
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

806

Abstract—Formal Specification languages are being widely used

for system specification and testing. Highly critical systems such as
real time systems, avionics, and medical systems are represented
using Formal specification languages. Formal specifications based
testing is mostly performed using black box testing approaches thus
testing only the set of inputs and outputs of the system. The formal
specification language such as VDM++ can be used for white box
testing as they provide enough constructs as any other high level
programming language. In this work, we perform data and control
flow analysis of VDM++ class specifications. The proposed work is
discussed with an example of SavingAccount.

Keywords—VDM-SL, VDM++, data flow graph, control flow

graph, testing, formal specification.

I. INTRODUCTION

HE use of formal languages is rising for the systems that
are more safety critical such as real time systems, avionics,
medicine etc. Formal languages provide an unambiguous

and clear representation of the system specification [14].
Formal languages are being used not only for the specification
and modeling of the system but they are also a key artifact for
testing the system. Test cases are generated from the
specification of the system and are applied on the
implementation. This provides the conformance of
specifications in a system with its implementation [22].

A large number of specification based testing techniques are
cited in literature such as using Z specification [21], VDM
specification [1], B specifications [20], etc. Formal
specification based testing is mostly performed using the black
box testing approaches such as boundary value analysis [4, 5,
10], partition analysis [9, 11], classification tree method [23].
As the formal specification languages provide system
specifications at a higher abstraction level in declarative form
[14].

Formal Specification based test case generation can be
performed using white box or code based testing approaches.
White box testing is possible only for the languages that
provide imperative language constructs such as VDM++.
VDM++ is a language that provides completely executable
specifications as any other high level programming language.
We can use the VDM++ specification to test the system’s code
level details at an early stage in development.

Many researchers have proposed approaches for testing of
VDM++ [5, 8, 9, 10, 15] specifications. However, in all of the
proposed approaches black box testing have been used.

Authors are with the University Institute of Information Technology, Pir

Meher Ali Shah Arid Agriculture University, Rawalpindi, Pakistan..e-mail
mubi_139@yahoo.com

Such as some of the approaches [9, 11] have used partition
analysis and some [4, 5, 10] have designed test cases through
boundary value analysis. Nadeem et al. [5] used VDM++ to
test the inheritance and polymorphic behavior of object
oriented systems. We intend to extend the use of VDM++ for
data flow and control flow analysis. The data flow shows the
definition and use of variables and tells about how the data
routes [18]. Similarly, control flow shows how functions are
executing and examines the branch and loop structure of the
programs. The data flow and control flow analysis is further
used for test case generation. We have applied our proposed
approach on a case study of Saving Account VDM++ class.

The rest of the paper is organized as follows. Section II
gives a review of the literature. In section III we discuss the
proposed data and control flow of VDM++ specifications.
Section IV provides the proof of work in the form of case
study. Section V concludes the paper.

II. LITERATURE REVIEW

The emphasis of our literature review is on testing
approaches in VDM and VDM++. Overviews of the
approaches that we have surveyed are as follows:

Fitzgerald et al. [8] worked on validation of system level
timing properties in formal models of distributed real time
embedded systems. The validation of inconsistencies between
those distributed applications is the main concern of the
approach. The informal model constructed from rules of the
system is transformed into VDM++ specification model. The
model is then formally tested. The construction of model is
automated. Macedo et al. [19] proposed an approach where
abstract system specifications of functional and timing
properties are added with details. These details are added
through intermediate models expressing architecture of the
system, concurrency and timing behaviors. The model is then
validated through scenario based testing.

