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Abstract—We have developed a database for membrane protein 

functions, which has more than 3000 experimental data on 
functionally important amino acid residues in membrane proteins 
along with sequence, structure and literature information. Further, we 
have proposed different methods for identifying membrane proteins 
based on their functions: (i) discrimination of membrane transport 
proteins from other globular and membrane proteins and classifying 
them into channels/pores, electrochemical and active transporters, 
and (ii) β-signal for the insertion of mitochondrial β-barrel outer 
membrane proteins and potential targets. Our method showed an 
accuracy of 82% in discriminating transport proteins and 68% to 
classify them into three different transporters. In addition, we have 
identified a motif for targeting β-signal and potential candidates for 
mitochondrial β-barrel membrane proteins. Our methods can be used 
as effective tools for genome-wide annotations. 
 

Keywords—Membrane proteins; database; transporters; 
discrimination; β-signal.  

I. INTRODUCTION 
EMBRANE proteins perform a diverse variety of 
functions and are used as main drug targets of 

pharmaceutical agents. The collection of information on 
potential amino acid residues for the function of membrane 
proteins is important for understanding the sequence-
structure-function relationship of membrane proteins as well 
as predicting the functional residues from sequence/structure. 
The discrimination algorithms for membrane protein structure 
and function would be valuable tools in the advancement of 
structural and functional genomics.   

On the structural aspect, several methods have been 
proposed for discriminating α-helical and β-barrel membrane 
proteins and predicting their membrane spanning segments.  
These methods are mainly based on statistical analysis [1-3], 
hidden Markov models [4,5] and machine learning techniques 
[6-9]. The prediction algorithms have also been used to 
annotate membrane proteins in genomic sequences [10].  

On the other hand, the functional aspects of membrane 
proteins have been studied with few approaches such as the 
development of databases [11-14], characterization of 
transport families [15], dissecting the sorting signal of 
mitochondrial β-barrel membrane proteins [16] etc. There is 
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no database for wide spectrum of functionally important 
residues in membrane proteins and the knowledge about 
functional discrimination of membrane proteins is still limited.  

In this work, we have collected the information on 
functionally important amino acid residues in membrane 
proteins from the experimental data available in the literature. 
The functional data has been integrated with structural and 
sequence information, and other membrane protein databases. 
The database has several proteins that perform diverse 
functions and membrane transporters represent a large and 
diverse group of proteins. They play indispensable roles in the 
fundamental cellular processes of all organisms [17]. We have 
devised a method for discriminating membrane transport 
proteins from other globular and membrane proteins and 
classifying them into channels/pores, electrochemical and 
active transporters. In addition, we have analyzed the 
sequences of mitochondrial β-barrel outer membrane proteins 
and identified the motif for β-signal as well as probable 
targets. The salient features of the results will be discussed.  

II. DATABASE FOR FUNCTIONAL RESIDUES IN MEMBRANE 
PROTEINS 

A. Organization of Database 
The organization of membrane protein function database is 

illustrated in Fig. 1. Each entry in the database contains the 
following information [18]: (i) protein name and source, (ii) 
main function of the protein, (iii) experimental data, (iv) 
methods and conditions and (v) literature.  

We have provided the sequence and structure information 
in the form of Uniprot [19] and Protein Data Bank, PDB [20] 
codes. The functional information includes relative activity of 
mutants with respect to wild type protein, affinity for binding, 
channel, drug, glycosylation, membrane insertion, cellular 
signaling, membrane translocation, transport etc. The 
experimental data has numerical values for binding affinity, 
Vmax (maximal velocity of transport), IC50 (measure of the 
effectiveness of a compound in inhibiting biological function), 
drug sensitivity, dissociation constant, uptake etc. 

 

B. Features of Database 
The database has several features such as the retrieval of 

data using various conditions and displaying the results. We 
have provided direct links to Uniprot, PDB and PUBMED 
literature database. In addition links are given to related 
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structural, functional and genomic databases as well as to 
prediction methods.  

 
Fig. 1 Flowchart showing the organization of membrane protein 

function database 
 

C. Example 
The utility of the database is explained with an example. 

The available search options are shown in Fig. 2.  
The database accepts and performs the queries in the search 

option (protein name, Uniprot ID, source, α-helical/β-strand; 
function, parameter, mutation, keyword, authors and year) and 
displays the results. 

 

Fig. 2 Search options in membrane protein function database 

III. DISCRIMINATION OF MEMBRANE PROTEINS BASED ON 
FUNCTIONS 

We have developed different sets of data and utilized 
machine learning techniques for discriminating membrane 
proteins based on their functions.  

