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Data Traffic Dynamics and Saturation on a Single
Link

Reginald D. Smith

Abstract—The dynamics of User Datagram Protocol (UDP) traffic
over Ethernet between two computers are analyzed using nonlinear
dynamics which shows that there are two clear regimes in the data
flow: free flow and saturated. The two most important variables
affecting this are the packet size and packet flow rate. However,
this transition is due to a transcritical bifurcation rather than phase
transition in models such as in vehicle traffic or theorized large-scale
computer network congestion. It is hoped this model will help lay
the groundwork for further research on the dynamics of networks,
especially computer networks.
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I. INTRODUCTION

The 1969 the Internet (then ARPANET) was first established
as a distributed packet communications network that would not
only reliably operate if some of its nodes were destroyed in an
enemy attack, but allow easier communications of computer
research results by universities. Today the Internet has grown
to become a sprawling network of every aspect of humanity
dwarfing previous technological mediums in both complexity
and behavior. It was therefore only a matter of time that
advanced statistical techniques, such as those developed by
physicists in statistical mechanics were applied to investigate
it.

Since the late 1990s, the Internet has been of Interest
to the physics community, becoming aware to most in the
seminal Nature paper of Watts and Strogatz [1]. This was
continued or paralleled by the work of countless others [2],
[3], [4], [5], [6], [7] . However, until recently this research
has focused mostly on the topological aspects of networks and
much less on dynamics. A particularly fertile area on network
dynamics, and one related to this paper is the study of phase
transitions from free flow to congestion in computer networks
[8], [9], [10], [11]. Most results give a critical packet flow
on networks which separates free flow from congested traffic.
There have been some investigations of dynamics aspects
such as synchronization of coupled oscillators [12], [13], [14],
[15] and some metabolic dynamics [16], [17] as well thus
dynamics is rapidly moving from being a peripheral to a
primary discussion about networks.

A very interesting reverse situation is visible in the studies
of the statistical mechanics of vehicular traffic. Vehicle traffic
on roads has been investigated, also using statistical mechan-
ics, but focusing on the dynamics and flow of traffic versus the
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topology of the road network [18], [19], [20]. Though there is
some overlap between these two topics, traffic flow has been
described in many ways with the most common description
using the fundamental diagram of vehicle flow vs. vehicle
density. Most models propose a two or three phase model of
traffic. The first phase is free flow, where cars drive near the
speed limit with little congestion and influence on each other’s
velocity. The final phase is congested traffic where traffic
flow becomes spontaneously congested after reaching a critical
density. In the three phase model, there is an intermediate
phase called synchronized flow where traffic is not congested
but cars match their speed at a reduced speed level effectively
increasing the correlation length of the system as a prelude to
congestion. In [21] Gábor and Csabai conduct a similar study
comparing vehicle traffic flow to data packet flow using the
number of TCP connections as the variable for flow density.
They find that a fundamental diagram like pattern appears in
data traffic when the flow density is modeled as the number
of TCP connections between two different endpoints.

II. INTERNET TRAFFIC RESEARCH ISSUES

In investigating Internet dynamics, one is struck by how
similar the dynamics of the network can be superficially
similar to vehicle traffic. Internet networks are made of the
flow of countless packets across network links and can be
prone to the same free flow or congestion that vehicle traffic
can be. Like traffic data, data on Internet traffic is easily
obtainable either by setting up packet sniffers and traffic
analyzers between certain nodes or using public data sets such
as the WIDE Project’s MAWI data traces from trans-Pacific
US-Japan T1 lines [22] or the Stanford Linear Accelerator
Center (SLAC)’s PingER project which has monitored ICMP
ping response against different nodes across the Internet on a
continuous basis for years [23].