Nadeem et al. [9] introduced the technique of testing
inheritance relationship using the VDM++ specification. By
using synchronization constraints provided by VDM++ all
valid sets of sequence of operations of a class are specified. As
a result of operation sequence and partition predicate a test
model is constructed that are used in test case generation.
Another approach by Nadeem et al. [10] has presented a new
idea to generate test cases automatically from VDM++
specification. The testing in this approach is based on the fault
model presented by subtype inheritance and polymorphism
testing presented by Offutt et al. [13]. In the VDM++
specification of a class a trace structure is specified which
defines the valid sequence of method invocations of class for
an individual object of a class. From these trace structures; test
sequence generator constructs valid sequence of operations of

Data and Control Flow Analysis
of VDM++ Specifications

 Mubina Nazmeen and Iram Rubab

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

807

a class. The partition analyzer makes conjunctions of class
invariants predicate with precondition predicate of each
method in class. With the help of partition analysis, test data is
generated for each operation in operation sequences to be
tested. Verhoef et al. [15] have proposed the extension to the
VDM++ to handle the problems of the system in distributed
and real time environments. Initially authors have discussed
the existing notation of VDM++ and timed extensions.

Nadeem et al. [5] proposed a framework which supports the
automatic generation and execution of test cases from object
oriented formal specification. The framework requires
VDM++ specification and its corresponding implementation in
C++. With C++ code the symbol table is also constructed, the
boundary values of which are used by test generator to
generate test cases. After generation of test cases, test driver
executes test cases on implementation. An approach of parsing
a VDM-SL specification to generate C code and test data, was
developed [4], where test case generation is done by
converting pre condition and post condition predicate into C
function and modify the source code to evaluate each
precondition before every function calls. Test cases are
generating from precondition predicate expression by parsing
them and partitioning the input domain. The test driver then
executes the generated test cases on the modified code and
evaluates test results by executing code for post condition.

Droschl [6] proposed an approach for developing the test
cases from the collection of valid sequence of events. Test
case generator creates test suites which are then submitted to
VDM Tools. Then, the VDM Tools supports analysis of
specification by animation and test. Author has implemented
the approach on a comprehensive case study named as Access
control system. The case study is focusing on the features
digital video recording and automatic door control of the
system. The paper [7] explores the possibilities of automatic
black box testing through formal requirements specification.
Author has presented the framework focusing the use of formal
requirements specification which is used in making the
abstract test oracles for concrete implementation. The
approach uses retrieve function to map the concrete input and
output to abstract representation.

Agerholm et al. [3] presents a report on case study
conducted at Dessault Electrinique in which they focused on
the suitability of VDM technology for early software
development phases before detailed design when requirements
are not confirmed and still there need of customer feedback.
The example used by the case study is real metro application.
Jeremy et al. [11] have presented the methodology of partition
analysis in model based specification of VDM. The presented
approach is based on partition analysis by using state based
specification. Where, the division method is achieved by
transforming the relations into disjunctive normal forms

(DNF). It is also used to determine test cases for every
individual operation.

Scullard [12] have described the validation process of
design, adapted by a very large scale integration (VLSI)
distributed array processor (VDAP) project. Hardware is
designed in this project by using informal design process, but
tools and methods of VDM helps in defining testing strategy.
Generation of tests in [12] is done by translating the very old
level interface specification into VDM.

All of the approaches have used the black box testing
strategies. In most of the approaches [3, 4, 5, 6, 7, 8] unit
level testing have been done while some [9, 10] have handled
the inheritance and polymorphic relationships. For designing
test cases different black box testing methods such as
boundary value analysis [4, 5, 10] and equivalence partitioning
[9, 11] have been used. As a test input some approaches [9, 10,
11] have used DNF expression while some [6, 8] have used the
sequence of events. Some of the approaches have mentioned
the test coverage criteria [11], test data generation [3, 4, 5, 7,
9, 10, 11, 12] and test case generation [4, 5, 7, 8, 9, 11, 12]. In
surveyed approaches analysis of results has been carried out
either by a case study [3, 6, 8, 12, 15, 19] or with an example
[4, 5, 7, 9, 10, 11]. Additionally for making the approach more
understandable structural [4, 5, 7, 8, 9, 10] and behavioral [3,
6, 11, 12] elements have been used. Most of the approaches [5,
6, 7, 8, 9, 10, 15] have used the automatic support of
VDMTools.

