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 
Abstract—This work proposes a data-driven multiscale based 

quantitative measures to reveal the underlying complexity of 
electroencephalogram (EEG), applying to a rodent model of 
hypoxic-ischemic brain injury and recovery. Motivated by that real 
EEG recording is nonlinear and non-stationary over different 
frequencies or scales, there is a need of more suitable approach over 
the conventional single scale based tools for analyzing the EEG data. 
Here, we present a new framework of complexity measures 
considering changing dynamics over multiple oscillatory scales. The 
proposed multiscale complexity is obtained by calculating entropies of 
the probability distributions of the intrinsic mode functions extracted 
by the empirical mode decomposition (EMD) of EEG. To quantify 
EEG recording of a rat model of hypoxic-ischemic brain injury 
following cardiac arrest, the multiscale version of Tsallis entropy is 
examined. To validate the proposed complexity measure, actual EEG 
recordings from rats (n=9) experiencing 7 min cardiac arrest followed 
by resuscitation were analyzed. Experimental results demonstrate that 
the use of the multiscale Tsallis entropy leads to better discrimination 
of the injury levels and improved correlations with the neurological 
deficit evaluation after 72 hours after cardiac arrest, thus suggesting an 
effective metric as a prognostic tool. 
 

Keywords—Electroencephalogram (EEG), multiscale complexity, 
empirical mode decomposition, Tsallis entropy.  

I. INTRODUCTION 

LECTROENCEPHALOGRAM (EEG) has been exploited 
in connection with functional brain mechanisms as a 

potential tool for the identification of brain disorder such as 
hypox-ic-ischemic brain injury, epileptic seizure and so on [1]. 
Despite the effectiveness of EEG as a clinical diagnostic tool, 
most interpretations are based on subjective measures such as 
visual inspection, limiting precise interpretation. Thus, the need 
for objective measures gives rise to the development of 
quantitative EEG measure to uncover neurological states [2]. 
Recently, quantitative EEG analyses based on novel signal 
processing techniques have shown promising results for 
analyzing brain rhythm following hypoxic-ischemic brain 
injury after cardiac arrest [3], [4].  

Among those, information theoretic analyses have been 
successfully used to quantify complexity or irregularity of 
injured brain rhythm [5]. These studies founded on assumption 
that the larger information content of EEG, the better 
neurological status of brain. More recently, it has been reported 
that informative content in EEG spans and varies over multiple 
frequencies through injury and recovery phases. Thus the single 
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scale based entropy measures are lacking in reflecting the 
changing dynamics over multiple scales in EEG. 

To address this obstacle, we present a multiscale framework 
of entropy measure by incorporating intrinsic mode functions 
(IMFs) from the empirical mode decomposition (EMD) into 
computing entropies. EMD, which has been recently 
introduced as a data-driven technique, is known as appropriate 
for analyzing non-stationary and nonlinear time-series [6]. It 
decomposes a time-series into narrow band components, called 
IMFs, by empirically identifying the physical time scales 
intrinsic to the signal. Thus, due to the potential of EMD, it has 
been gradually used to analyze physiological signals such as 
EEG [7]. Unlike the single scale based entropy measures, we 
compute entropy using the probability distributions of the IMFs 
at each scale, followed by averaging over multiple scales. Thus, 
we develop the multiscale complexity measures which are 
applied to well-known Tsallis entropy due to their simplicity 
and effectiveness. We showed the performance of the 
multiscale Tsallis entropy by comparing the conventional 
single scale based one in characterizing bursts. In addition, we 
demonstrate that the performance of the multiscale Tsallis 
entropy by correlating the measure of the neurological 
outcomes for the experimental animal subjects. 

II. DATA-DRIVEN MULTISCALE COMPLEXITY 

A. Empirical Mode Decomposition 

In [6], a data-driven decomposition method which is 
appropriate for nonlinear and non-stationary time series has 
been developed. By an iterative scheme, EMD extracts the 
finest oscillation from the series, called as an IMF. The 
extracted IMFs exhibit the oscillatory patterns with different 
frequency.  

An IMF has to meet the following two criteria: 1) the number 
of extreme and zero crossings are either equal or differ by at 
most one, and 2) the mean value of the envelope defined by the 
local maxima and local minima is zero.  

Here, we describe the principle of EMD as follows. Let ( )s i

denote the raw sampled EEG signal. Then EMD is composed of 
the followings: 
1. Identify all the local maxima and minima of ( )s i . 

