
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1050

Abstract—In recent years, new product development became

more and more competitive and globalized, and the designing phase

is critical for the product success. The concept of modularity can

provide the necessary foundation for organizations to design products

that can respond rapidly to market needs. The paper describes data

structures and algorithms of intelligent Web-based system for

modular design taking into account modules compatibility

relationship and given design requirements. The system intelligence

is realized by developed algorithms for choice of modules reflecting

all system restrictions and requirements. The proposed data structure

and algorithms are illustrated by case study of personal computer

configuration. The applicability of the proposed approach is tested

through a prototype of Web-based system.

Keywords—Data structures, algorithms, intelligent web-based

system, modular design.

I. INTRODUCTION

HE growing range of products and services from all

sectors of economic activity is influenced from the

technological progress. Today, it is recognized that modular

design is more agile and competitive in rapidly changing

market environments. Modular design offers some essential

advantages that can be summarized as: stabilized design of

modular item reduces time for development of final product;

extended variety of products; high speed market response;

considerable flexibility in products design; easy service, fast

diagnosis of fault and replacements; simplified material

planning; less inventory due to easily available modular sub-

assemblies [1].

The main principle of modular design is to break systems

into discrete interchangeable modules with well-defined

interfaces to ensure functional compatibility and to provide

different functional capabilities. The modular design facilitates

the design of modular product architectures and/or the creation

of modular manufacturing processes. The concept of

modularity is a useful foundation to design products that

respond to rapidly changing market needs and allow a cost-

effective way of changes in product design. Modular design

allows having both the gains of standardization and the gains

of customization [2]. Examples of modular design

implementation can be referenced as vehicles, computers, and

buildings, just to mention a few. The purpose of any

I. C. Mustakerov is with the Institute of Information and Communication

Technology at the Bulgarian Academy of Sciences, Sofia – 1113, Bulgaria
(phone: 3952 9793241; e-mail: mustakerov@iit.bas.bg).

D. I. Borissova is with the Institute of Information and Communication

Technology at the Bulgarian Academy of Sciences, Sofia – 1113, Bulgaria
(phone: 3952 9792055; e-mail: dborissova@iit.bas.bg).

engineering system design is to realize the requirement

functions and to apply the essence of intelligent decision

making. Development of products in many engineering

disciplines is a challenging task and how to effectively support

the innovative design has become a priority consideration [3]-

[5]. In many application areas customer preferences change

rapidly and this requires shorter product development cycles.

Again, the principle of modularization can play a key role in

achieving mass customization and this is crucial in today’s

competitive global market environments [6], [7].

Software has become an important tool of systems design.

Currently, software is undergoing a fast technological

progress. Object-oriented, service-oriented and modeling

languages such as Java, XML, UML and SysML [8] tools

have considerably influenced the software system

development and design.

Mastering the complexity of software-intensive systems

requires a combined effort for foundational research and new

engineering techniques that are based on mathematically well-

founded theories and approaches. The new methods should

support the whole system life cycle including requirements,

design, implementation, maintenance, reconfiguration and

adaptation.

The software systems for information processing and

decision support can be viewed as combination of information

technology and people activities that support operations

management and decision making. The bridges between

industry and computer science using the theoretical

foundations of information processing and computation could

be realized via different architectural models and related

algorithmic processes. In a very broad sense, the term

information system is frequently used to refer to the

interaction between people, processes, data and technology. In

this sense, the term is used to refer not only to the information

and communication technology but also to the way in which

people interact with this technology in support of different

industry and business processes [9]. The architecture of

software system is an important field of software applications

development, evolution, and maintenance [10]-[12]. Software

architecture models the structure and behavior of a system on

a high level view of a system, including the software elements

and the relationships between them. Accordingly the IEEE

1471-2000 standard [13] software architecture is the

fundamental organization of a system embodied in its

components, their relationships to each other, and to the

environment, and the principles guiding its design and

evolution.

When talking about the intelligence in modular system

Data Structures and Algorithms of Intelligent

Web-Based System for Modular Design
Ivan C. Mustakerov and Daniela I. Borissova

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1051

design it is recognized that intelligent software should be able

to assist and advise the designer during the decision-making

process. The developed software modules should react in near

real-time to changing problem situations, propose alternative

actions, and evaluate the merits of such proposals [14]. The

recent developments in computer technology have made it

possible to store vast amounts of data in electronic form. In

reality, emphasis was placed on storage efficiency rather than

processing effectiveness. That defines existence of a data-

processing bottleneck and is one of the primary reasons for

evolution of software intelligence. One way to overcome the

data-processing bottleneck is to define proper data structures

that assist developing of efficient data processing algorithms.