III. DATA AND CONTROL FLOW ANALYSIS OF VDM++ CLASS

SPECIFICATIONS

We use VDM++ specifications for data flow and control
flow analysis. This analysis is further used for test case
generation. An abstract model of the proposed work is
presented in figure 1.

Following is a brief description of the proposed approach
activities.

• VDM++ class specifications are used as input artifact
for generating control flow graph. A control flow
graph is a representation of control transfer within a
class.

• The control flow graph is annotated with def-use
annotations.

• Extracting def-use associations of data members of a
class.

• A coverage criterion is applied on def-use
associations to generate test cases. The generated test
cases are based on only def-use values.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

808

VDM++ Specifications

VDM++ Control Flow Graph

(CFG)

Annotated CFG with Data

Flow information

Coverage Criteria

Test Cases Generation

Def-Use Associations

Test Cases

Fig. 1: An abstract model of the proposed approach

Now we discuss all the activities with an example of Saving
Account class. The SavingAccount specifications are
presented in VDM++ in figure 2. A given SavingAccount class
has two instance variables of type real. Afterwards it has an
invariant on global variable “bal”. It has two operations of
withdrawl and postInterest which have preconditions and
postconditions for those operations.

Fig. 2: SavingAccount Example in VDM++ specifications

A. VDM++ Control Flow Graph

A control flow graph (CFG) is a directed graph in which
node represents block of statements while the edges represent
the control flow between statement blocks [18]. In
constructing a control flow graph the emphasis is on control
transfer within a class. A control flow graph of a class
SavingAccount is presented in figure 3. We have constructed
the following control flow graph by considering statement of
specification as nodes and their control transfer as edges. For
example after an entry node, at second node we have definition
of variables and branch shows the viability and disagreement
of a condition.

Class SavingAccount
Instance variables
 intrstRate: real;
 minbal: real;
invariant bal >= minBal;
operations
 withdraw(amt:real)
 ext wr bal: real
 pre bal >= minBal+amt;
 post bal = bal �- amt;
 postInterest()
 ext wr bal: real;
 post bal=bal �* (1+intrstRate);
end SavingAccount

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

809

Fig. 3: Control flow graph of class SavingAccount

B. Annotation of CFG with Def-use

Data flow graph represents the definition of variables and
their use in the program [18]. In data flow graph occurrence of
variable is classified as definitional occurrence (def),
computational-use(c-use) occurrence and predicate use (p-use)
occurrence. Where assignment statement contains the c-use of
variable followed by def of variable and input statement also
contains the def of variables. Similarly an output statement
contains c-use of variable while the conditional transfer
statement contains p-use of variable [18]. We use the def use
analysis for VDM++ specifications. For doing def-use
analysis we have considered an input and definition variables
as def (variable) in an appropriate statement. While an output
statement such as “bal = bal - amt” have a c-use of a data
member “amt” and “bal” followed by variable “bal”.
Additionally a conditional statement contains a p-use such as
“bal > minbal” have p-use (bal, (sourcenode, targetnode)). In
figure 4 we have presented the data flow graph of the example
mentioned above.

Fig. 4: Data flow graph of class SavingAccount

Here we present the algorithm used to generate the def-use
analysis of VDM++ class specifications.

Algorithm

EDGE
{ char edgelabel[];
 EDGE *edge; };

DataFlowGraph()

1. N[][] : string
2. create EDGE
3. for i=0; i<=sizeof(N[][]); i++, repeat step 4
4. for j=0; N[i][j] != Null; j++ repeat step 5
5. if N[i][j] == assignment || N[i][j] == definition,

then
create e : EDGE
e.edgelabel =
def_use(var, e)

 else if N[i][j] == output || N[i][j] == computation,
 then create e : EDGE

e.edgelabel = c_use(var , e)(var=
e)

 else if N[i][j] == predicate || N[i][j] == condition,
 then create e : EDGE

e.edgelabel = p_use(var , (e , e))
 else

create e : EDGE
e.edgelabel = end

 2

 5

 6

End SavingAccount

def (intrstRate)
def (minBal)