However, Internet traffic data analysis is complicated by
many factors that are not easily accountable for in theoretical
models. First, since the Internet is a decentralized network
based on dynamic routing, the route of the traffic is not
completely transparent. The path from one point to another
can be fairly fluid and changing even within a continuous
flow of transmitted data. Many of the intermediate routers or
autonomous systems (AS), which are basically Internet service
providers, have private and constantly changing routing rules
and configurations that alter traffic in unpredictable ways to
obtain certain quality of service metrics or traffic shaping
priorities [24]. This makes analysis of data collected from
Internet traffic fraught with questions and confusion as far as
disambiguating the effect of network topology on dynamics.
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In addition to topological constraints, the dynamics of
Internet traffic itself can affect dynamics studies. Under the
Internet Protocol (IP) suite, there are many transport level
protocols such as TCP and UDP and countless application
level protocols such as HTTP among others. Protocols at all
levels, including transport and application levels, can influ-
ence data traffic. For example, TCP has a congestion control
algorithm which will actually throttle network speed given the
feedback it receives from packet loss data on the network, re-
quires periodic acknowledgements from the destination before
sending more data, and will buffer data to send depending
on the round trip time (RTT) of the connection in order
to guarantee delivery [25], [26]. Therefore, measurements of
TCP/IP network speeds, even in relatively ”clean” networks,
can actually be extremely complicated and dependent on much
more than the topology of the network or volume of traffic.

Finally, the statistical nature of Internet traffic is still poorly
understood. Internet traffic volumes and packet interarrival
times to not follow typical distributions in other communi-
cations networks such as Poisson or Erlang distributions but
rather exhibit bursty, self-similar traffic patterns which have
been very difficult to model and predict [27], [28], [29], [30].
Like in measurements of Internet topology where a relatively
small amount of nodes have many edges, almost everything
in the Internet that can be measured seems to have a long-
tailed distribution as a matter of course. TCP and UDP traffic
flows follow this trend where a relatively small number of
flows carry to bulk of data transferred (so-called ”elephant
flows”) [31], [32]. The origins of these patterns of traffic are
still a matter of research and debate. Add to this other inherent
uncertainties and patterns in Internet traffic flow such as
trimodal distributions of packet sizes [33], traffic spikes to due
to malicious code such as viruses or Trojan directed distributed
denial-of-service attacks [34], [35], and periodicities in the
volume of traffic caused by 12 hour, 24 hour, and 7 day cycles
(with a 3.5 day harmonic) [36], [37]. There is also an issue
of long-range correlations of Internet traffic between different
routers which can be relatively uncorrelated or very correlated
depending on the nature of traffic and the level of congestion
[38]. All of these factors are mentioned to demonstrate that
modeling and understanding Internet traffic dynamics is a
problem likely of greater magnitude than topological analysis.
Given these difficulties and more, understanding the basics of
traffic dynamics and the interactions between topology and
dynamics in computer networks is essential to understanding
theoretical aspects, creating accurate simulations, and conduct-
ing useful experiments.

III. EXPERIMENTAL SETUP

The purpose of the experiment described by this paper is
to ask a basic question about traffic dynamics: how is the
throughput (speed) of a link affected by three fundamental
variables that determine the nature of network traffic: the
average packet size, the average packet flow rate, and the
bandwidth of the link. The bandwidth of the network, in this
case 100 Mbps (megabits per second), is the theoretically
maximum possible throughput. The throughput itself can be

Fig. 1. Structure of a packet in this paper. Proportions based on a 50 byte
payload. Numbers are size of headers or payload in bytes. A is the Ethernet
header which contains MAC address source and destination and payload type,
B is the Internet Protocol (IP) header, C is the User Datagram Protocol (UDP)
header, D is the data payload and E is the Ethernet CRC checksum hash to
prevent accidental corruption of the frame.

described in terms of the average packet size and average flow
rate by

〈T 〉 = 〈p〉〈λ〉 (1)

Where 〈T 〉 is the average throughput of the link, p is the
average size of packets in a transmission over a given period
of time and 〈λ〉 is the average flow rate in packets per second.
In this experiment since all packets will be off the same size
in each sample we can say

〈T 〉 = p〈λ〉 (2)

