e−αi(t−s)Rix(s)ds,

scalars αi > 0, matrices Pi > 0, Ri > 0, Qi11 > 0, Qi22 >
0, Qi12 with appropriate dimensions to be determined. The
following lemma gives a decay estimation of Vi(t) along the
state trajectory of systems (7).

Lemma 4: Given scalars αi > 0, if there exist matrices
Pi > 0, Qi11 > 0, Qi22 > 0, Qi12 and NT

il (l = 1, · · · , 5)
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are any matrices with appropriate dimensions, such that the
following LMIs hold:

Qi =
(

Qi11 Qi12

∗ Qi22

)
> 0, i ∈ Ss (9)

φi =

⎛⎜⎜⎜⎜⎝
φi11 φi12 φi13 φi14 φi15

∗ φi22 φi23 φi24 φi25

∗ ∗ φi33 φi34 φi35

∗ ∗ ∗ φi44 φi45

∗ ∗ ∗ ∗ φi55

⎞⎟⎟⎟⎟⎠ < 0, (10)

where

φi11 =αiPi + PiAi + AT
i Pi + r2

i Qi11

− e−αiriQi22 + NT
i1Ai + AT

i Ni1,

φi12 =r2
i Qi12 − NT

i1 + AT
i Ni2,

φi13 =PiCi + NT
i1Ci + AT

i Ni3,

φi14 =PiBi + NT
i1Bi + AT

i Ni4 + e−αiriQi22,

φi15 = − e−αiriQT
i12 + AT

i Ni5,

φi22 =r2
i Qi22 − NT

i2 − Ni2,

φi23 =NT
i2Ci − Ni3, φi55 = −e−αiriQi11,

φi24 =NT
i2Bi − Ni4, φi25 = −Ni5,

φi35 =CT
i Ni5, φi45 = BT

i Ni5 + e−αiriQT
i12,

φi33 = − e−αiτiRi + NT
i3Ci + CT

i Ni3,

φi34 =NT
i3Bi + CT

i Ni4,

φi44 = − e−αiriQi22 + NT
i4Bi + BT

i Ni4,

then along the trajectory of the systems (7), it follows that

Vi(t) � e−αi(t−t0)Vi(t0), i ∈ Ss. (11)

Proof. Along the trajectories of systems (7), with lemma 3, it
hold that

V̇i1(t) = 2xT (t)Pi[Aix (t) + Bix (t − ri) + Ciẋ (t − τi)],

(12)

V̇i2(t) = r2
i

[
x(t)
ẋ(t)

]T [
Qi11 Qi12

∗ Qi22

] [
x(t)
ẋ(t)

]
− αiVi2(t) − ri

∫ t

t−ri

[
x(s)
ẋ(s)

]T

e−αi(t−s)

×
[

Qi11 Qi12

∗ Qi22

] [
x(s)
ẋ(s)

]
ds

� r2
i

[
x(t)
ẋ(t)

]T [
Qi11 Qi12

∗ Qi22

] [
x(t)
ẋ(t)

]
− αiVi2(t)

−e−αri

⎡⎣ ∫ t

t−ri
x(s)ds

x(t)
x(t − ri)

⎤⎦T ⎡⎣ Qi11 Qi12 −Qi12

∗ Qi22 −Qi22

∗ ∗ Qi22

⎤⎦
×

⎡⎣ ∫ t

t−ri
x(s)ds

x(t)
x(t − ri)

⎤⎦ , (13)

V̇i3(t) = ẋT (t)Riẋ(t) − ẋT (t − τi)e−ατiRiẋ(t − τi)
− αiVi3(t). (14)

For any matrices Nil(l = 1, · · · , 5), it follows from the
systems (7) that

[xT (t)NT
i1 + ẋT (t)NT

i2 + ẋT (t − τi)NT
i3 + xT (t − ri)NT

i4

+(
∫ t

t−ri
x(s)ds)T NT

i5] × [Aix (t) − ẋ (t)
+Bix (t − ri) + Ciẋ (t − τi)] = 0. (15)

Then, from (12)-(15), one can obtain that

V̇i(t) + αiVi(t) � αix
T (t)Pix(t) + 2xT (t)Pi[Aix (t)

