International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

Data and Control Flow Analysis
of VDM++ Specifications

Mubina Nazmeen and Iram Rubab

Such as some of the approaches [9, 11] have usttigpa

Abstract—Formal Specification languages are being widelyduseanalysis and some [4, 5, 10] have designed tessdasough
for system specification and testing. Highly caticsystems such as boundary value analysis. Nadeem et al. [5] used W¥BNb

real time systems, avionics, and medical systerasrepresented
using Formal specification languages. Formal smmtibns based
testing is mostly performed using black box testpgproaches thus
testing only the set of inputs and outputs of th&tesn. The formal
specification language such as VDM++ can be usedvfate box

testing as they provide enough constructs as ahgrdtigh level

programming language. In this work, we perform data control

flow analysis of VDM++ class specifications. Theposed work is
discussed with an example of SavingAccount.

Keywords—VDM-SL, VDM++, data flow graph, control flow
graph, testing, formal specification.

. INTRODUCTION

HE use of formal languages is rising for the systehat
are more safety critical such as real time systawisnics,

test the inheritance and polymorphic behavior ofecb
oriented systems. We intend to extend the use d1¥b for
data flow and control flow analysis. The data flelnows the
definition and use of variables and tells about hbe data
routes [18]. Similarly, control flow shows how fumms are
executing and examines the branch and loop steiafithe
programs. The data flow and control flow analysidurther
used for test case generation. We have appliecphamposed
approach on a case study of Saving Account VDM-as<l

The rest of the paper is organized as follows. iGeci
gives a review of the literature. In section Il wéscuss the
proposed data and control flow of VDM++ specifioas.
Section IV provides the proof of work in the fornfi case
study. Section V concludes the paper.

Il. LITERATURE REVIEW

medicine etc. Formal languages provide an unambguo

and clear representation of the system specificafttd]. The emphasis of our literature review is on testing

Formal languages are being used not only for teeifpation approaches in VDM and VDM++. Overviews of the
and modeling of the system but they are also aakéfact for approaches that we have surveyed are as follows:

testing the system. Test cases are generated fiem t Fitzgerald et al. [8] worked on validation of systdevel
specification of the system and are applied on théning properties in formal models of distributedat time
implementation. This provides the conformance oémbedded systems. The validation of inconsisterim¢seen

specifications in a system with its implementafia].

A large number of specification based testing teqes are
cited in literature such as using Z specificati@i][VDM
specification [1], B specifications [20], etc. Fam
specification based testing is mostly performedgshe black
box testing approaches such as boundary value sy 5,
10], partition analysis [9, 11], classificationérenethod [23].

those distributed applications is the main concefnthe
approach. The informal model constructed fromgudé the
system is transformed into VDM++ specification miodehe
model is then formally tested. The constructionnuddel is
automated. Macedo et al. [19] proposed an appredwre
abstract system specifications of functional ancirtg
properties are added with details. These detaits aatded

As the formal specification languages provide systethrough intermediate models expressing architecafrehe

specifications at a higher abstraction level inlaetive form
[14].

Formal Specification based test case generation bman

performed using white box or code based testingcgmhes.
White box testing is possible only for the languaghat

system, concurrency and timing behaviors. The mad#gien
validated through scenario based testing.

Nadeem et al. [9] introduced the technique of mesti

inheritance relationship using the VDM++ specificat By
using synchronization constraints provided by VDMa#

provide imperative language constructs such as VBM+yalid sets of sequence of operations of a classgeeified. As

VDM++ is a language that provides completely exable
specifications as any other high level programniamguage.

a result of operation sequence and partition peteia test
model is constructed that are used in test caserggon.

We can use the VDM++ SpeCification to test them code Another approach by Nadeem et al. [10] has predamtaew

level details at an early stage in development.

