International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:12, 2015

Defect Management Life Cycle Process for Software
Quality Improvement

Aedah A. Rahman, Nurdatillah Hasim

Abstract—Software quality issues require special attention
especially in view of the demands of quality software product to meet
customer satisfaction. Software development projects in most
organisations need proper defect management process in order to
produce high quality software product and reduce the number of
defects. The research question of this study is how to produce high
quality software and reducing the number of defects. Therefore, the
objective of this paper is to provide a framework for managing
software defects by following defined life cycle processes. The
methodology starts by reviewing defects, defect models, best
practices, and standards. A framework for defect management life
cycle is proposed. The major contribution of this study is to define a
defect management roadmap in software development. The adoption
of an effective defect management process helps to achieve the
ultimate goal of producing high quality software products and
contributes towards continuous software process improvement.

Keywords—Defects, defect management, life cycle process,
software quality.

1. INTRODUCTION

OST software organisations or IT departments are

involved in the use of defect management process to
improve the efficiency of the software development projects.
Software quality is an important aspect in software
development which ensures quality software product is
developed. According to [1], software quality is defined as the
degree of conformance to specific functional requirements,
specified quality standards, and good software engineering
practices. The IEEE definition of software quality [2], are
stated as (1) the degree to which a system, component, or
process meets specified requirements; (2) the degree to which
a system, component, or process meets customer or user needs
or expectations. However, in dealing with software
engineering activities, software quality problems or bugs may
occur along the duration that the product is being developed.
The types of problems may be referred as software errors,
faults, or failures. A small defect may cause damage in terms
of monetary, reputation and loss of customer trust. The defects
may reduce the software product quality and customer
satisfaction. Defect which is destructive in nature is deficiency
in the software product will surely reduce the software product
quality. Hence, affect the efficiency and quality of software
engineering processes. Most importantly, the defect in an
application may give negative impact to all phases of software

A. A. Rahman and N. Hasim are with the Software Engineering Section,
Malaysian Institute of Information Technology, Universiti Kuala Lumpur,
Jalan Sultan Ismail, 50250 Kuala Lumpur, Malaysia (e-mail: aedah@
unikl.edu.my, nurdatillah@ unikl.edu.my).

development process such as in software requirements
engineering, software design, software implementation,
software testing and software maintenance phases. Table I
described on software error, fault, and failure [2]. The IEEE
definitions error, fault, and failure are also given in Table I

[3].

II. RELATED RESEARCH WORKS

This section describes the related research works approach
that is relevant to this study. Table I states the definition of
each software quality problem.

TABLEI
SOFTWARE QUALITY PROBLEM

Software Quality

Problem Types Description

Section of code that are partially or totally incorrect as a
result of a grammatical, logical or other mistake made by a
systems analyst, a programmer, or member of software
development team
IEEE definition: Human action that leads to incorrect result
Software errors that cause the incorrect functioning of the
software during a specific application
IEEE definition: Incorrect decision taken when
understanding the given information
Software faults become software failures only when they
are activated, when a user tries to apply the specific
software section that is faulty. The root of any software
failure is software error.

IEEE definition: Inability of a function to meet the
expected requirements

Software error

Software fault

Software failure

Galin [2] defines nine causes of software errors which are
faulty requirements definition, client-developer
communication failures, deliberate deviations from software
requirements, logical design errors, coding errors, non-
compliance with documentation and coding instructions,
shortcomings of the testing process, procedure errors, and
documentation errors.

This paper investigates on the management of these defects
by defining the process life cycle. The review is performed on
defect management tool, defect process, standards, and best
practices. Rahman [4] investigated on the needs of a
framework for defect management system. In which the defect
tracking process is implemented by using a web-enabled
defect tracking system that allow project management,
development, quality assurance and management of software
problems. This indicates that defect tracking is an important
practice that should be considered for the proposed model.
Hasim and Rahman [5] identified the metric used for defect
management that is the defect density. The calculation used is
based on the measure of the number of total defect found

2471

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:12, 2015

divided by the size of the system measured. The system size is
measured by lines of code (LOC). This indicates that there is a
need for defect prediction and prevention processes.

The review on existing standards and best practices are also
conducted. The Capability Maturity Model (CMM) defined
five maturity levels of and their key process areas (KPAs) [6],
[7]. The maturity levels are:

1) Level 1: Initial

2) Level 2: Repeatable
3) Level 3: Defined

4) Level 4: Managed

5) Level 5: Optimizing**

Level 5 contains the KPA which is related to defect
management, the Defect Prevention (indicated by the symbol
**). Capability Maturity Model Integration (CMMI) which is
a newer process improvement framework also includes a
relevant process areas (PAs), known as Causal Analysis and
Resolution (CAR) [8]. CAR is indicated at level 5
(Optimizing) (refer to the symbol **). The five maturity levels
of CMMI are:

1) Level 1: Initial

2) Level 2: Repeatable

3) Level 3: Defined

4) Level 4: Quantitatively Managed
5) Level 5: Optimizing**

ISO/IEC 20000 is an information technology service
management standard [9], [10]. The review on ISO/IEC 20000
indicates the existence of processes such as Incident
Management and Problem Management which are related to
defects model.