+ Bix (t − ri) + Ciẋ (t − τi)] + ẋT (t)Riẋ(t)

+ r2
i

[
x(t)
ẋ(t)

]T [
Qi11 Qi12

∗ Qi22

] [
x(t)
ẋ(t)

]

− e−αri

⎡⎣ ∫ t

t−ri
x(s)ds

x(t)
x(t − ri)

⎤⎦T ⎡⎣ Qi11 Qi12 −Qi12

∗ Qi22 −Qi22

∗ ∗ Qi22

⎤⎦
×

⎡⎣ ∫ t

t−ri
x(s)ds

x(t)
x(t − ri)

⎤⎦ − ẋT (t − τi)e−αiτiRiẋ(t − τi)

+ [xT (t)NT
i1 + ẋT (t)NT

i2 + ẋT (t − τi)NT
i3

+ xT (t − ri)NT
i4 + (

∫ t

t−ri

x(s)ds)T NT
i5]

× [Aix (t) − ẋ (t) + Bix (t − ri) + Ciẋ (t − τi)]

=ξT (t)φiξ(t) < 0,

where

ξT (t) = [xT (t) ẋT (t) ẋT (t − τi) xT (t − ri) (

∫ t

t−ri

x(s)ds)T ]

Thus, V̇i(t)+αiVi(t) � 0. Integrating these inequalities gives
the inequalities (11). This completes the proof. �

With the uncertainty described by (3) and (4), the following
corollary is obtain for the switched neutral subsystems as{

ẋ (t) − Ci(t)ẋ (t − τi) = Ai(t)x (t) + Bi(t)x (t − ri) ,
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] , i ∈ Ss

(16)
Corollary 1: Given scalars αi > 0, if there exist scalars

εi > 0 and matrices Pi > 0, Qi11 > 0, Qi22 > 0, Qi12,
NT

il {l ∈ (1, · · · , 5)} with appropriate dimensions, such that
the following LMIs hold

Qi =
(

Qi11 Qi12

∗ Qi22

)
> 0, (17)

ϕi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϕi11 φi12 ϕi13 ϕi14 φi15 NT
i1D PiD

∗ φi22 φi23 φi24 φi25 NT
i2D 0

∗ ∗ ϕi33 ϕi34 0 NT
i3D 0

∗ ∗ ∗ ϕi44 0 NT
i4D 0

∗ ∗ ∗ ∗ φi55 NT
i5D 0

∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ −εiI

⎞⎟⎟⎟⎟⎟⎟⎟⎠
< 0

(18)
where

ϕi11 = φi11 + 2εiE
T
aiEai, ϕi13 = φi13 + 2εiE

T
aiEci,

ϕi14 = φi14 + εiE
T
aiEbi, ϕi33 = φi33 + 2εiE

T
ciEci,

ϕi34 = φi34 + εiE
T
ciEbi, ϕi44 = φi44 + εiE

T
biEbi,
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with φikl(i ∈ Ss, k, l = (1, · · · , 5)) are defined in lemma 4,
then along the trajectory of the systems (16), it follows that

Vi(t) � e−αi(t−t0)Vi(t0), i ∈ Ss. (19)

Proof. Replaced Ai, Bi, Ci in LMIs (9) respectively with
Ai(t), Bi(t), Ci(t) which described in (3) and (4). φi are
changed into φ̃i as following

φ̃i =φi + H

(
F (t) 0

F (t)

)
E

+ ET

(
F (t) 0

F (t)

)T

HT < 0. (20)

where
E =

(
Eai 0 Eci Ebi 0
Eai 0 Eci 0 0

)
HT =

(
DT Ni1 DT Ni2 DT Ni3 DT Ni4 DT Ni5

DT Pi 0 0 0 0

)
From lemma 1, the above inequality (20) holds if and only if
there exist some scalars εi > 0 such that

φi + εiE
T E + ε−1

i HHT < 0. (21)

With lemma 2, the aforementioned inequality (21) is equiva-
lent to LMIs (18). This complete the proof. �

The following lemma will be given for the nominal and
unstable switched neutral subsystems such that{

ẋ (t) − Cj ẋ (t − τj) = Ajx (t) + Bjx (t − rj)
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] , j ∈ Su

(22)