 1

 2

 3

 4

 5

 6

p-use(bal, (2,3))
p-use(bal, (2,7))

def (bal)
def (amt)

p-use (bal, (4,5))
p-use (bal, (4,6))

def (bal)
c-use (amt)
c-use(bal �)

def (bal)
c-use(bal �)
c-use(intrstRate)

 Entry

End SavingAccount
 7

Bal>=minbal

 7

Entry

 4

bal>=minBal+amt bal>=minBal+amt

 1

 3 bal:real
amt:real

minbal:real
intrstRate:real

Bal<minbal

bal= bal � -amt

Bal:real
bal= bal �
*(1+intrstRate)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

810

C. Def-use Associations
Def-use association means an association between the

definition of a variable and the node where it is used. The use
of variable may be either computation or predicate. Table
shows the definition and use associations of variables in a class
SavingAccount.
Consider the following statements of specification,
 Balance:int
 if Balance>=minBalance
 Balance=Balance-amount

The first statement contains the definition (def) of data
member “Balance” and second statement has predicate use (p-
use) of data member Balance. While, the third statement
contains the c-use of Balance and amount followed by def-use
of data member Balance.

TABLE I

DEF-USE ASSOCIATIONS FOR THE FIG. 3

Variables def d-c-use d-p-use

intrstRate 1 {6} Ф

minBal 1 Ф Ф

bal 3 Ф (2,3), (2,7), (4,5),

(4,6)

Amt 3 {5} Ф

Bal 5 Ф (2,3), (2,7), (4,5),

(4,6)

bal~ 6 Ф (2,3), (2,7), (4,5),

(4,6)

E. Test case generation

So far we have CFG and def-use information of class in
VDM++. We use this information to generate test cases for
VDM++ specifications. Test cases are the sequence of
methods which evaluate the behavior of a system under test.
These generated sequences of methods must cover every path
of flow graph.

A test case maybe generated using coverage criteria.
Coverage criteria are the way which tells the tester how the
maximum faults in a program will be covered. Some coverage
criteria which are commonly used to evaluate the transfer of
control, definitions of variables and their use are; all nodes
(statement coverage), all edge (branch coverage), all defs, all
c-use and all p-use criteria [18]. By following coverage criteria
on the associations between definitions and uses of variables in
program test cases may be derived.

VI. CONCLUSION

In this paper, we present the def-use analysis of VDM++
class specifications. VDM++ specifications are formally used
for testing approaches such as partition analysis and boundary
value analysis. VDM++ specifications provide enough
constructs for def-use analysis. Def-use analysis provides inner
details of a class that is specific to testing. The def-use of
VDM++ can be performed like any high level programming
languages. We present the approach with the help of a well
used example of a SavingAccount.

As a future work we intend to work on def-use analysis at an
integration level that involves many classes. We are also
working on automation of the proposed approach.

REFERENCES

[1] Cliff B. Jones. “Systematic Software Development Using VDM”
 Prentice-Hall International, Englewood Cliffs, New Jersey, second
edition, 1990.

[2] Elmstrom.R, Larsen.P.G and Lassen.P.B “The IFAD VDM-SL Toolbox:
A Practical Approach to Formal Specification” ACM SIGPLAN
Notices, Volume 29,September 1994.

[3] Sten Agerholm, Pierre-Jean Lecoeur, and Etienne Reichert.H. “Formal
specification and validation at work: A case study using VDM-SL” In
Proceedings of Second Workshop on Formal Methods in Software
Practice, Florida, Marts. ACM, 1998.

[4] Nadeem, A., Rehman, M. J. “Framework for Automated Testing from
VDM-SL Specifications” In proceedings of the 8th IEEE-INMIC
Conference (INMIC 2004), Lahore, Pakistan, December 2004.

[5] Nadem.A and Rehman.M.J.”TESTAF: A Test automation Framework
for class testing using object oriented formal specifications”.Journal of
universal computer science vol 11issue 6, 2005.