In the current paper, data structures and algorithms for web-

based system for modular design are proposed with an

emphasis on support of intelligent design decisions making.

II. MODULAR DESIGN AND DATA STRUCTURE

The engineering design is as much art as science and there

can be a variety of possible design alternatives. Any kind of

assistance of the designer by automating some of his hard

work – performing complex calculations, making some logical

and reasonable choices, visualizing the results, etc., would be

valuable. If the design process can be modeled and simulated

in computer environment it will increase the design efficiency.

Even simple software tools for design activities will be helpful

in decreasing of design time and costs. The modular design

does not involve the development of new components but

require knowledge of the modules characteristics and their

compatibility relationship with other modules. The intelligent

decision making for any modular design is based on proper

choices of modules. This choice should correspond to all of

the given functional requirements for the designed system and

in most cases should meet some design criteria. For example,

one of the widely used design criterion is cost of the design. If

the choice of modules is irrelevant and design goals are not

met the whole design process should be repeated.

Concept of modular design is very helpful in providing

variety of products to the customers. A typical example of

using the advantages of modularization is personal computers

(PC) configuration design. There exists large diversity of PC

users. Most of them can be classified in different distinguished

groups as business users, students, scientists, home users,

gamers, etc. Each group of users has different requirements

about the PC functional capabilities. On the other hand, there

always exist individual users outside these groups with their

own specific requirements about the PC functionality. In that

sense the PC configuration design can be investigated as a

case study that illustrates many of the features of modular

system design. In this case study, motherboard (MB),

processor (CPU) and memory (RAM) can be regarded as basic

modules defining most of the system functional capabilities.

For illustration of the proposed in the paper data structures and

algorithms the following sets of basic modules are considered:

MB = {MBi, i = 0, 1, ... , 6}

CPU = {CPUi, i = 0, 1, ... , 6}

RAM = {RAMi, i = 0, 1, ... , 6}

These modules sets are defined on the basis of some real

commercially available MB, CPU and RAM modules with

parameters data shown in Tables I, II and III.

TABLE I
MB-DATA [i,j]

i MB
MB RAM,

slots
MB Max

RAM [GB]
Price

[BGL]

0 ASROCK P45XE-WIFIN/P45 4 16 178.50

1 ASROCK G31M-S/G31 2 8 69.00
2 Gigabyte G31M-ES2C/G31 2 4 74.50

3 Gigabyte X48-DQ6 /X48 4 8 227.50

4
ASUS P5S800-
VM/SIS661FX

2 2 36.00

5 ASUS P7P55D/ PRO/P55 4 16 315.50

6 INTEL DX58SO/X58/BOX 4 8 421.50

TABLE II
CPU-DATA [j,l]

j CPU
CPU Core

number
CPU Clock

[GHz]
Price

[BGL]

0 CELERON-D 347 1 3.06 59.50

1 Core DUO E5200 /800/2M BOX 2 2.50 109.00

2 Core2 DUO E7600 /1066/ 3M BOX 2 3.06 251.00
3 Core2 QUAD Q8200S/1333/ BOX 4 2.33 381.00

4 C i5-750 /8M/BOX/ 4 2.66 371.00

5 C i7-860 /8M/BOX/ 4 2.80 531.00
6 C i7-940 /8M/BOX/ 4 2.93 979.50

TABLE III

RAM-DATA [j,l]

j RAM
RAM

Size [GB]

RAM Frequency

[MHz]

Price

[BGL]

0 DDR A-DATA 1 400 55.00

1 DDR2 KINGSTON 1 667 41.50

2 DDR2 KINGSTON 1 1066 64.50

3 DDR3 KINGSTON 1 1066 42.50

4 DDR2 KINGSTON 2 800 77.50

5 DDR3 A-DATA 2 1333 77.50

6 DDR3 HYPER X KINGSTON 2 1600 83.00

One of the major problems in modular design is meeting the

compatibility dependences between modules. This is well

illustrated by the PC configuration case study. The

compatibility dependences of PC modules must be strictly met

in order to have a working system configuration. For example,

each MB has specific requirements about CPU and RAM

modules it can support. The CPU and RAM modules have also

corresponding requirements for MBs they can be installed on.

The compatibility dependences between modules are

graphically illustrated in Fig. 1.