Many researchers have proposed approaches fongesii
VDM++ [5, 8, 9, 10, 15] specifications. However,al of the
proposed approaches black box testing have been use

Authors are with the University Institute of Infoation Technology, Pir
Meher Ali Shah Arid Agriculture University, Rawalmi, Pakistan..e-mail
mubi_139@yahoo.com

idea to generate test cases automatically from VBM+

specification. The testing in this approach is dase the fault
model presented by subtype inheritance and polyhismp
testing presented by Offutt et al. [13]. In the VBM

specification of a class a trace structure is digeciwhich

defines the valid sequence of method invocationslass for
an individual object of a class. From these trangctires; test
sequence generator constructs valid sequence oftape of

806

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

a class. The partition analyzer makes conjunctiohglass
invariants predicate with precondition predicate edich
method in class. With the help of partition anaysgst data is
generated for each operation in operation sequetwdse
tested. Verhoef et al. [15] have proposed the sidento the
VDM++ to handle the problems of the system in distied
and real time environments. Initially authors haliscussed
the existing notation of VDM++ and timed extensions
Nadeem et al. [5] proposed a framework which sugptihie
automatic generation and execution of test casen fibject
oriented formal specification. The framework regqsir
VDM++ specification and its corresponding implenggian in
C++. With C++ code the symbol table is also cort$éd, the
boundary values of which are used by test genertior
generate test cases. After generation of test césstsdriver
executes test cases on implementation. An approiggarsing
a VDM-SL specification to generate C code and desa, was
developed [4], where test case generation is dowye
converting pre condition and post condition pretticato C

(DNF). It is also used to determine test cases efeery
individual operation.

Scullard [12] have described the validation proces$s
design, adapted by a very large scale integratddbSI)
distributed array processor (VDAP) project. Hardwas
designed in this project by using informal desigagess, but
tools and methods of VDM helps in defining testsitategy.
Generation of tests in [12] is done by translating very old
level interface specification into VDM.

All of the approaches have used the black box rigsti
strategies. In most of the approaches [3, 4, &, @] unit
level testing have been done while some [9, 10kHzandled
the inheritance and polymorphic relationships. &esigning
test cases different black box testing methods sash
boundary value analysis [4, 5, 10] and equivalgaétioning
[9, 11] have been used. As a test input some appesd?9, 10,
11] have used DNF expression while some [6, 8] heesl the
bequence of events. Some of the approaches hav#onesh
the test coverage criteria [11], test data germnd®, 4, 5, 7,

function and modify the source code to evaluatehea®, 10, 11, 12] and test case generation [4, 5, 9, 81, 12]. In

precondition before every function calls. Test easw@e
generating from precondition predicate expressipmparsing
them and partitioning the input domain. The te$vedrthen
executes the generated test cases on the modiigel and
evaluates test results by executing code for pmsdiGon.

Droschl [6] proposed an approach for developing test
cases from the collection of valid sequence of &semest
case generator creates test suites which are thmmitsed to
VDM Tools. Then, the VDM Tools supports analysis
specification by animation and test. Author haslenmgnted
the approach on a comprehensive case study namictass
control system. The case study is focusing on #geufes
digital video recording and automatic door contddl the
system. The paper [7] explores the possibilititawiomatic
black box testing through formal requirements simtion.
Author has presented the framework focusing theofisermal
requirements specification which is used in makitgp
abstract test oracles for concrete implementatidme
approach uses retrieve function to map the conénpigt and
output to abstract representation.

Agerholm et al. [3] presents a report on case study

conducted at Dessault Electrinique in which thegugzd on
the suitability of VDM technology for early softwear
development phases before detailed design whelireeggnts
are not confirmed and still there need of custofeedback.
The example used by the case study is real meplicapon.
Jeremy et al. [11] have presented the methodoldgyaxtition
analysis in model based specification of VDM. Thesented
approach is based on partition analysis by usiatg dhased
specification. Where, the division method is achikvby
transforming the relations into disjunctive normfarms

of 1Il.

surveyed approaches analysis of results has beeedcaut

either by a case study [3, 6, 8, 12, 15, 19] ohwit example
[4,5, 7,9, 10, 11]. Additionally for making the@roach more
understandable structural [4, 5, 7, 8, 9, 10] asldabioral [3,

6, 11, 12] elements have been used. Most of theappes [5,

6, 7, 8, 9, 10, 15] have used the automatic suppbrt
VDMTools.

