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Decomposition of Homeomorphism on
Topological Spaces
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Abstract—In this study, two new classes of generalized
homeomorphisms are introduced and shown that one of these classes
has a group structure. Moreover, some properties of these two
homeomorphisms are obtained.
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1. INTRODUCTION

EVINE [9] has generalized the concept of closed sets to

generalized closed sets. Bhattacharyya and Lahiri [2] have
generalized the concept of closed sets to semi-generalized
closed sets with the help of semi-open sets and obtained
various topological properties. Arya and Nour [1] have
defined generalized semi-open sets with the help of semi-
openness and used them to obtain some characterizations of s-
normal spaces. Devi, Balachandran and Maki [8] defined two
classes of maps called semi-generalized homeomorphisms and
generalized semi-homeomorphisms and also defined two
classes of maps called sgc-homeomorphisms and gsc-
homeomorphism. In this paper, we introduce two classes of
maps called sgs-homeomorphisms and gsg-homeomorphisms
and study their properties.

Throughout the present paper, (X, 1) and (Y,0) denote
topological spaces on which no separation axioms are
assumed unless explicity stated. Let A be a subset of X. We
denote the interior of A (respectively the closure of A) with
respect to T by Int(A) (respectively Cl(A))

II. PRELIMINARIES

Since we shall use the following definitions and some
properties, we recall them in this section.

a. A subset B of a topological space (X, 7) is said to be semi-
closed if there exists a closed set F such that Int(F)cBcF. A
subset B of (X, 1) is called a semi-open set if its complement
X\B is semi-closed in (X, t). Every closed (respectively open)
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set is semi-closed (respectively semi-open) [3,5].

b. A mapping f: (X, 1) — (¥, J ) is said to be semi-closed if
the image f(F) of each closed set F in (X, t) is semi-closed in
(Y, 6 ). Every closed mapping is semi-closed [10].

c. Let (X, 1) be a topological space and A be a subset of X.
Then, the semiinterior and semiclosure of A are defined by:
sInt(A)=U{G;: Gj is a semi-open in X and G;cA}
sCI(A)= n{K; : K is a semi-closed in X and AcK;}

d. A subset B of a topological space (X, 1) is said to be semi-
generalized closed (written in short as sg-closed) if sCl(B)c
O whenever BcO and O is semi-open [2]. The complement of
a semi-generalized closed set is called a semi-generalized
open. Every semi-closed set is sg-closed. The concepts of g-
closed sets[7] and sg-closed sets are, in general, independent.
The family of all sg-closed sets of any topological space (X, 1)
is denoted by sgc(X, 1).

e. A subset B of a topological space (X, 1) is said to be
generalized  semi-open (written in short as gs-open) if
Fc sInt(B) whenever Fc B and F is closed. B is generalized
semi-closed (written in short as gs-closed) if and only if X\B
is gs-open. Every closed set (semi-closed set, g-closed set and
sg-closed set) is gs-closed. The family of all gs-closed sets of
any topological space (X, 1) is denoted by gsc(X, ) [1].

f. Amap f: (X, 1)— (¥, § ) is called a semi-generalized
continuous map (written in short as sg-continuous mapping) if
£71(V) is sg-closed in (X, ) for every closed set V of (¥, J )
(5]

g- Amap f: (X, 1) - (¥, § ) is called a generalized semi-
continuous map (written in short as gs-continuous mapping) if
£71(V) is gs-closed in (X, 1) for every closed set V of (¥, d)[8].

h. A map f: (X, 1)—(Y, 0 ) is called a semi-generalized
closed map (respectively semi-generalized open map) if f(V)
is semi-generalized closed (respectively semi-generalized
open) in (Y, J ) for every closed set (respectively open set) V
of (X, 7). Every semi-closed map is a semi-generalized closed
map. A semi-generalized closed map (respectively semi-
generalized open map) is written shortly as sg-closed map
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(respectively sg open map) [7].

k. Amap f: (X, 1) — (¥, 0) is called a generalized semi-
closed map (respectively generalized semi-open map) if for
each closed set (respectively open set) V of (X, 1), f(V) is gs-
closed (respectively gs-open) in (¥, 6 ). Every semi-closed
map, every sg-closed map is a generalized semi-closed map. A
generalized semi-closed map (respectively generalized semi-
open map) is written shortly as gs-closed map (respectively gs
open map) [7].