Two computers, both running Windows XP, were connected
using an Cat 5e cable that connected to the Ethernet network
adapter (NIC) of both computers. The Ethernet flow control
was disabled to ensure that the flow of data, and not signal-
ing between the computers to prevent dropped packets that
flow control entails, determines the throughput. Traffic was
generated using the program Iperf which generates a stream
of identically sized packets at a throughput inputted by the
user. The throughput in Iperf was designated at 100 Mbps
in order to test what the maximum throughput the network
would actually demonstrate given an attempt at maximum
throughput. The transport protocol UDP was chosen over
TCP for several reasons. UDP is a connectionless protocol,
meaning it does not guarantee delivery, and will solely submit
a string of packets. TCP in a connection based protocol
whose delivery guarantee requires frequent ”handshaking”
between the source and destination and whose congestion
control algorithm can affect throughput in a non-trivial fashion
delivering a lower throughput due to protocol software, not
the maximum throughput of the link. Finally, TCP can give
different performance over links with different latencies, as
measured by packet RTT, so the results may not be subject to
larger generalization [25].

To test the performance of the network under different sized
packets, the UDP packet payload was varied from 25 bytes up
to 1450 bytes in 25 byte increments. In order to ensure that
equation 2 holds, you must ensure that all packets are the same
size. The structure of packets under Ethernet/IP is shown in
figure 1. The payload, a variable selected in the Iperf software,
is encapsulated by a header for UDP (8 bytes), IP (20 bytes),
and a header and footer in the Ethernet frame (total 18 bytes).
Frame is just a general term for an Ethernet packet. These
headers mostly provide routing data, priorities, checksums, and
other information important to packet logistics. In addition, in
standard Ethernet the maximum frame size, minus Ethernet
headers and footers, is 1500 bytes. With the Ethernet overhead
the total maximum size for an Ethernet frame is 1518 bytes.
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Therefore, at 1475 bytes payload, the total would be 1503
bytes and you would have packet fragmentation - instead of
one frame you would have two, one with a frame payload of
1500 bytes and a second with a frame payload of 3 bytes.
This would affect throughput by showing a sudden change
since average frame payload size would drop to about 750.
Given the phenomenon of fragmentation, an actual analysis of
the effect of packet size on throughput is only useful up the
fragmentation size limit.

In the experiment, Iperf delivered a packed stream of UDP
traffic from the client to the server computer, trying to send
as close to bandwidth as possible, and outputted the average
throughput in Kbps (kilobits per second). It also gave the
packet loss, and a measure called jitter which is not used
but measures the deviation in packet interarrival times versus
interdeparture times. For throughput, Iperf measures a related
measured called goodput which measures data speed in terms
of the payload size, not including any packet overhead in
the calculation of bytes transferred. However, the packet flow
rate is accurate and is calculated from equation 2. Therefore
the actual throughput was recalculated using packet sizes that
include both payload and packet overhead.

IV. RESULTS

At all packet sizes, packet loss was small, much less than
1%. The results of the experiment are shown in figure 2. First,
it is clear that throughput decreases with decreasing packet
size. This first fact is well-known in the network engineering
community [39]. This is an inherent property of all network
adapters, Ethernet or otherwise. In fact, one of the key require-
ments in next generation networks is the network capability
to send ”jumbo frames” where fragmentation limits at the
network layer are much larger than 1500 bytes, up to 9000
bytes in some cases. These larger packet sizes cause higher
throughput and more efficient networking because within the
network adapter and computer hardware, there is a per-packet
processing overhead.

Despite the bandwidth rating of network adapters, be it 10,
100, or 1000 Mbps, there is a maximum packet flow that they
can effectively handle. Given equations 1 and 2 it is clear that
to maintain any given throughput, by lowering the packet size
you are increasing the packet flow. Because of the packet flow
processing bottleneck in the hardware, however, this can make
high throughput impossible at low packet sizes.