Choose another class of Lyapunov functionals candidate of the
following form

Vj(t) = Vj1(t) + Vj2(t) + Vj3(t), (23)

where

Vj1(t) =xT (t)Pjx(t),

Vj2(t) =rj

∫ 0

−rj

∫ t

t+θ

[
x(s)
ẋ(s)

]T

eβj(t−s)

×
[

Qj11 Qj12

∗ Qj22

] [
x(s)
ẋ(s)

]
dsdθ,

Vj3(t) =
∫ t

t−τj

ẋT (s)eβj(t−s)Rjx(s)ds,

scalars βj > 0, Pj , Rj , Qj11, Qj22 are positive definite sym-
metric, Qj12 are any matrices with appropriate dimensions to
be determined.

Lemma 5: Given scalars βj > 0, if there exist matrices
Pj > 0, Qj11 > 0, Qj22 > 0, Qj12 and NT

jl{l = 1, · · · , 5}
are any matrices with appropriate dimensions, such that the
following LMIs hold:

Qj =
(

Qj11 Qj12

∗ Qj22

)
> 0, j ∈ Su, (24)

φj =

⎛⎜⎜⎜⎜⎝
φj11 φj12 φj13 φj14 φj15

∗ φj22 φj23 φj24 φj25

∗ ∗ φj33 φj34 φj35

∗ ∗ ∗ φj44 φj45

∗ ∗ ∗ ∗ φj55

⎞⎟⎟⎟⎟⎠ < 0, (25)

where

φj11 = − βjPj + PjAj + AT
j Pj + r2

j Qj11

− Qj22 + NT
j1Aj + AT

j Nj1,

φj12 =r2
j Qj12 − NT

j1 + AT
j Nj2,

φj13 =PjCj + NT
j1Cj + AT

j Nj3,

φj14 =PjBj + NT
j1Bj + AT

j Nj4 + Qj22,

φj15 = − QT
j12 + AT

j Nj5,

φj22 =r2
j Qj22 − NT

j2 − Nj2,

φj23 =NT
j2Cj − Nj3,

φj24 =NT
j2Bj − Nj4,

φj25 = − Nj5, φj35 = CT
j Nj5,

φj33 = − eβjτj Rj + NT
j3Cj + CT

j Nj3,

φj34 =NT
j3Bj + CT

j Nj4, φj45 = BT
j Nj5 + QT

j12,

φj44 = − Qj22 + NT
j4Bj + BT

j Nj4, φj55 = −Qj11,

then along the trajectory of the systems (22), it follows that

Vj(t) � eβj(t−t0)Vj(t0), j ∈ Su. (26)

Proof. Similar to the proof of lemma 4, any matrices Njk(k =
1, · · · , 5) with appropriate dimensions, it follows that

V̇j(t) − βjVj(t) � −βjx
T (t)Pjx(t) + 2xT (t)Pj [Ajx (t)

+ Bjx (t − rj) + Cj ẋ (t − τj)] + ẋT (t)Rj ẋ(t)

+ r2
j

[
x(t)
ẋ(t)

]T [
Qj11 Qj12

∗ Qi22

] [
x(t)
ẋ(t)

]

−
⎡⎣ ∫ t

t−rj
x(s)ds

x(t)
x(t − rj)

⎤⎦T ⎡⎣ Qj11 Qj12 −Qj12

∗ Qj22 −Qj22

∗ ∗ Qj22

⎤⎦
×

⎡⎣ ∫ t

t−rj
x(s)ds

x(t)
x(t − rj)

⎤⎦ − ẋT (t − τj)e
βjτj Rj ẋ(t − τj)

+ [xT (t)NT
j1 + ẋT (t)NT

j2 + ẋT (t − τj)N
T
j3

+ xT (t − rj)N
T
j4 + (

∫ t

t−rj

x(s)ds)T NT
j5]

× [Ajx (t) − ẋ (t) + Bjx (t − rj) + Cj ẋ (t − τj)]

=ξT (t)φjξ(t) < 0,

where ξT (t) are defined in lemma 4. Thus, V̇j(t)−βjVj(t) �
0. Integrating these inequalities give inequalities (26). This is
the end of proof. �

Similar to corollary 3.1, the following corollary is given for
the switched neutral subsystems (22) with uncertain structure
satisfy (3) and (4), such that{