. A map f: (X, ©)>(¥, 0 ) is said to be a semi-
homeomorphism(B) (simply s.h. (B)) if f is continuous, f is
semi-open (i.e. f(U) is semi-open for every open set U of
(X, 1) ) and fis bijective [4].

m A map f: (X, ©)—>(Y, 6 ) is said to be a semi-
homeomorphism (C.H) (simply s.h.(C.H)) if f is irresolute
(i.e. (V) is semi-open for every semi-open set V of (¥, § ) ),
f is pre-semi-open (i.e. f(U) is semi-open for every semi-open
set Uof (X, 1)) and fis bijective [6].

n. Amapf: (X, 1) > (Y, J) is called a sg-irresolute map if
£74(V) is sg-closed in (X, 1) for every sg-closed set V of (¥,
o) [11].

0. Amap f: (X, 1) — (¥, J)is called a gs-irresolute map if
£7(V) is gs-closed in (X, 1) for every gs-closed set V of (¥, &
) [8].

p. A bijection f : (X, 1) — (¥, J) is called a semi-generalized
homeomorphism (abbreviated sg-homeomorphism) if f is both
sg-continuous and sg-open [8].

r. A bijection f : (X, 1) —» (¥, ) is said to be a sgc-
homeomorphism if fis sg-irresolute and its inverse £ ' is
also sg-irresolute [8].

S. A bijection f: (X, 1) — (¥, 0 ) is called a generalized semi-
homeomorphism (abbreviated gs-homeomorphism) if f is both
gs-continuous and gs-open [8]

t. A bijection f : (X, 1) — (¥, 6 ) is said to be a gsc-
homeomorphism if fis gs-irresolute and its inverse f ' is
also gs-irresolute [8].

u. A space (X, 1) is called a T, space if every g-closed set is
closed, that is if and only if every gs-closed set is semi-closed
[7,9].

v. A space (X, 1) is called a T}, space if every gs-closed set is
closed [7].

III. GSG-HOMEOMORPHISM

In this section, the relations between semi-

homeomorphisms (B) and gsc-homeomorphisms are
investigated and the diagram of implications is given. Also the
gsg-homeomorphism is defined and some of its properties are
obtained.

Remark 3.1. The following two examples show that the
concepts of semi-homeomorphism (B) and gsc-
homeomorphisms are independent of each other.

Example 3.2.

Let X=1{a,b,c}, =={J, {a, b}, {b,c}, {b}, X},
d=1{J, {b}, X}.

The identity map [, - (X, t) —» (X, 0 )

homeomorphism. However 1, is a s.h. (B).

is not gsc-

Example 3.3.

Let X = {a, b, ¢ }, the topology t on X be discrete and the
topology J on X be indiscrete.

The identity map 7, : (X, 1) — (X, 0 ) is not sh(B). However
I.is a gsc-homeomorphism.

Proposition 3.4. From remark 3.1 and remark 4.21 of
R.Devi, K. Balachandran and H.Maki [8 ], we have the
following diagram of implications.

c-homeomorphism — g-homeomorphism
g rii 2 g p
\ > /I;c—homeomomhism —> gs—hoiomorphism

semi-homeomorphism( 3 sgc-homeomorphism — sg-homeomorphism

<~
pod /ff/
semi-homeomorphism(B)

Definition 3.5. A map f: (X, 1) — (Y, § ) is called a gsg-
irresolute map if the set £ '(A) is sg-closed in (X, 1) for every
gs-closed set A of (Y, J ).

homeomorphism —%

(1]

Definition 3.6. A bijection f: (X, 1) — (¥, J) is called a gsg-
homeomorphism if the function f and the inverse function f
are both gsg-irresolute maps. If there exists a gsg-
homeomorphism from X to Y, then the spaces (X, t) and
(Y, 6) are said to be gsg-homeomorphic. The family of all gsg-
homeomorphism of any topological space (X, t) is denoted

by gsgh(X, 1).

Remark 3.7. The following two examples show that the
concepts of homeomorphism and gsg-homeomorphism are
independent of each other.

Example 3.8.

Let X={a, b, c}, t={J, {b}, X}.