Fig. 1 Graphical illustration of PC modules relationship

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1052

When organizing data in decision support system, it is

important to define proper data structures that will assist the

development of efficient processing algorithms. Some

experimentation with different types of data structures proved

that the two-dimensional arrays, where values of 0 mean

incompatible modules and nonzero values mean compatible

modules are suitable for the goal. For example, compatibility

dependencies between MB and CPU can be described by 2D

array MB-CPU[i,j] as shown in Table IV.

TABLE IV

MB-CPU[i,j] – 2D ARRAY OF MB AND CPU COMPATIBILITY

 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6

MB0 1 1 1 1 0 0 0

MB1 1 1 1 1 0 0 0

MB2 1 1 1 1 0 0 0
MB3 1 1 1 1 0 0 0

MB4 1 0 0 0 0 0 0
MB5 0 0 0 0 1 1 0

MB6 0 0 0 0 0 0 1

In most cases of modular design the compatibility

dependencies are more complex to be described by single 2D

array. PC configuration case study demonstrates this by

existence of additional compatibility requirements for RAM

modules choice. Each particular MB has a certain number of

memory slots, maximal memory size and RAM modules

frequency it can support and each RAM module has certain

memory size and operating frequency (see Table III). For the

cases like this, a possible solution is to use several 2D arrays

i.e. three 2D arrays for MB and RAM compatibility – one for

memory slots, one for max memory size and one for RAM

frequency – Tables V, VI and VII.

TABLE V

MB-RAM-1[i,j] – 2D ARRAY OF MB RAM FREQUENCY COMPATIBILITY

 RAM0 RAM1 RAM2 RAM3 RAM4 RAM5 RAM7

MB0 0 667 1066 0 800 0 0

MB1 0 667 0 0 800 0 0
MB2 0 667 1066 0 800 0 0

MB3 0 667 1066 0 800 0 0

MB4 400 0 0 0 0 0 0
MB5 0 0 0 1066 0 1333 1600

MB6 0 0 0 1066 0 1333 1600

TABLE VI

MB-RAM-2[i,j] – 2D ARRAY OF MB RAM SLOTS NUMBER COMPATIBILITY

 RAM0 RAM1 RAM2 RAM3 RAM4 RAM5 RAM7

MB0 0 4 4 0 4 0 0

MB1 0 2 0 0 2 0 0
MB2 0 2 2 0 2 0 0

MB3 0 4 4 0 4 0 0

MB4 2 0 0 0 0 0 0
MB5 0 0 0 4 0 4 4

MB6 0 0 0 4 0 4 4

TABLE VII

MB-RAM-3[i,j] – 2D ARRAY OF MB MAXRAM SIZE COMPATIBILITY

 RAM0 RAM1 RAM2 RAM3 RAM4 RAM5 RAM7

MB0 0 16 16 0 16 0 0

MB1 0 8 0 0 8 0 0
MB2 0 4 4 0 4 0 0

MB3 0 8 8 0 8 0 0

MB4 2 0 0 0 0 0 0
MB5 0 0 0 16 0 16 16

MB6 0 0 0 8 0 8 8

If other modules of the designed system have to be

considered similar data structures for those modules can be

introduced.

III. DESIGN SPECIFIC AND ALGORITHMIC REALIZATION

Each system design has specific requirements that have to

be reflected by developing of proper algorithms. This means

the data structures and algorithmic realizations are closely

related. One of the main questions in modular system design is

decision making about the compatible modules choice. The

developing of corresponding algorithm should follow as

closely as possible the designer's logic for decision making.

Using the described data structures for MB, CPU and RAM

modules, a generalized algorithm for modular system design is

shown on Fig. 2.

Fig. 2 Generalized algorithm for PC modular design

It describes 4 decision making scenarios distinguished as

four algorithm branches. These branches differ from each

other by the order of modules selection. First branch of

algorithm starts with choice of CPU. The CPU choice defines

a subset of compatible MBs that is used to make choice of a

particular MB. The MB choice in turn defines a subset of

compatible RAMs to choose from. Second branch of

algorithm starts with choice of MB, goes through choice of

CPU and ends with choice of RAM module. The third branch

also starts with choice of MB but continues through RAM and

then CPU modules choices. The fourth branch of algorithm

describes the most unlikely but possible scenario of starting

with RAM module choice. The RAM modules choice

influences MB choice that in turn defines the CPU choice.