ẋ (t) − Cj(t)ẋ (t − τj) = Aj(t)x (t) + Bj(t)x (t − rj)
x (t0 + θ) = ϕ (θ) ,∀θ ∈ [−ρ, 0] , j ∈ Su

(27)
Corollary 2: Given scalars βj > 0, if there exist scalars

εj > 0 and matrices Pj > 0, Qj11 > 0, Qj22 > 0, Qj12,
NT

jl{l ∈ (1, · · · , 5)} with appropriate dimensions, such that
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the following LMIs hold

Qj =

(
Qj11 Qj12

∗ Qj22

)
> 0, (28)

ϕj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕj11 φj12 ϕj13 ϕj14 φj15 NT
j1D PjD

∗ φj22 φj23 φj24 φj25 NT
j2D 0

∗ ∗ ϕj33 ϕj34 0 NT
j3D 0

∗ ∗ ∗ ϕj44 0 NT
j4D 0

∗ ∗ ∗ ∗ φj55 NT
j5D 0

∗ ∗ ∗ ∗ ∗ −εjI 0
∗ ∗ ∗ ∗ ∗ ∗ −εjI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0

(29)

where

ϕj11 = φj11 + 2εjE
T
ajEaj , ϕj13 = φj13 + 2εjE

T
ajEcj ,

ϕj14 = φj14 + εjE
T
ajEbj , ϕj33 = φj33 + 2εjE

T
cjEcj ,

ϕj34 = φj34 + εjE
T
cjEbj , ϕj44 = φj44 + εjE

T
bjEbj ,

with φjkl(j ∈ Su, k, l = (1, · · · , 5)) are defined in (24), then
along the trajectory of the systems (27), it follows that

Vj(t) � eβj(t−t0)Vj(t0), j ∈ Su. (30)

Remark 1: Obviously, lemma 4 and corollary 1 also imply
exponential stability of each subsystems in (7) and (16), while
lemma 5 and corollary 2 do not guarantee stability of each
subsystems in (22) and (27) since they provide sufficient con-
dition of growth estimation of Lyapunov functionals candidate
(23).
Now, we are in the position to give the main result of this
paper.

Theorem 1: The trivial solution of systems (1) is globally
exponentially stable and the state decay estimation is given as

‖ x(t) ‖�
√

b

a
e−

1
2 λ∗(t−t0) ‖ x0 ‖c1, (31)

if the following assumptions hold:
I1. For i ∈ Ss,

Vi(t) � e−αi(t−t0)Vi(t0), (32)

αi and Vi(t) are determined by corollary 3.1.
I2. For j ∈ Su,

Vj(t) � eβj(t−t0)Vj(t0), (33)

βj and Vj(t) are determined by corollary 3.2.
II. Let α = min{αi : ∀i ∈ Ss} and β = max{βj : ∀j ∈ Su}
with αi and βj being respectively the decay rates of stable
modes and the growth rates of the unstable modes, T+(t0, t)
and T−(t0, t) denote the total activation times of the unstable
and stable modes over (t0, t), respectively. Assume that for
any t0, the switching law guarantees that

T+(t0, t)
T−(t0, t)

� α − λ∗ − lnμ1/Ts

β + λ∗ + lnμ2/Tu
(34)

where λ∗ ∈ (0, α), Ts denote the average dwell time of the
stable subsystems over T−(t0, t), and Tu denote the average
dwell time of the unstable subsystems over T+(t0, t). The
average dwell time Ts satisfying

Ts > T ∗
s =

lnμ1

α − λ∗ (35)

Moreover, μ1, μ2 � 1 satisfies

Pi � μ1Pj , Ri � μ1Rj , i ∈ Ss, j ∈ Su,

Qi =

(
Qi11 Qi12

∗ Qi22

)
� μ1

(
Qj11 Qj12

∗ Qj22

)
= μ1Qj ,

Pj � μ2Pi, Rj � μ2Ri, i ∈ Ss, j ∈ Su,

Qj =

(
Qj11 Qj12

∗ Qj22

)
� μ2

(
Qi11 Qi12

∗ Qi22

)
= μ2Qi, (36)

while the other case is different as following

Pk � μmPl, Rk � μmRl, m = 1, 2

Qk =

(
Qk11 Qk12

∗ Qk22

)
� μm

(
Ql11 Ql12

∗ Ql22

)
= μmQl, (37)

where, m = 1 when both k and l are in Ss, and m = 2 when
both k and l are in Su.