The identity map Iy . (X, 1) — (X, 1) is a homeomorphism
but is not a gsg-homeomorphism on X.
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Example 3.9.

Let X be any set which contains at least two elements; t and &
be discrete and indiscrete topologies on X, respectively. The
identity map Iy - (X, 1) — (X, J) is a gsg-homeomorphism but
is not a homeomorphism.

Remark 3.10. Every gsg-homeomorphism implies both a gsc-
homeomorphism and a sgc- homeomorphism.

However the converse is not true as shown by the following
example.

Example 3.11.

Let X={a, b, ¢}, == {J, {b}, X}. Then

sge(X, 1) ={ 9, {a}, {c}, {a, c}, X} and

gse(X, 1) ={ 0, {a}, {c}, {a, c}, {a, b}, {b, c}, X }.

The identity map Iy - (X, 1) — (X, 1) is both gsc-
homeomorphism and sgc-homeomorphism. Since the set {b,c}
is gs-closed but the set Iy ({b,c})= {b,c} is not sg-closed, then
the identity map Iy is not a gsg-homeomorphism on X.

Proposition 3.12. Every gsg-homeomorphism implies both a
gs-homeomorphism and a sg-homeomorphism. However its
converse is not true.

Definition 3.13. Let (X, t) and (Y, 8 ) be any topological
spaces. If the following properties are satisfied

a) sge(X, 1) =gse(X, 1) and sge(Y,d)=gse(Y,d)

b) there exists a bijective map

¢ :gsc (X, 1) > gsc(Y, ) such that

V Ae gsc (X, 1) #B(A)=#A) (#(A) is cardinality of A).
then the spaces (X, t) and (Y, 9 ) are called S-related

Theorem 3.14. The space (X, t) and (Y, 8 ) are gsg-
homeomorphic if and only if these spaces are S-related.

Proof. It follows from definition of gsg-homeomorphism and
definitions 2.3 , 2.4

Theorem 3.15.

a) Every gsc(sgc)-homeomorphism from T, space onto itself
is a gsg-homeomorphism.

b) Every gs(sg)-homeomorphism from T, space onto itself is a
gsg-homeomorphism.

Proof. Since for any Ty, space (X, t) the family of sg-closed
sets is equal to the family of gs-closed sets, any gsc(sgc)-
homeomorphism from X to X is a gsg-homeomorphism.

In any T, space (X, 1) every gs-closed subset is a closed
subset so (b) is obvious.

Result 3.16. Let (X, t) and (Y, d) be any topological spaces.
If there exists any gsg-homeomorphism from X to Y, then
every gsc(sge)-homeomorphism from X to Y is a sgc(gsc)-

homeomorphism.
Proof. It is obtained by theorem 3.14

Theorem 3.17. For a topological space (X, 1) the following
implications hold:
a) gsgh(X, 1) < gsch(X, 1) < gsh(X, 1) and
gsgh(X, 1) < sgeh(X, 1) < sgh(X, 1)
b) If gsgh(X, 1) is nonempty then gsgh(X, 1) is a group and
sgch(X, 1) = gsch(X, 1) = gsgh(X, 1)

Proof. It follows from R. Devi, H. Maki [4], remark 3.10 and
result 3.16.

Theorem 3.18. If /: (X, 1) — (¥, ) is a gsg-homeomorphism,
then it induces an isomorphism from the group gsgh(X, 1)
onto gsgh(Y, d).

Proof. The homomorphism f« : gsgh(X, 1) — gsgh (Y, J) is
induced from f by fv (h)=fohof ™ for every hegsgh(X, 1).
Then it easily follows that f«is an isomorphism

IV. SGS-HOMEOMORPHISM

Definition 4.1. A map f: (X, 1) —(Y, 0 ) is called a sgs-
irresolute map if the set f7'(A) is gs-closed in (X, 1) for
every sg-closed set A of (7, 0 ).

Definition 4.2. A bijection f: (X, 1) — (Y, J ) is called a sgs-
homeomorphism if the function f and its inverse function f
are both sgs-irresolute maps. If there exists a sgs-
homeomorphism from X to Y, then the space (X, t) and (7, )
are said to be sgs-homeomorphic spaces.