DATA AND CONTROL FLOW ANALYSIS OF VDM+t+ CLASS
SPECIFICATIONS

We use VDM++ specifications for data flow and cohtr
flow analysis. This analysis is further used fosttease
generation. An abstract model of the proposed wisrk
presented in figure 1.

Following is a brief description of the proposecagach
activities.

« VDM++ class specifications are used as input attifa
for generating control flow graph. A control flow
graph is a representation of control transfer withi
class.

annotations.

» Extracting def-use associations of data membees of
class.

e A coverage criterion is applied on def-use
associations to generate test cases. The gené¢eated
cases are based on only def-use values.

The control flow graph is annotated with def-use

807

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

.7 VDM++ Specifications

VDM++ Control Flow Graph
(CFG)

Annotated CFG with Data
Flow information

Coverage Criteria

Def-Use Associations

Test Cases Generation

Test Cases

Fig. 1: An abstract model of the proposed approach

Now we discuss all the activities with an examgleSaving
Account class. The SavingAccount
presented in VDM++ in figure 2. A given SavingAcobulass
has two instance variables of type real. Afterwatdsas an
invariant on global variable “bal”. It has two opé&ons of
withdrawl and postinterest which have preconditicarsd
postconditions for those operations.

Class SavingAccount
Instance variables
intrstRate: real,
minbal: real;
invariant bal >= minBal,
operations
withdraw(amt:real)
ext wr bal: real
pre bal >= minBal+amt;
post bal = bal- amt;
postinterest()
ext wr bal: real;
post bal=bal* (1+intrstRate);
end SavingAccount

Fig. 2: SavingAccount Example in VDM++ specificats

specifications are

A. VDM++ Control Flow Graph

A control flow graph (CFG) is a directed graph imigh
node represents block of statements while the edgeesent
the control flow between statement blocks [18]. In
constructing a control flow graph the emphasisrscontrol
transfer within a class. A control flow graph of dass
SavingAccount is presented in figure 3. We havestranted
the following control flow graph by considering taent of
specification as nodes and their control transéeedges. For
example after an entry node, at second node wedwefirgtion
of variables and branch shows the viability anchgisement
of a condition.

808

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

@ Entry

minbal:real
intrstRate:real

Bal>=minbal
Bal<minbal

bal:real
amt:real

bal>=minBal+amt ‘
ba= bal” -ami e

bal>=minBal+amt

Bal:real
bal= bal
*(1+intrstRate)

0 End SavingAccount

Fig. 3: Control flow graph of class SavingAccount

B. Annotation of CFG with Def-use

Data flow graph represents the definition of vaeaband
their use in the program [18]. In data flow gragitwrence of
variable is classified as definitional occurrencdef],
computational-use(c-use) occurrence and predicEdptuse)
occurrence. Where assignment statement contains-tise of
variable followed by def of variable and input staent also
contains the def of variables. Similarly an outgtatement
contains c-use of variable while the conditionansfer
statement contains p-use of variable [18]. We tsedef use
analysis for VDM++ specifications. For doing defeu
analysis we have considered an input and definitanables
as def (variable) in an appropriate statement. &/ail output
statement such as “bal = bal - amt” have a c-usa dhta
member “amt” and “bal” followed by variable “bal’
Additionally a conditional statement contains asg-such as
“bal > minbal” have p-use (bal, (sourcenode, targee)).in
figure 4 we have presented the data flow graphhef éxample
mentioned above.

Entry

def (intrstRate)
def (minBal)

p-use(bal, (2,3))
p-use(bal, (2,7))

def (bal)
def (amt)

p-use (bal, (4,5))
p-use (bal, (4,6))

def (bal)
c-use (amt)
c-use(ba’)

def (bal)
c-use(bal)
c-use(intrstRate

End SavingAccount

00205020

Fig. 4: Data flow graph of class SavingAccount

Here we present the algorithm used to generatdehase
analysis of VDM++ class specifications.