As seen in figure 2, for large packet sizes, the throughput
is very close to bandwidth and can be roughly equivalent to
free flow traffic. At a specific critical packet size, however,
pc, the throughput begins to rapidly degrade to the point
it is only about 6% of bandwidth at 25 bytes. This is the
saturated state. Here saturation is used instead of congestion
since congestion is usually a network wide phenomenon while
this packet slowdown in throughput is due to overwhelming
the processing power at the NIC. In a superficial way this
behavior is similar to the fundamental diagram flow-density
curve in vehicle traffic. Packet flow increases with smaller
packet size until saturation forces packet flow to begin to slow
its increase and approach a maximum value. Comparisons
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Fig. 2. Graphs of the average throughput vs. packet size, average packet flow
vs. packet size, and average throughput vs. average packet flow respectfully.
Vertical lines on the first two graphs represent the calculated critical packet
size of 451 bytes. The fitted line on the first graph is the line predicted by
maximum packet flow. The slight decrease at high packet size in the first
graph is due to unknown system effects and not inconsistent enough to reject
experimental results.

between vehicle traffic should be qualified though. In vehicle
traffic, there is interaction between cars on the road giving rise
to the collective dynamics which justify a statistical mechanics
interpretation. On data networks, packets do not interact with
each other and packet collisions are errors, not intrinsic aspects
of the packet flow. Therefore, as will be shown below, the
transition from free flow to saturation should be viewed as a
bifurcation in the system dynamics, not as a phase change.
On the network level where there are many interacting nodes,
perhaps congestion can be seen as a phase change but this
perspective is not appropriate at the single link level.

As stated earlier, in free flow the throughput is nearly
bandwidth and comparatively, though not completely, steady
state. In this region, there is a mutual relationship between
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packet size and packet flow. Differentiating equation 2 we have

d〈T 〉 = pd〈λ〉 + λdp (3)

assuming d〈T 〉 is 0 in free flow regardless of the packet
size or flow we can conclude

dp

d〈λ〉 = − p

〈λ〉 (4)

So there is a tradeoff curve, like the production possibility
frontiers in economics, between packet size and flow in free
flow traffic. Also,

dp

P
= −d〈λ〉

〈λ〉 (5)

demonstrating that every increase in packet flow is matched
by a corresponding decrease in packet size and vice versa.
Because the networking and computer equipment have vari-
ous processes and imperfections our free flow region never
reaches bandwidth and steadily erodes with smaller packet
size, however, the high throughput feature is relatively constant
compared to the saturated state.

At a packet size pc, we have an increasingly rapid break-
down in throughput. This corresponds approximately to the
maximum flow to the network adapter and the breakdown into
saturation. We calculate the theoretical maximum flow as

〈λ〉c =
〈T 〉max

pc
(6)

where in the theoretically ideal situation 〈T 〉max = B where
B is the bandwidth. Therefore in the saturated region, the
throughput 〈T 〉is given by

〈T 〉 =
p

pc
〈T 〉max (7)

so the ratio of packet size to the critical packet size
determines the throughput under saturation compared to the
maximum possible throughput. In the first graph of figure 2,
is a comparison of this prediction with the observed data in
the saturated region where 〈T 〉max is about 96 Mbps. Given
data from the saturated region for 〈T 〉, 〈T 〉max, and p we can
estimate the critical packet size pc. In this case, the critical
packet size is approximately 451 bytes at around 25k packets/s.
Though this model seems to accurately predict the throughput
values for almost the entire region of saturation, there is a
seemingly glaring contradiction in the second graph of figure
2 where the packet flow keeps increasing with decreasing
packet size. Though the packet flow does not stagnate, as
it should according to ideal theory, the third graph shows
that the decline in throughput over a fairly short range of
packet flow demonstrates packet flow is the limiting factor
in the saturated region. In the congested region the packet
flow increases from about 25 to 30 thousand flows per second
which is a definite increase but relatively small compared to
the region of free flow when it increased from 7 to about
25 without affecting throughput. Note, pc is specific to the
equipment and configuration used and does not have a general
value of 451 bytes.
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Fig. 3. Graph of the maximum throughput measured minus throughput vs
packet size on a reverse axis. The estimated critical packet size is given by
the vertical line.