Remark 4.3. Every sgc-homeomorphism
homeomorphism implies a sgs-homeomorphism.

and  gsc-

Example 4.4.

LetX=Y = {a,b,c} and

©= {{a}, {b}, {a, b}, {b, ¢}, X, O}, 5= {0, {b}, {a, b}, Y}.
Since sge (X, 1) =gsc (X, 1) =p (X)\ {{b}, {a,b}} (b (X) is
power set of X) and

sge(Y, 8) ={{c},{a},{a, ¢},0,X},gsc(Y, 8)=p(Y)\{{b},{a, b}},
then the identitiy map Iy - (X, 1) — (¥, ) is a sgs-
homeomorphism but is not a sgc-homeomorphism.

Example 4.5.

Let X=Y = {a, b, c} and

t=1{d, {a}, X}, 8 ={J, {b}, {a, b}, Y}. Since

sge(X, 1) ={{b}, {c}, {b, ¢}, X, 0}, gsc(X, 1) ={ {b}, {c},
{b, c}, {a, c}, {a, b}, X, B} and

sge(Y, 8) = { {c}, {a}, {a,c}, Y, 0}, gsc(Y,d)={ {a}, {c},
{a, ¢}, {b,c}, Y, D } then the mapping

f:(X,1) = (Y, 0)definedby fla)=b, f(b)=a flc)=c

is a sgs-homeomorphism but is not a gsc-homeomorphism.
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Result 4.6. Every homeomorphism is a sgs-homemorphism
but the converse is not true.

Remark 4.7. Every sgs-homeomorphism is a gs-
homeomorphism and the converse is not true as seen from the
following example:

Example 4.8.

Let X=Y = {a, b, c}, T = {IJ, {a, b}, X}, &= {J, {b}, {a,
b}, Y} since sge(X, 1) = gse(X, 1) = {{c}, {a, c}, {b,c}, X, 0
1> sge(Y, 8) = {{c}, {a}, {a, ¢}, Y, O} and gsc(Y, §) = {{a},
{c}, {b,c}, {a,c}, Y, 0}

Then, the identity mapping I: (X, 1) — (Y, d) is a gs-
homeomorphism but it is not sgs-homeomorphism.

Example 4.9.
The map I : (X, 1) — (Y, 9) is given by Example 4.8 is a sg-
homeomorphism but is not a sgs-homeomorphism.

Result 4.10.

a) From the example 4.9 we can see that any sg-
homeomorphism is not a sgs-homeomorphism.

b) Every gsg-homeomorphism is a sgs-homeomorphism and
the converse is not true as seen from the following example.

Example 4.12.

Let X=Y = {a, b, c} and

© = {D,{a}, {a, b}, X}, 8 = {D,{a}, {b}, {a, b},{b, ¢}, Y}.
Then the mapping

f: (X, 1) — (Y, 0) defined by f(a) =b, f(b)=aand
f( ¢ ) = c is a sgs-homeomorphism. However f is not a gsg-
homeomorphism.

Theorem 4.13.

a) Every sgs-homeomorphism from a Ty, space onto itself is a
gsg-homeomorphism. This implies that sgs-homeomorphism
is both a sgc-homeomorphism and gsc-homeomorphism.

b) Every sgs-homeomorphism from a Ty, space onto itself is a
homeomorphism. This implies that sgs-homeomorphism is a
gs-homeomorphism, a  sg-homeomorphism, a  sgc-
homeomorphism, a gsc-homeomorphism and a gsg-
homeomorphism.

¢) Every sgs-homeomorphism from a Ty, space onto itself is a
sh (CH).

Proof.

a) In a T\, space, every gs-closed set is a semi-closed set.
b) In a Ty, space, every gs-closed set is a closed set.

c) Follows from the definition of Ty, space.

V. CONCLUSION

In this paper, we introduce two classes of maps called sgs-
homeomorphisms and gsg-homeomorphisms and study their
properties. From all of the above statements, we have the
following diagram:

(1
[2]
K

(4]
[3]
(6]
(7]

(8]

(9]
[10]

(1]

gsg-homeomorphism

N

sgc-homeomorphism gsc-homeomorphism

ARt

sgs-homeomorphism

Ny

sg-homeomorphism gs-homeomorphism

<
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