III. RESEARCH APPROACH

This section describes the research approach that is being
used to conduct this study. This study begins with literature
review by finding the definition of defects, and any existing
defect models. We have discussed this stage under Related
Research Work as stated in the section above. The discussion
includes defects, defect models, best practices, and standards.
The second stage involves the analysis of requirements and
architectures of the defect management process. The third
stage is the implementation of defect management life cycle.
The research approach is described in Fig. 1.

‘ Literature study

!

Analysis of requirements and
architectures of defect management
process

J

Implementation of defect management
life cycle

Fig. 1 Research approach

IV. ANALYSIS OF REQUIREMENTS AND ARCHITECTURES OF
DEFECT MANAGEMENT PROCESS

The requirements and design for defect management
process includes comparing the existing standards and best
practices with the proposed framework. This stage determines
what should be included in the framework and the design of
the framework. The CMM, CMMI, and ISO/IEC 20000 have
been reviewed. The review indicates that the defect related
processes are included in a higher maturity level of process
improvement framework. However, in the case of ISO/IEC
20000, there is no specific cycle has been introduced for this
framework. Therefore, there is a need to derive a better life
cycle based approach for defect management process.

Table II indicates further key process areas/process areas or
processes based on three standards or best practices that are
relevant for the implementation of the defect management life
cycle. The first column indicates the standards or best
practices. Column 2 shows the incident, defect or problem
related KPAs/PAs/processes that appears at higher maturity
level (ML5). Finally, column 3 states the change,
configuration or release related KPAs/PAs/processes that
appears at a mixture of lower and higher maturity level (ML2
and ML5).

The final stage of this research, which is the execution of
the defect management life cycle, is discussed in the results
and findings discussion section. Six steps are involved in the
life cycle that will give positive impact to the software quality
improvement.

V.RESULTS AND FINDINGS: IMPLEMENTATION OF DEFECT
MANAGEMENT LIFE CYCLE

Based on the analysis of requirements and architecture
conducted in the earlier research phase, the important defect
management practices are defect identification, defect
analysis, defect prevention, defect resolution, defect
monitoring, and defect process improvement. Defect
Identification is related to Incident Management in ISO/IEC
20000. Defect Analysis is relevant to Causal Analysis and
Resolution (CMMI) and Problem Management (ISO/IEC
20000). The third practice, Defect Prevention can be
compared to Defect Prevention (CMM). The change/
configuration/release related KPAs/PAs/processes can be
grouped together. The fourth practice, Defect Resolution is
associated with Process Change Management and Technology
Change Management KPAs in CMM; Configuration
Management PA in CMMI; and Change Management,
Configuration and Release Management processes in [ISO/IEC
20000. This study determined that defect prediction is also
important and it can be assigned under Defect Process
Improvement, step 6. This is related to CMMI maturity level 5
in Organizational Process Performance (OPP) and
Quantitative Project Management (QPM) KPAs.

The important defect management practices are described
as follows.

A. Defect Identification
When a defect repeatedly occurs, they need to be identified

2472

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:12, 2015

and recorded in the system. Defects are identified at two
location, at that time detect was initially detected and at the
time the detects have been fixed.

TABLE 11
COMPARISON ANALYSIS OF BEST PRACTICES AND STANDARDS
Standards and Best KPAs/PAs/
Practices Processes
. Process Change Mgt (ML5)
CMM Defec(tl\ilfgl)e ntion Technology Change Mgt
(ML5)
CMMI Causal Analysis 6o ration Mgt (ML2)
Resolution (MLS5) &g &
. Change Mgt
Incident Mgt .
ISO/IEC 20000 Problem Mat Configuration Mgt

Release Mgt

B. Defect Analysis

Defect analysis includes defect classification and taxonomy
by using specific naming schemes. The classification of
defects represents information such as phases and activities of
the software development phases that the defect injection
occurs. The framework to evaluate different defect taxonomies
is produced in [11]. A meta taxonomy comparing the different
types of taxonomies are developed and categorized into three
aspects attributes, structure type and properties [11]. The
taxonomy contains attributes as stated below.

1) Location

2) Timing

3) Symptom

4) End result

5) Mechanism
6) Cause (error)
7) Severity

8) Costit

C.Defect Prevention

In this phase, the defects are investigated. Diagnosis is
performed on the underlying causes of defect. Root cause
analysis is conducted at this phase and preventive measures
are taken to avoid the detects from happening again.

D.Defect Resolution

This process involves request for change and resolving the
defect.