There is no compatibility relationship between RAM and CPU

modules to be considered.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1053

The algorithmic realization of four scenarios/algorithms

(A1, A2, A3, A4) shown in Fig. 2 is achieved by using of the

proposed data structures as following algorithms:

A1: Algorithm realization for CPU => MB choice of compatible modules

1. Given the array CPU-Data[j] or CPUm[j] set j=c; ≺ choice

 of particular CPU

2. for i = 0 to number of MBs do ≺ create list of compatible

 MBs for "drop-down" menu

3. if MB-CPU[i,c] > 0 then

4. MBc[i] = MB-Data[i,0]; ≺ selectable item of

 "drop-down" list

5. else MBc[i] = ””; ≺ empty (not selectable) item of

 "drop-down" list

6. set i = m;

≺ choice of particular MB with index m;

7. else end

A2: Algorithm realization for MB => RAM choice of compatible

modules

1. Given the array MB-Data[i] or MBc[i] set i = m; ≺ choice of

 particular MB

2. for j = 0 to number of RAMs do ≺ create list of compatible

 RAMs for "drop-down" menu

3. if MB-RAM-1[m,j] > 0 then

4. RAMm[j] = RAM-Data[i,0]; ≺ selectable item of

 "drop-down" list

5. else RAMm[j] = ””; ≺ empty (not selectable) item of

 "drop-down" list

6. set j = r ; ≺ choice of particular RAM with index r

7. get Nram ≺ get entered RAM modules number

8. if Nram > MB-RAM-2[m,j] then message goto 7
9. else if Nram*RAM-Data[r,1] > MB-RAM-3[m,r] then message

goto 7

10. else end

A3: Algorithm realization for MB => CPU choice of compatible modules

1. Given the array MB-Data[i] or MBc[i] set i = m; ≺ choice of

 particular MB

2. for j = 0 to number of CPUs do

3. if MB-CPU[m,j] > 0 then ≺ create list of compatible CPUs for

 "drop-down" menu

4. CPUm[j] = CPU-Data[i,0]; ≺ selectable item of

 "drop-down" list

5. else CPUm[j] = ””; ≺ empty (not selectable) item of

 "drop-down" list

6. set j = c; ≺ choice of particular CPU with index c;

7. end

A4: Algorithm realization for RAM => MB choice of compatible

modules

1. Given the array RAM-Data[j] set j = r; ≺ choice of particular

 RAM,

2. for i = 0 to number of MBs do

3. if MB-RAM-1[i,r] > 0 then ≺ create list of compatible MBs for

 "drop-down" menu

4. MBr[i] = MB-Data[i,0]; ≺ selectable item of "drop-down" list

5. else MBr[i] = ””; ≺ empty (not selectable) item of

 "drop-down" list

6. set i = m; ≺ choice of particular MB with index m

7. get Nram ≺ get entered RAM modules number

8. if Nram > MB-RAM-2[m,j] then message goto 7

9. else if Nram*RAM-Data[r,1] >MB-RAM-3[m,r] then message goto 7

10. else end

The goal of all algorithmic realizations of modules choices

is to create lists of compatible modules to be used in “drop-

down” menus. The proposed data structures allow this to

happen with minimal algorithmic difficulties. For example,

when algorithm A1 starts with selection of a concrete CPU

module, this selection defines certain column in 2D array MB-

CPU[i,j]. The list of compatible MBs with this CPU is created

by replacing all non zero values of the chosen CPU's column

with names of MBs stored in the first column of 2D array MB-

Data[i,j]. The cells corresponding to zero values are left empty

as indication that these items are not selectable in “drop-

down” menu.

When the choice of modules begins with MB module (A3

algorithm) a certain row of MB-CPU[i,j] is selected and the

list of compatible processors is determined in the same manner

by using data from the first column of the 2D array CPU-

Data[i,j]. Creation of list of compatible RAMs and MBs

follows the same logic but three arrays for compatibility

description are used.

The array MB-RAM-1[i,j] is used for defining list of

compatible RAMs (A2 algorithm) or compatible MBs (A4

algorithm) while arrays MB-RAM-2[i,j] and MB-RAM-3[i,j]

are used to check if the entered number of RAM modules

correspond to MB's slots number and to maximal supported

RAM size. If these limitations are not met proper messages are

to be displayed and another number of RAM modules are

expected to be entered.

These types of data structures support also algorithmic

realization of intelligent choice of modules in design process.