A. Construction of Datasets 
We have constructed different datasets for the present 

study: (i) channels/pores, electrochemical transporters and 

active transporters from the information available in Transport 
Classification Database, TCDB [11]. We have removed the 
redundant sequences using blastclust program [21] so that no 
two proteins have the sequence identity of more than 20%. 
The final dataset contains 1718 proteins, which has 510 
channels/pores, 502 electrochemical and 706 active 
transporters; (ii) a dataset of 3336 non-transport membrane 
proteins from SWISS-PROT and (iii) 1712 globular proteins 
from Protein Data Bank [20]. 

 

B. Machine Learning Algorithms 
We have analyzed several machine learning techniques 

implemented in WEKA program [22] for discriminating 
membrane transporters from other proteins and classifying 
them into channels/pores, electrochemical and active 
transporters. This program includes several methods based on 
Bayes function, Neural network, Logistic function, Support 
vector machine, Regression analysis, Nearest neighbor, Meta 
learning, Decision tree and Rules.  

 

C. Assessment 
We have performed a 5-fold cross-validation test for 

assessing the validity of the present work. In this method, the 
data set is divided into five groups, four of them are used for 
training and the rest is used for testing the method. The same 
procedure is repeated for five times and the average is 
computed for obtaining the accuracy of the method. 

We have used different measures, such as specificity, 
precision, F-measure and accuracy to assess the performance 
of discriminating channels/pores, electrochemical and active 
transporters. The term sensitivity shows the correct prediction 
of specific transporters and accuracy indicates the overall 
assessment. F-measure is the balance between sensitivity and 
precision. These terms are defined as follows: 

 
Sensitivity = TP/(TP+FN) 

 Precision = TP/(TP+FP) 

 F-measure = 2TP/(2TP+FP+FN) 

Accuracy = (TP+TN)/(TP+TN+FP+FN),  

where, TP, FP, TN and FN refer to the number of true 
positives, false positives, true negatives and false negatives, 
respectively. 

D. Sequence and Structural Analysis 
We have computed the amino acid occurrence for the 20 

amino acid residues in channels/pores, electrochemical and 
active transporters and analyzed the results.  We noticed that 
the residues Asn and Gln are dominant in channels/pores 
among all the transporters [23]. Interestingly, these residues 
play important roles to the stability and function of β-barrel 
membrane proteins [24].  
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Fig. 3 Ion binding sites of E148A in CIC chloride channel. The 
hydrogen bonds are shown as black dashed lines 

 
The structural analysis on cobalamin transporter protein 

(BtuB) that transports substrates across the outer membrane, 
showed that the residues, Asn185 and Asn276 are important 
for the stability of the upper surface of cyanocobalamin 
(vitamin B12; CN-Cbl) binding pocket [25,26], which is 
important for its function. Further, the residues Glu166 and 
Glu 148 are important for the channel function in CIC 
chloride channel proteins as seen in Fig. 3 [27].  

The residues Phe and Leu are dominant in electrochemical 
transporters. In addition, the composition of Ala, Ile, Val and 
Trp are higher in this class of proteins compared with other 
two transporters. Interestingly, in glycerol-3-phosphate 
transporter the space between helices 1 and 7 is filled by nine 
aromatic side chains and the occurrence of bulky aromatic 
residues helps to close the pore completely [28]. In lactose 
permease the substrate binding site is composed of residues 
that include Trp151 [29].  

E. Discrimination of Membrane Transport Proteins 
We have utilized a dataset of 5048 non-transporters (α-

helical and β-barrel membrane proteins as well as globular 
proteins) and 1718 membrane transporters to discriminate the 
transporters. We have used “amino acid occurrence” as 
features and several machine learning techniques for 
discrimination. It has been shown that amino acid occurrence 
is one of the best parameters for discriminating proteins of 
different folds [30]. Our method showed the 5-fold cross-
validation accuracy of 78.7% in discriminating transporters 
and non-transporters. Further, we have used the same number of 
proteins in transporters and non-transporters and repeated the 
calculations. We obtained the accuracy of 81.5% in distinguishing 
them. 

F. Classification of Membrane Transport Proteins 
We have analyzed different machine learning methods for 

classifying channels/pores, electrochemical and active 
transporters with amino acid occurrence as features. The 
results showed that the neural network is one of the best 

methods and its performance is presented in Table I. It has 
been also shown that neural network is an efficient method for 
discriminating β-barrel membrane proteins [7,8]. 

The sensitivity is 0.55, 0.70 and 0.76 for channels/pores, 
electrochemical and active transporters, respectively. The 
precision is 0.70, 0.78 and 0.62, and F-measure is 0.61, 0.74 
and 0.68. The average accuracy in classifying channels/pores, 
electrochemical and active transporters is 68% using 5-fold 
cross-validation. 

We have analyzed the capability of BLAST to discriminate 
the three different types of transporters based on homology 
search. For each protein we have computed the sequence 
identity with all proteins in the three transporters and assigned 
the group, which has the highest sequence identity or best e-
value. The calculations have been repeated for all the 1708 
proteins and computed the overall accuracy. This method 
showed an accuracy of 51.6% in discriminating 
channels/pores, electrochemical and active transporters. Our 
method showed the accuracy of 68%, which is superior to 
simple BLAST search and the analysis revealed the better 
performance of the present method. 