E. Defect Monitoring

Defect monitoring involves ensuring the defect
management process is effectively performed at project level.
This step also involves the verification of fixes that have been
made to resolve the defect.

F. Defect Process Improvement

Defect process improvement involves the activity to predict
potential software defects from test data. The detect prediction
contributes to the early detection of defects in software
development life cycle. This phase involves software metrics
such as the use of defect removal efficiency and defect density
[5]. Defect removal efficiency is computed as the number of
defects before release of product to the total number of
underlying defects.

Fig. 2 illustrates the defect management life cycle which
contains the six steps: defect identification, defect analysis,
defect prevention, defect resolution, defect monitoring and
defect process improvement.

o Y
Defect
/ Identification
N
Defect Process Defect
Improvement Analysis

' N
Defect Defect
Monitoring Prevention
g4

i

N

Defect
Resolution

i

Fig. 2 Research approach

VI. CONCLUSION

This paper has presented a life cycle process for managing
defects in software development projects that can be used by
organizations. The model can be used in accordance to
existing defect management tool available in the market
nowadays. In future we would like to look into each phases in
defect management thoroughly and how it contributes to
software process and quality improvement. In addition, we
would like to further investigate and define process metrics
especially in the defect prevention and process improvement
phases.

ACKNOWLEDGMENT

The authors would like to thanks Universiti Kuala Lumpur
for the research support.

REFERENCES

[11 R.S. Pressman, Software Engineering: A Practitioner’s Approach (7th
ed.). New York: McGraw-Hill International, 2009.

[2] D. Galin, Software Quality Assurance: From Theory to Implementation.
England: Pearson Education Limited, 2004.

[3] A. Gupta, J. Y. Li, R. Conradi, H. Ronneberg, and E. Landre, “A case
study comparing defect profiles of a reused framework and of
applications reusing it”, Springer, 2008.

[4] A. A. Rahman, “The framework of a web-enabled defect tracking
system”, in Proc. IEEE International Conf. on Advanced
Communication Technology, Korea, 2004,Volume 2, pp. 609-695.

[5] N. Hasim and A. A. Rahman, “Defect density: A review on the
calculation size program”, in Proc. 4" International Conf. on Machine
Vision: Computer Vision and Image Analysis, Pattern Recognition and
Basic Technologies, 2011, Singapore, Proc. SPIE Volume 8350.

[6] M. C. Paulk, B. Curtis, M. B. Chrissis, The Capability Maturity Model:
Guidlines for Improving the Software Process, MA, Reading: Addison
Wesley, 1995.

[71 M. C. Paulk, “How ISO 9001 compares with the CMM?”, in IEEE
Software, vol. 12(1), pp. 74-83.

2473

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:12, 2015

[8] SEI “CMMI for Development, Version 1.3, CMMI-DEV, V1.3”, No.
CMU/SEI-2010-TR-033, Pittsburgh, PA: Software Engineering
Institute.

[9] ISO, “ISO/IEC 20000-1: 2005, Information Technology - Service
Management - Part 1: Specification”, London, UK, 2005a.

[10] ISO, “ISO/IEC 20000-2: 2005, Information Technology - Service
Management - Part 2: Code of Practice”, London, UK, 2005b.

[11] D. Vallespir, F. Grazioli, and J. Herbert, “A framework to evaluate
defect taxonomies”, in Proc. XV Argentina Congress on Computer
Science, 2009.

Aedah A. Rahman Aedah A. Rahman was born in Kuala Lumpur, Malaysia.
A. A. Rahman earned her Bachelor of Computer Science in 1998 and Masters
of Computer Science in specialization in software engineering in 2002 degrees
from the University of Malaya, Kuala Lumpur, Malaysia. Aedah A. Rahman
then obtained her Doctor of Philosophy (Ph.D) in Computer Science from
Universiti Teknologi Malaysia, Johor, Malaysia.

She is currently a Senior Lecturer with the Software Engineering Section,
Malaysian Institute of Information Technology (MIIT), Universiti Kuala
Lumpur, Malaysia. Her job is related to teaching and learning, research,
coordination, and administration in university. She is the Program Coordinator
for software engineering programs in the university. She is a certified tester
and certified requirements engineer. In 1999, she has served Universiti Tun
Abdul Razak as Lecturer and Head of Software Engineering Department. She
continued her career in academic in Open University Malaysia until 2005. She
has worked in various university environments. Her 16 years’ experience in
academic pursuit, also involves research and academic publication national
and international level. Her research interests and area of expertise include
requirement engineering and management, software process quality and
improvement, software quality and process evolution, real-time and embedded
system and software engineering.

Dr. Rahman is a member of IEEE and Malaysian Software Engineering
Interest Group (mySEIG).

N. Hasim, is a Lecturer in Software Engineering Section, Malaysian Institute
of Information Technology, Universiti Kuala Lumpur, Malaysia.

2474