a = λmin(Pi),

b = λmax(Pi) + τiλmax(Ri) +
r2

2
λmax(Qi) (38)

Proof. Just for the sake of our discussion, we assume that
the unstable subsystems active during [t2n, t2n+1), V2n+1(t)
and βn+1 belong to this interval; while the stable subsystems
works during [t2n+1, t2n+2), V2n+2(t) and αn+1 belong to
this interval. In fact, the order of these switching sequences
has no influence to our discussion.

Now we just discuss the case that t ∈ [t2n, t2n+1), while
the other case is similar to this case. As t ∈ [t2n, t2n+1), with
the conditions (32), (33) (36) and (37), it holds that

V2n+1(t) �eβn+1(t−t2n)V2n+1(t2n)

�eβn+1(t−t2n)μ2V2n(t−2n)

�eβn+1(t−t2n)μ2e
−αn(t2n−t2n−1)V2n(t2n−1)

�eβn+1(t−t2n)μ2e
−αn(t2n−t2n−1)μ1V2n−1(t−2n−1)

� · · · · · ·
�μn+1

2 μn
1V1(t0) exp[βn+1(t − t2n)

+
n∑

k=1

βk(t2k−1 − t2k−2) − αk(t2k − t2k−1)].

(39)

Let Ns(T−) denote the number of switching of σ(t) in
the total activation times of stable subsystems, and Nu(T+)
denote the number of switching of σ(t) in the total activation
times of unstable subsystems. According to the definition 2,
the above inequality (39) becomes

V2n+1(t) � eNu(T+) ln μ2+Ns(T−) ln μ1eβT+−αT−
V1(t0)

� e
ln μ2
Tu

T++
ln μ1

Ts
T−

eβT+−αT−
V1(t0) (40)

Combining (39)-(40) with (34)-(35) yields

V2n+1(t) � e−λ∗(t−t0)V1(t0) (41)

Also notice that

V1(t0) � b ‖ x0 ‖2
c1, a ‖ x(t) ‖2� V (t) (42)

Combining (41) and (42), leads to

a ‖ x(t) ‖2� be−λ∗(t−t0) ‖ x0 ‖2
c1

which implies (31). This completes the proof. �
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Remark 2: Assumption I is made to estimate the growth
rate of unstable subsystems or the decay rate of stable sub-
systems, while Assumption II means that the total activation
time of unstable subsystems is smaller than that of the stable
subsystems, and it also implies that the dwell time Ts should
not less than the specified value.

Remark 3: There is no other restriction on the dwell time
Tu, however, the condition (34) implies that the ratio of the
total activation time of unstable subsystems to that of the stable
subsystems should decrease as the dwell time Tu increase.
In addition, it also means that the ratio can be raised as Ts

increase from condition (34).
Remark 4: It is easy to see that our delay-dependent results

consider not only the information on the size of the discrete
delays but also such information on neutral delays. However,
according to the meaning of single Lyapunov approach, [24]
and [25] could not obtain the delay-dependent conditions on
neutral delays at all.

C. Simulation examples

In order to show the effectiveness of the conditions
presented in Section 3, in this section, two examples are
provided.

Example 1. Consider the nominal switched neutral systems
as following,{

ẋ (t) − C1ẋ (t − τ1) = A1x (t) + B1x (t − r1) , 1 ∈ Ss,
ẋ (t) − C2ẋ (t − τ2) = A2x (t) + B2x (t − r2) , 2 ∈ Su,