 

 

G. Genome-Wide Applications 
The method developed for identifying different classes of 

transporters can be used to detect transporters in genomic 
sequences and annotate their functions. The protocol is shown 
in Fig. 4. For a new sequence, first it can be discriminated as a 
transporter or non-transporter using the discrimination method 
to classify the transporters (section E). This can be done with 
the highest accuracy of 82%. Further, for a transporter, it can 
be identified into channels/pores, electrochemical and active 
transporters with an accuracy of 68%. Hence, the two-way 
prediction system can be used to detect different types of 
transporters in genomic sequences. 

 

TABLE I 
DISCRIMINATION OF CHANNELS/PORES, ELECTROCHEMICAL AND ACTIVE 

TRANSPORTERS USING K-NEAREST NEIGHBOR METHOD 

Measure Transporter Performance 

Sensitivity Channels/pores         0.549 
 Electrochemical         0.701 

 Active         0.761 
Precision Channels/pores         0.695  
 Electrochemical         0.780 
 Active         0.622 
F-measure Channels/pores         0.613 
 Electrochemical         0.739 
 Active         0.684 
Accuracy (%) Overall          68.1 
   



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

43

 

 

step/filter clusters 

Blastclust (40% identity) 2133  

Motif match near C-terminus 60  

Not α-helical MP (TMHMM) 44 

Manual inspection 12 

Remove known 1 

 
Fig. 4 Protocol to detect transporters in genomic sequences 

 

IV. DETECTING BETA SIGNAL AND TARGET IN 
MITOCHONDIRAL BETA-BARREL MEMBRANE PROTEINS 

Recently Kutik et al. [16] identified a sorting signal for 
mitochondrial β-barrel outer membrane proteins (MBOMPs), 
which has the motif PxGlyxxHxH (P: polar; Gly: glycine; H: 
hydrophobic; x: any amino acid) in the last β-strand based on 
their work on SAM complex. We have systematically carried 
out bioinformatics approaches to refine the signal, detect 
novel potential targets and the survey on available and 
probable MBOMPs. 

A. Potential now MBOMPs 
We have devised a procedure to detect novel MBOMPs 

using Gene Ontology annotation in Uniprot database, β-signal 
motif, evolutionary conservation, and predicted secondary 
structure [31]. The steps to identify MBOMPs are shown in 
Table II.  

Starting from over 9,000 Eukaryotic proteins annotated as 
being mitochondrial in either Uniprot or Gene Ontology, we 
applied an automated procedure which reduced the number to 
60 by requiring the refined β-signal motif to match within 40 
residues of the C-terminus of each homolog cluster, and 
finally to 12 by consideration of predicted secondary structure 
and available annotation. Of the 12 clusters which remained 
after manual inspection, 11 were members of the known 
MBOMP families: porin, Tom40, Sam50 and Mdm10. The 
remaining cluster contained SUN family proteins with dual 
cell wall and mitochondrial localization [32]. One of the 
proteins in the cluster, yeast UTH1, is promising because it is 
a mitochondrial integral outer membrane protein [32]. 

 
TABLE II 

STEPS USED TO IDENTIFY POTENTIAL MBOMPS  

B. Probable Number of  MBOMPs 
In earlier studies it has been reported that the yeast 

proteome would contain more than 100 MBOMPs [33]. Yet, 
five years and many completed genome sequences, we still 
only know of five MBOMPs. Our analysis also did not show 
the presence of many MBOMPs. Hence, we suggest that there 
may not be many unknown MBOMPs remaining. 
 

C. Refined β-signal for Membrane Protein Insertion 
We have carried out multiple sequence alignment analysis 

with the homologs of known five families of MBOMPs. The 
result reveals a set of 54 distinct octomers which presumably 
can function as β-signals. Analysis of these octomers shows 
that in 53/54 cases the residue following Glycine is 
hydrophobic {L:21, I:12, V:8, F:4, A:4, C:2, W:1, M:1}, with 
the single exception being threonine found in a fungal porin 
(VDAC_NEUCR). These observations yield the motif: 
PxGlyHxHxH, whose alternating hydrophobic residues 
probably reflect the dyad repeat structure of β-strands. 
Recently, Hiller et al. [34] reported the solution structure of 
human VDAC-1 in which the last β-strand contains the β-
signal (KLGLGLEF) and it satisfies the refined motif. The 
residues constituting the β-signal form hydrogen bonds with 
the penultimate strand in anti-parallel orientation, and the first 
strand in parallel orientation, which is in contrast to known 
bacterial OMP structures that have an even number of strands 
connected exclusively in anti-parallel orientation [35]. 

The database and prediction algorithms can be used for 
understanding the sequence-structure-function relationship of 
membrane proteins. 
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