V. BIFURCATION ANALYSIS

The fact that the stable throughput of the system changes
with the parameter of packet size leads us to suspect a
possible bifurcation. The exchange of stability between quasi-
bandwidth throughput and packet flow limited throughput
leads to the hypothesis of a transcritical bifurcation with
stability changing at pc. Assuming 〈T 〉max = B the two stable
throughput regimes are 〈T 〉 = B and 〈T 〉 = (p/pc)B, so

d〈T 〉/dt = (〈T 〉 − B)(
p

pc
B − 〈T 〉) (8)

and

d〈T 〉/dt = − p

pc
B2 + 〈T 〉B(1 +

p

pc
) − 〈T 〉2 (9)

This can be seen as the traditional form of a transcritical
bifurcation where dx/dt = px − x2, however, this is made
more clear by making the independent variable B − 〈T 〉:

d(B − 〈T 〉)/dt = B(1 − p

pc
)(B − 〈T 〉) − (B − 〈T 〉)2 (10)

which fits the normal form for a transcritical bifurcation,
dx/dt = px − x2. The transcritical bifurcation can be more
clearly seen in the graph of (〈T 〉max − 〈T 〉) vs. the reverse
order axis with p in figure 3.

VI. DISCUSSION

As mentioned before, the transition from free flow to
saturated traffic here is a bifurcation not a phase change given
the lack of interaction among the constituent particles in the
system. This conclusion can also give pause to extrapolations
of “classical” flow on network theory to complex networks
such as computer networks. If looking at the weights and
capacities of the network from the perspective of throughput,
typical maximum flow algorithms such as max-flow min-cut
may give incorrect answers if the limiting aspect of the flow
is the packet flow rate, size of the packets, or another issue
that is not plainly visible. Flows in computer networks do not
behave like incompressible fluid or similar flows assumed in
most flow models where any flow rate freely flows up to the
capacity minus costs incurred by friction, etc.
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Another point is other similarities to vehicle traffic dynam-
ics. Interestingly, the first graph of Figure 2 is similar to a
flow-density curve seen in traffic models. Even equation 1 has
similarity to such traffic models where

Q = DV (11)

Where Q is the traffic flow in cars/h and D is traffic density
in cars/km and V is flow velocity in km/h. There is a critical
traffic density that separates free flow from synchronized flow
or congestion that plays a similar role to packet size in data
networks.

This paper does not address the larger problem of dynamics
on networks, however, it is the contention of this paper that
understanding the simple dynamics at the network level is
essential to understanding the wider implications of network
sized dynamics. Given the problems with using Internet traffic
data described earlier, more understanding in the basics of
traffic dynamic may be obtained through experimental setups
or computer network simulations. Future research should look
at how topological invariants in networks affect dynamics
and how dynamics may affect the evolution of networks and
changes in their topological invariants.

As a final note regarding research on dynamics in networks,
particularly data networks and the Internet, the author believes
that more interaction and cross-referencing between the en-
gineering and physics communities will help promote better
understanding and advancement. Although there is research at
an almost feverish pitch in both the physics and engineering
community on networking, both sets of publications seem to
be almost entirely ignorant of each other. In physics, one of the
only such publications commonly cited is the Faloutsos team’s
work on the router topology of the Internet [6]. Engineering
researchers, in journals such as those published by IEEE and
ACM, also have rarely quoted physics literature besides the
most well-known papers of Barabási, Watts, or Strogatz and
seem largely unaware of the later results being reached by
physics in the topology of networks. Without a detailed un-
derstanding of the network protocols and engineering literature
regarding the function of data networks and the Internet, this
paper would not have been possible. A similar situation is
seen in sociology where a wealth of research has been done
on aspects of social network dynamics such as the diffusion of
trends along networks, in a quantitatively rigorous fashion, but
again both communities do not usually inform each other of
progress or motivate collaboration. As the study of networks
expands and matures, it will become necessary to read and
reach across interdisciplinary boundaries to share tools and
knowledge that will allow the most profound and predictive
insights to be reached.
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