Algorithm
EDGE
{ char edgelabel[];
EDGE *edge; };

DataFlowGraph()

1. N[][]: string

2. create EDGE

3. for i=0; i<=sizeof(N[][]); i++, repeat step 4

4. for j=0; N[i][j] != Null; j++ repeat step 5

5. if N[i][j] == assignment || N[i][j] == definitia,

then
create e : EDGE
e.edgelabel =
def_use(var, e)
else if N[i][j] == output || N[i][j] == computabn,
the create e : EDGE
e.edgelabel = c_use(va)(var
e)
else if N[i][j] == predicate || N[i][j] == condiion,
the create e : EDGE
e.edgelabel = p_use(vae, €))
else
create e : EDGE
e.edgelabel = end

809

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

Vol:4,

C. Def-use Associations

Def-use association means an association between
definition of a variable and the node where itsgdl The use
of variable may be either computation or predicatable
shows the definition and use associations of vietain a class
SavingAccount.
Consider the following statements of specification,

Balance:int

if Balance>=minBalance

Balance=Balance-amount

The first statement contains the definition (def) data
member “Balance” and second statement has predisatép-
use) of data member Balance. While, the third siate
contains the c-use of Balance and amount followeddf-use
of data member Balance.

TABLE |
DEF-USE ASSOCIATIONS FOR THE FIG3

Variables | def d-c-use d-p-use

intrstRate | 1 {6} [}

minBal 1 D D

bal 3 O 2,3), (2,7, (4)5),
(4,6)

Amt 3 {5} @

Bal 5 [} 2,3), (2,7, (4)5),
(4,6)

bal 6 o) (2,3), (2,7), (4)5),
(4.6)

E. Test case generation

So far we have CFG and def-use information of class
VDM++. We use this information to generate testesafor
VDM++ specifications. Test cases are the sequente
methods which evaluate the behavior of a systenemutesbt.
These generated sequences of methods must covgrpata
of flow graph.

A test case maybe generated using coverage criteria

Coverage criteria are the way which tells the tebtawv the
maximum faults in a program will be covered. Soroeecage
criteria which are commonly used to evaluate tlamdfer of
control, definitions of variables and their use;am# nodes
(statement coverage), all edge (branch coveradejets, all
c-use and all p-use criteria [18]. By following evsge criteria
on the associations between definitions and usear@bles in
program test cases may be derived.

No:4, 2010

VI. CONCLUSION

thIn this paper, we present the def-use analysis DM¥+
class specifications. VDM++ specifications are falijmused
for testing approaches such as partition analysiskeoundary
value analysis.
constructs for def-use analysis. Def-use analysigiges inner
details of a class that is specific to testing. Ted-use of
VDM++ can be performed like any high level prograimgn
languages. We present the approach with the help wéll
used example of a SavingAccount.

As a future work we intend to work on def-use asalyat an
integration level that involves many classes. We also
working on automation of the proposed approach.

REFERENCES

[1] CIiff B. Jones. “Systematic Software Developmentsing VDM”
Prentice-Hall International, Englewood Cliffs, Nedersey, second
edition, 1990.

[2] Elmstrom.R, Larsen.P.G and Lassen.P.B “The IFAD \\BMToolbox:
A Practical Approach to Formal Specification” ACMIGPLAN
Notices, Volume 29,September 1994.

[3] Sten Agerholm, Pierre-Jean Lecoeur, and EtienneheeiH. “Formal
specification and validation at work: A case stugjng VDM-SL" In
Proceedings of Second Workshop on Formal MethodsSaftware
Practice, Florida, Marts. ACM, 1998.

[4] Nadeem, A., Rehman, M. J. “Framework for Automatesting from
VDM-SL Specifications” In proceedings of the 8th HE-INMIC
Conference (INMIC 2004), Lahore, Pakistan, Decen2®&4.

[5] Nadem.A and Rehman.M.J."TESTAF: A Test automatioantework
for class testing using object oriented formal &pedions”.Journal of
universal computer science vol 11lissue 6, 2005.

[6] Georg Droschl. “Design and Application of a Tests€#&enerator for
VDM-SL" Austrian Research Center Scibcrsdorf and ISTechniscal

University of Graz 2Austria. 1999.