[6] Georg Droschl. “Design and Application of a Test Case Generator for
VDM-SL” Austrian Research Center Scibcrsdorf and IST - Techniscal

University of Graz a Austria. 1999.
[7] Bernhard K. Aichering.”Automated Black-Box Testing with Abstract

VDM Oracles”.In M. Felici, K. Kanoun and A. Pasquini Editors,
Computer Safety,reliability and security: proceedings of the 18th
international conference, SAFECOMP’1999, Toulouse, France,
September 1999, volume 1698 of lecture notes in computer science,
pages 250-259. Springer, 1999.

[8] J. S. Fitzgerald, P. G. Larsen, S. Tjell, and M. Werhoef.”Validation
Support for Real- Time Embedded Systems in VDM++”.Technical
Report CS-TR-1017, School of computing Science, Newcastle
University, April 2007. Revised Version to appear in Proc. 10th IEEE
High Assurance System Engineering Symposium, November, 2007,
Dallas, Texas, IEEE .

[9] Nadeem. A, Micheal R. Lyu. “A Framework for inheritance testing
From VDM++ Specifications”.12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). IEEE, 2006.

[10] Nadeem. A, Malik.Z Micheal R. Lyu. “A Framework for inheritance
and polymorphic Testing using a VDM++ Specifications”12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06).
IEEE, 2006.

[11] J. Dick and A. Faivre.”Automating the Generation and Sequencing of
test cases from model-based specifications”In J. C. P. Woodcock and P.
G. Larsen, editors, FME’93: Industrial-strength formal methods, pages
268-284. Formal Methods Europe, Springer Verlag, April 1993. Lecture
Notes in Computer Science 670.

[12] G. T Scullard.”Test Case Selection using VDM” In R. Bloomfield, L.
Marshall, and R. Jone, editors, VDM88:VDM-The way ahead, number
328 in lecture notes in computer sciences pages 718-186 VDM Europe,
Springer Verlag, September 1988.

[13] J. Offut, R. Alexander, Y. Wu, Q. Xiao, C. Hutchinson. A Fault Model
for Subtype Inheritance and Polymorphism. The Twelfth IEEE
International Symposium on Software Reliability Engineering
(ISSRE’01), pages 89-95, Hong Kong PRC, November 2001.

[14] J. M. Wing. “A Specifier’s Introduction to Formal Methods”.IEEE
Computer, vol.7, No.5,. Pages 8-4 September 1990.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

811

[15] Verhoef. M, Larsen. P.G and Hooman.J.”Modeling and Validating
Distributed Embedded Real-Time Systems with VDM++” Proceeding of
FN 2006; Formal Methods, August, 2006. Springer, LNCS 4085, pp
147-162.

[16] Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat,N., Verhoef, M.,
Validated Designs for ObjectorientedSystems, Springer-Verlag, 2005,
ISBN 1-85233-881-4.

[17] VDMTools: The VDM++ Language, version 6.8.1, CSK Corporation,
2005.

[18] Rapps and E. J. Weyuker, “Selecting Software Test Data Using Data
Flow Information,” IEEE Trans. Software Engineering, vol. SE-11, no.
4, April, 1985, pp. 367-375.

[19] Macedu.H.D, Larsen.P.G and Fitzgerald.J. “Incremental Development
of a distributed Real-Time model of a cardiac pacing system using
VDM” University of New Castle upon Tyne, computing Science,
Technical Report Series, No. CS-TR-1059, November 2007.

[20] J.-R. Abrial. “The B-Book, Assigning programs to meanings”.
Cambridge UniversityPress, 1996. ISBN 0521 49619 5(hardback).

[21] J. M. Spivey. The Z Notation. Series in Computer Science. Prentice-
Hall, 1989.

[22] Glenford , J. Myers. “The art of software testing” Wiley series in
 business data processing, John Willey and sons,1979.
[23] Singh.H, M.Conrad and S. Sadeghipour. “Test case design based on Z

and the classification-tree method” .IEEE, 1997