(43)
the parameters of the system are specified as follows

A1 =
( −0.9 0.2

0.1 −0.9

)
, A2 =

(
1 1

1.5 −2

)
,

B1 =
( −1.1 −0.2

0.1 −1.1

)
, B2 =

( −1 −0.6
0.5 −1.2

)
,

C1 =
( −0.2 0

0.2 −0.1

)
, C2 =

(
0.2 0.1
−0.4 0.8

)
,

with r1 = 0.245, τ1 = 0.2455, r2 = 0.4372, τ2 = 0.2526.
Seeing from Figs. 1 and 2, we can easily find that subsystem
1 is stable while subsystem 2 is unstable. However, for α1 =
2.3, β2 = 1.9, λ∗ = 1.6, μ1 = 1.3532 and μ2 = 1.1242,
we have feasible solution of LMIs in lemma 4 and lemma
5. Theorem 3.1 gives T ∗

s = ln μ1
α−λ∗ = 0.4321. Taking Ts >

T ∗
s = ln μ1

α−λ∗ = 0.4321 and T0 = 1.4732 as a period time of
both subsystem 1 and subsystem 2 are activated, Subsystem 1
activated on nT0 � t < nT0 + 1.4321(n = 0, 1, · · · , ), while
subsystem 2 activated on nT0 + 1.4321 � t < (n + 1)T0(n =
0, 1, · · · , ). From (38), we have a = 16.6045, b = 1356.9.
Using (31), one can obtain

‖ x(t) ‖� 1.7986e−0.8(t−t0) ‖ x0 ‖c1,

which means that the switched neutral systems is exponentially
stable by Theorem 3.1. Let (4,−5) be the initial point. Fig3
show the state trajectories of the switched neutral system, and
Fig4 show the the phase map of the switched neutral systems.
From these figures, one can see that the switched neutral

systems consist of unstable subsystems and stable subsystems
can reach to stability rapidly using the above time-dependent
switching rule.

0 500 1000 1500 2000 2500 3000 3500
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0

1
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4

Fig. 1. Behavior of the state component of the switched neutral subsystem
1.
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Fig. 2. Behavior of the state component of the switched neutral subsystem
2.
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Fig. 3. Behavior of the solution x(t) of the switched neutral systems.
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Fig. 4. The phase map of the switched neutral systems.

Example 2. Consider the systems discussed in Example. 1
with uncertain structure described by (3) and (4) as following{

ẋ (t) − C1(t)ẋ (t − τ1) = A1(t)x (t) + B1(t)x (t − r1) ,
ẋ (t) − C2(t)ẋ (t − τ2) = A2(t)x (t) + B2(t)x (t − r2) ,

(44)
where D = 0.1459I, Eai = Ebi = Eci = I(i = 1, 2). The
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uncertainty matrix is chosen as

F (t) =
[

cos t 0
0 sin t

]
For α1 = 2.3, β2 = 1.9, λ∗ = 1.6, μ1 and μ2 are as same as
it in example 1. Choose ε1 = 0.1, ε2 = 0.05, we have feasible
solution of the LMIs in Corollary 3.1 and Corollary 3.2 as
following

P1 =
(

1.1409 −0.6198
−0.6198 1.8927

)
,

P2 =
(

0.8973 −0.5463
−0.5463 1.5553

)
,

R1 =
(

420.5677 5.9623
5.9623 410.9918

)
,

R2 =
(

265.0990 18.9656
18.9656 268.3814

)
,

Q1 =

⎛⎜⎜⎝
1.4344 −22.2792 0.0574 −0.2406
18.0982 3.6692 −0.4080 0.8578
0.0574 −0.4080 2.9957 −0.2636
−0.2406 0.8578 −1.3419 3.4756

⎞⎟⎟⎠ ,

Q2 =

⎛⎜⎜⎝
1.3255 1.5421 −0.1424 −0.2460
−5.4866 3.5090 −0.2001 0.7516
−0.1424 −0.2001 3.0241 0.0234
−0.2460 0.7516 −1.1701 2.6254

⎞⎟⎟⎠ .

Using (31), one can obtain

‖ x(t) ‖� 17.9430e−0.8(t−t0) ‖ x0 ‖c1,

which means that with same switching law given in Exam-
ple. 1, the uncertain switched neutral systems can be robust
exponentially stable.

II. CONCLUSIONS

A new switching rule for stabilization of a class of uncertain
switched neutral systems is achieved in this paper. By employ-
ing multiple Lyapunov functional approach and dwell time
technique, more flexible time dependent switching rule for
stabilization of this systems is given. The robust exponentially
stable criterion is derived in terms of linear matrix inequalities.
Simulation examples are given to demonstrate our theoretical
results.
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