For example, if the user (DM, designer) needs a number of

processor cores equal to Ncore he could set this value in the

corresponding menu position and the following algorithmic

realization (algorithm A5a) has to be used:

A5a: Algorithmic realization of intelligent CPU choice

1. get Ncore ≺ get entered CPU core number

2. for i = 0, k = 0 to number of CPUs do ≺ create list of CPUs fitting

 to this requirement

3. if CPU-Data[j,1] ≥ Ncore then

4. CPUc[j] = CPU-Data [j,0]; ≺ selectable item of

 "drop-down" list

5. else
 CPUc[j] = ””; ≺ empty (not selectable) item of

 "drop-down" list

 k = k +1; ≺ counter of empty (not selectable) items

6. if k = number of CPUs then message goto 1

7. else set j = c;

≺ choice of CPU with core number Ncore;

8. continue ≺ continuing with next part of modules choice algorithm;

If the given requirement cannot be satisfied i.e. there is no

CPU with core number Ncore, a proper message is displayed

and another Ncore could be entered.

Other example of intelligent choice is the choice of module

by price. If the user (DM, designer) sets maximal price Pricemb

he is willing to pay for MB, the choice of proper MB is

realized by following the algorithmic realization (A5b) as:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1054

A5b: Algorithmic realization of intelligent CPU choice

1. get Pricemb ≺ get entered maximal value for MB price

2. for i = 0, k = 0 to number of MBs do ≺ create list of MBs fitting to

 this requirement
3. if MB-Data[i,3] ≤ Pricemb then

4. MBc[i] = MB-Data [i,0]; ≺ selectable item of

 "drop-down" list

5. else
 MBc[i] = ””; ≺ empty (not selectable) item of

 "drop-down" list

 k = k +1; ≺ counter of empty (not selectable) items

6. if k = number of MBs then message goto 1

7. else set i = m;

≺ choice of MB with price less or equal to Pricemb;

8. continue ≺ continuing with next part of modules choice algorithm;

The result of execution will be a list of MBs with price less

or equal to the given Pricemb or, if all of the available MBs are

more expensive a message will be displayed and other

requirement from the user will be expected.

The summary price of chosen modules is calculated by

another easy to implement algorithm.

A6: Algorithmic realization of the design cost calculation

1. get m, c, and r ≺ get indexes of chosen modules

2. Pricesum = MB-Data[m,3]+CPU-Data[c,3]+RAM-Data[r,3]

3. end

Following these algorithms reflecting different

requirements for the designed system, a proper software

system could be realized.

IV. GUI DESIGN DESCRIPTION

A software system is constructed to serve a specific

purpose. In order to achieve the desired outcome, the software

code needs to complete different tasks leading to the final

solution. The tasks can be grouped by logical functions.

Building web applications makes no exception and there have

been many advances in this area.

One of the important problems in software system building

is designing of graphical user interface (GUI). The goal is to

build a framework for a simple and intuitive GUI supporting

the application of the processing algorithms and user

acceptance of the system. The basic framework for developing

of GUI should follow the same designer's logical functions

that were followed in the development of algorithms. This

means that there is also a close connection between the GUI

and software modules to be developed.

The GUI shape depends on the specifics of the designed

modular system. An intuitive and easy for interacting GUI for

PC configuration, incorporating the developed above

algorithms (A1, A2, A3, A4, A5a, A5b and A6) as a case

study, is shown on Fig. 3.

Fig. 3 GUI Screenshot

The main concept of GUI development is using of “drop-

down” menus for choice of modules. At the start of operation

of the system the lists of “drop-down” menus are initialized

with all available modules. When a specific module is selected

the lists of modules for other “drop-down” menus are updated

to contain only compatible modules with the selected one.

This system feature is reflection of implemented intelligence

of the system. After choice of particular module the module’s

parameters are loaded and displayed in corresponding text

areas. If there is some criterion for the parameters of the

designed system, its value is calculated taking into account the

parameters of chosen modules. For PC configuration case

study the button “calculate” activates computing of total size

of RAM and overall price of modules. Another intelligent

option of the system is possibility to edit the text fields

containing the modules' parameters. In other words, the user

can enter some preferable value for module's parameter and

after pressing button “calculate” the system will try to find the

module that satisfies this requirement of the user. If this is not

possible an appropriate message is displayed and user should

take other decision about that parameter. This type of

intelligence can also include the possibility to propose module

with closest value to preferred one for this parameter. Other

intelligent feature would be implementation of optimization

according to given criterion or multiple criteria.