2. Interpolate between local maxima and minima 
respectively, getting an upper envelope ( )ue i  and a lower 

envelope ( )le i .  

3. Compute the mean between ( )ue i  and ( )le i , i.e., 

( ) [ ( ) ( )] / 2u li e i e i   .  

4. Subtract the mean from the original signal ( ) ( ) ( )d i s i i  .  
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(a) 
 

 

(b) 
 

 

(c) 
Fig. 2 Real EEG recording of burst suppressions and time evolutions 

of Tsallis entropy and multiscale Tsallis entropy. (a) Real EEG 
recording of early recovery phase at 50 min. (b) Time evolution of 
Tsallis entropy. (c) Time evolution of multiscale Tsallis entropy 

 
The signals were digitalized using CODAS, a data 

acquisition package (DATAQ Instruments INC., Akron, OH). 
A sampling rate of 250 Hz and a 12 bit resolution of A/D 
converter were used for digitization of the data. All rats were 
resuscitated and neurological outcome was evaluated by 
neurological deficit score (ranging from 0 = worst to 80 = best) 
consisting of level of arousal, cranial nerves and sensory motor 
assessments, reflexes, and occurrence of clinically appreciable 
seizures [8]. The neurological deficit score was calculated by 
an independent observer 72 h after asphyxial cardiac arrest 
injury. Fig. 1 shows the EEG recording for a rat during brain 
injury and recovery after cardiac arrest. The raw EEG signal 
can be divided into three periods as follows: (I) 10-min 
baseline, (II) 7-min CA and silent phase, and (III) recovery. 
From Fig. 1, it is obvious that the amplitude of EEG decreases 
after CA injury and followed by gradual increase in recovery 
period. However, it is difficult to clearly discriminate 
difference between the pre-injury and the various recovery 
phases by visualization alone. Even more difficult would be to 
objectively compare different injury grades or the effects of 
hypothermia therapy. Limits of visual investigation stress the 
need for a reliable quantitative approach to study EEG’s. 
 

 

Fig. 3 Correlation between multiscale Tsallis entropy and NDS. 
Pearson correlation coefficients and the corresponding p-value were 

calculated 
 

To show the inherent oscillatory components of EEG, EMD 
was carried out, and the resulting IMFs and corresponding 
power spectral densities are shown in Fig. 3. Figs. 2 (a)-(c) 
show the EMD results of three 10 s segments of EEG recording 
at various phases in Fig. 1 as follows: EEG recordings in 
baseline, 50 min, and 180 min, respectively. 

For evaluating the multiscale complexities, the following 
parameters were used: sliding temporal window length with 10 
s, sliding interval with 10 s, and M=20. In addition, when 
computing Tsallis entropy, we choose 3q  . To test the 

capability of the multiscale Tsallis entropy for detecting burst, 
we calculated the Tsallis entropies (multiscale and gross scale) 
for the burst pattern of EEG shown in Fig. 2 (a). This burst was 
obtained from real EEG recording of a rat. Tsallis entropy in 
Fig. 2 (b) underestimates some bursts (at 2, 9, and 14 s), 
whereas the multiscale Tsallis entropy (Fig. 2 (c)) shows its 
specificity for detecting the bursts. Recently, Tsallis entropy 
based measure, namely, Tsallis entropy area, has been 
introduced as a promising marker for quantifying burst 
suppression of EEG [4]. Along this line, we calculated the 
Tsallis entropy areas (multiscale and gross scale). Fig. 3 reveals 
that the multiscale Tsallis entropy area is relevant with 
neurological deficit score. Hypothesis testing using a Student-t 
distribution (n=9) reveal that the multiscale entropies is 
correlated to neurological deficit score. 

IV. CONCLUSION 

We presented a new framework for quantifying complexity 
in EEG over multiple time scales. Conventional Tsallis entropy 
measure has been successfully applied in prognosticating the 
degree of neurological states. However, it has limitation in 
de-scribing complexity spanned over different scales. Here, 
evaluation of Tsallis entropy using probability distribution of 
intrinsic oscillatory mode at each scale, followed by averaging 
over multiple scales results in an effective measure for assess 
multiscale complexity in EEG. Through experimental study, 
the multiscale Tsallis entropy is more proficient for detecting 
spikes and bursts in EEG than the single scale based one. To 
conclude, in order to provide a more effective prognostic metric 
for hypoxic-ischemic brain injury following cardiac arrest, the 
multiscale complexity framework can be used as a real-time 
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indicator of neurological status. 
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