[7] Bernhard K. Aichering.”Automated Black-Box Testingth Abstract
VDM Oracles™.In M. Felici, K. Kanoun and A. Pasquiiditors,
Computer Safety,reliability and security: procegginof the 18
international conference, SAFECOMP’1999, Toulous€rance,
September 1999, volume 1698 of lecture notes inpeten science,
pages 250-259. Springer, 1999.

[8] J. S. Fitzgerald, P. G. Larsen, S. Tjell, and M.rhdef."Validation
Support for Real- Time Embedded Systems in VDM+etHnical
Report CS-TR-1017, School of computing Science, desile
University, April 2007. Revised Version to appearRroc. 18 IEEE
High Assurance System Engineering Symposium, NoeemB007,
Dallas, Texas, IEEE .

[91 Nadeem. A, Micheal R. Lyu. “A Framework for inharitce testing

O From VDM++ Specifications”.l‘? Pacific Rim International
Symposium on Dependable Computing (PRDC’06). |IEEID6.

[10] Nadeem. A, Malik.Z Micheal R. Lyu. “A Framework famheritance

and polymorphic Testing using a VDM++ Speciﬁcaﬁbl?h Pacific

Rim International Symposium on Dependable Comgu¢(PRDC'06).

IEEE, 2006.

[11] J. Dick and A. Faivre.”Automating the Generatiord&Sequencing of
test cases from model-based specifications”In J.GVoodcock and P.
G. Larsen, editors, FME'93: Industrial-strengthnfial methods, pages
268-284. Formal Methods Europe, Springer VerlagilA®93. Lecture
Notes in Computer Science 670.

[12] G. T Scullard."Test Case Selection using VDM” In Boomfield, L.
Marshall, and R. Jone, editors, VDM88:VDM-The wayead, number
328 in lecture notes in computer sciences pagesl8&8/DM Europe,
Springer Verlag, September 1988.

[13] J. Offut, R. Alexander, Y. Wu, Q. Xiao, C. Hutchams A Fault Model
for Subtype Inheritance and Polymorphism. The TieHEEE
International Symposium on Software Reliability Eregring
(ISSRE'01), pages 89-95, Hong Kong PRC, Novemb&d.20

[14] J. M. Wing. “A Specifier's Introduction to Formal éthods”.IEEE
Computer, vol.7, No.5,. Pages 8-4 September 1990.

VDM++ specifications provide enough

810

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:4, No:4, 2010

[15] Verhoef. M, Larsen. P.G and Hooman.J."Modeling av#alidating
Distributed Embedded Real-Time Systems with VDMP¥dceeding of
FN 2006; Formal Methods, August, 2006. Springer CISN4085, pp
147-162.

[16] Fitzgerald, J., Larsen, P.G., Mukherjee, P., PlatMerhoef, M.,
Validated Designs for ObjectorientedSystems, Serieriag, 2005,
ISBN 1-85233-881-4.

[17] VDMTools: The VDM++ Language, version 6.8.1, CSKr@aration,
2005.

[18] Rapps and E. J. Weyuker, “Selecting Software TesaJsing Data
Flow Information,” IEEE Trans. Software Engineeringl. SE-11, no.
4, April, 1985, pp. 367-375.

[19] Macedu.H.D, Larsen.P.G and Fitzgerald.J. “IncremleBevelopment
of a distributed Real-Time model of a cardiac pgcsystem using
VDM” University of New Castle upon Tyne, computin§cience,
Technical Report Series, No. CS-TR-1059, Novembér72

[20] J.-R. Abrial. “The B-Book, Assigning programs to amégs”.
Cambridge UniversityPress, 1996. ISBN 0521 496 t&iback).

[21] J. M. Spivey. The Z Notation. Series in CorgsScience. Prentice-
Hall, 1989.

[22] Glenford , J. Myers. “The art of software tagt Wiley series in
business data processing, John Willey and son8,19

[23] Singh.H, M.Conrad and S. Sadeghipour. “Teseadesign based on Z
and the classification-tree method” .IEEE, 1997

811