The developed GUI was implemented in prototype of a

Web-based system for PC configuration design used to test the

proposed data structures and algorithms. The prototype has

been developed as client-side application by means of HTML

and JavaScript. Testing of the prototype for PC configuration

design using real data modules from Tables I and II, and Table

III shows the practical applicability of the proposed data

structures and algorithms. The concept of a modular

realization of the algorithms supports the use of a modular

architecture of the software system. The including of different

processing software modules depends on user needs and the

modular architecture allows easy carrying out of extensions

and modifications to the system.

V. CONCLUSION

Engineering system design in modular form means

designing a system based on modules. The advantages of

modular design are flexible structure, easy to maintain, debug,

upgrade and customize with respect to changing customer

requirements. The automating some of designers hard work by

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:7, 2013

1055

making some logical and reasonable choices, visualizing the

results, etc., is valuable.

The current paper describes data structures that support

developing of easy to realize and implement algorithms for

intelligent Web-based system for modular design. Web-based

format is chosen because it offers the advantages of instant

access, automatic upgrades, and cross-platform compatibility.

The intelligence of the system is focused on choice of

compatible modules reflecting different design requirements.

The proposed data structures and algorithms are explained on

the basis of personal computer configuration case study. The

testing of a prototype of a Web-based system for PC

configuration design using real modules data showed practical

applicability of the proposed data structures and algorithms.

The described data structures and algorithms and the use of

XML and related technologies will be the basis for developing

a framework of software system for the design of modular

engineering systems.

ACKNOWLEDGMENT

The research work reported in the paper is partly supported

by the project AComIn “Advanced Computing for

Innovation”, grant 316087, funded by the FP7 Capacity

Programme (Research Potential of Convergence Regions).

REFERENCES

[1] M. S. Sa'Ed, A. K. Kamrani. Modular Design. Collaborative

Engineering, pp. 207-226, 2008.
[2] J. T. Dorsey, T. J. Collins, W. R. Doggett, R. V. Moe. Framework for

Defining and Assessing Benefits of a Modular Assembly Design

Approach For Exploration Systems. In: Space Technology and
Applications International Forum, Albuquerque NM, 12-16 February

2006. AIP Conference Proceedings, vol. 813, Ed. Mohamed S. El-Genk.

[3] S. Gonnet, G. Henning, H. Leone. A model for capturing and
representing the engineering design process. Expert Systems with
Applications, no 33, pp. 881-902, 2007.

[4] K. Fujita. Product variety optimization under modular architecture.
Computer-Aided Design, no 34, pp. 953-965, 2002.

[5] A. L. Chen, D. H. Martinez. A heuristic method based on genetic

algorithm for the baseline-product design. Expert Systems with
Applications no 39, pp. 5829-5837, 2012.

[6] W. Li, Y. Li, J. Wang, X. Liu. The process model to aid innovation of

products conceptual design. Expert Systems with Applications, no 37, pp.
3574-3587, 2010.

[7] J. Yoo, S. R. T. Kumara. Implications of k-best modular product design

solutions to global manufacturing. CIRP Annals – Manufacturing
Technology, no 59, pp. 481-484, 2010.

[8] M. Hause, F. Thom. Building Bridges Between Systems and Software

with SysML and UML. In: INCOSE Intl. Symposium, 2008.
[9] D. M. Kroenke. Experiencing MIS. Prentice-Hall, Upper Saddle River,

NJ 2008.

[10] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. 2nd
edition. Reading, MA: Addison-Wesley, 2003.

[11] G. Booch. The irrelevance of architecture. IEEE Software, no 24, pp.10-

11, 2007.
[12] R. N. Taylor, N. Medvidovic, E. Dashofy. Software Architecture:

Foundations, Theory, and Practice. New York, NY: Wiley Publishing,
2009.

[13] Software Engineering Standards Committee of the IEEE Computer

Society, IEEE Recommended practice for architecture description of

software-intensive systems, IEEE Std 1471-2000, Approved 21
September 2000, IEEESA Standards Board, Print: ISBN 0-7381-2518-0

SH94869, PDF: ISBN 0-7381-2519-9 SS94869, at
(http://standards.ieee.org/).

[14] Decision Support Systems in Agent-Based Intelligent Environments.

Knowledge-Based Intelligent Engineering Systems Series. Phillips-Wren
G. and L. Jain (eds.), IOS Press, Amsterdam, The Netherlands, 2005.

