
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1378

Customization of a Real-Time Operating System
Scheduler with Aspect-Oriented Programming

Kazuki Abe, Myungryun Yoo and Takanori Yokoyama

Abstract—Tasks of an application program of an embedded system
are managed by the scheduler of a real-time operating system
(RTOS). Most RTOSs adopt just fixed priority scheduling, which is
not optimal in all cases. Some applications require earliest deadline
first (EDF) scheduling, which is an optimal scheduling algorithm.
In order to develop an efficient real-time embedded system, the
scheduling algorithm of the RTOS should be selectable. The pa-
per presents a method to customize the scheduler using aspect-
oriented programming. We define aspects to replace the fixed priority
scheduling mechanism of an OSEK OS with an EDF scheduling
mechanism. By using the aspects, we can customize the scheduler
without modifying the original source code. We have applied the
aspects to an OSEK OS and get a customized operating system with
EDF scheduling. The evaluation results show that the overhead of
aspect-oriented programming is small enough.

Keywords—aspect-oriented programming, embedded system, op-
erating system, real-time system

I. INTRODUCTION

AN application program of a real-time embedded system
is usually designed as a set of tasks. For example, an

automotive engine control application program in an electronic
control unit (ECU) consists of a number of tasks for fuel
injection, ignition, emission control and diagnosis. A real-time
operating system (RTOS) is used to manage tasks of a real-
time embedded system. For example, OSEK OS [1] is widely
used in automotive control systems. Most RTOSs, including
OSEK OS, adopt fixed priority scheduling. However, fixed
priority scheduling algorithms such as rate monotonic (RM)
scheduling and deadline monotonic (DM) scheduling are not
optimal in all cases.

Earliest deadline first (EDF) scheduling is an optimal
scheduling algorithm [2][3], but there are few commercial
RTOSs with EDF scheduling. Bimbard et al. have extended
OSEK OS to support EDF scheduling and showed the benefits
of the extended OSEK OS[4]. However, all applications do
not require EDF scheduling. The overhead of EDF scheduling
is larger than the overhead of fixed priority scheduling in
general. The fixed priority scheduling is suitable for some
applications and EDF scheduling is suitable for other applica-
tions. However, it is difficult for one RTOS to provide both
the scheduling algorithm because the resources of embedded
systems are limited. In order to develop an efficient real-
time system, the scheduling algorithm of a RTOS should be
statically selectable.

Diederichs et al. have presented an EDF scheduler plug-
in, which is an application-level scheduler for OSEK OS[5].

K. Abe, M. Yoo and T. Yokoyama are with Graduate School of Engineering,
Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557
Japan, e-mail: g1181501@tcu.ac.jp, {yoo, yokoyama}@cs.tcu.ac.jp.

The plug-in can be used for applications that require EDF
scheduling. However, an application-level scheduler is not
efficient. A customizable RTOS scheduler is required for better
efficiency.

Aspect-oriented programming[6] has been applied to the
customization of operating systems[7][8][9][10][11]. Those
researches utilize aspect-oriented programming for the cus-
tomization of several properties of operating systems, but not
for the customization of the schedulers. Hotun et al. have pre-
sented a feature model for schedulers[12]. They also discuss
the use of aspect-oriented programming for their purpose, but
the implementation is their future work.

The paper presents a method to customize the scheduler of
a RTOS using aspect-oriented programming. We replace the
fixed priority scheduling mechanism of an OSEK-compliant
operating system called TOPPERS/OSEK kernel[13] with an
EDF scheduling mechanism using aspect-oriented program-
ming. We define aspects for EDF scheduling in AspeCt-
oriented C (ACC): C-based aspect-oriented programming
language[14][15]. The code for EDF scheduling is woven into
TOPPERS/OSEK kernel by the ACC compiler.

The rest of the paper is organized as follows. Section II
describes scheduling mechanisms of the RTOS. Section III
describes a customization method with aspect-oriented pro-
gramming and presents aspects to customize the scheduler. We
evaluate the performance of the customized operating system
in Section IV. Section V concludes the paper.

II. SCHEDULER OF REAL TIME OPERATING SYSTEM

A. OSEK OS Scheduler

The scheduling algorithm of OSEK OS is fixed priority
scheduling. The priority levels of tasks are statically declared
in OIL (OSEK Implementation Language)[16] and cannot be
dynamically changed. The declared priority levels of tasks are
stored in configuration data, which are generated from the OIL
description file by the system generator (SG). Periodic tasks
are implemented with an alarm mechanism connected with a
counter that is used for the system timer.

Fig. 1 shows the fixed priority scheduling mechanism of
TOPPERS/OSEK kernel. There are prioritized ready queues,
in which tasks with state ready are queued according to their
priority levels. The priority levels of the tasks are stored in the
task control block (TCB). When the running task is terminated
or suspended, the scheduler selects the first task in the highest-
priority no-empty ready queue to be executed by the CPU as
shown in Fig. 1. The scheduler also works when a task is
activated or released and a preemption occurs if the priority of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1379

make_runnable()

Ready

Queue

Priority
high low

Processor

search_schedtsk()

Suspended

Task

Ready Task

Preempted

Task

Running

Task

preempt()

n 12 0

Fig. 1. Fixed Priority Scheduling Mechanism

the activated or released task is higher than the priority of the
running task. The preempted task is enqueued in a prioritized
ready queue according to the priority level.

B. EDF Scheduling Mechanism

We make the scheduling algorithm selectable: fixed-priority
scheduling or EDF scheduling. Fig. 2 shows the mechanism
of an EDF scheduling algorithm. Tasks are queued in a single
ready queue according to their absolute deadlines. When the
state of a task transits to ready, the task is inserted in the
ready queue according to the absolute deadline. The task with
the earliest absolute deadline other than the running task is
to be at the head of the ready queue. When the running task
is terminated or preempted, the scheduler selects the task at
the head of the ready queue to be executed by the CPU. The
preempted task is enqueued in the ready queue according to
the absolute deadlines.

The absolute deadlines are stored in the TCB. The absolute
deadline of a task is determined by adding the relative deadline
to the time when the task is activated. To utilize EDF schedul-
ing, the relative deadlines of tasks must be known. In OSEK
OS, the attributes of tasks such as priorities must be defined
in OIL. So we extend OIL to declare the relative deadlines
of tasks and their values are stored in the configuration data.
When a task is activated, the EDF scheduler calculates the
absolute deadline of the task referring to the relative deadline
in the configuration data. We are now extending the SG to
automatically generate configuration data including the relative
deadlines of tasks, and we manually add the relative deadlines
of tasks to the configuration data referring to the extended OIL
description.

If all tasks managed by the operating system are periodic
tasks and their relative deadlines are equal to their periods, we
don’t have to declare the relative deadlines in OIL because the
absolute deadlines can be calculated with the periods. So we
also present aspects for EDF scheduling in the case that all

make_runnable_edf()

Ready

Queue

Priority

high

low

Processor

search_schedtsk_edf()

Suspended

Task

Ready Task

Preempted

Task

Running

Task

preempt_edf()

Fig. 2. EDF Scheduling Mechanism

tasks are periodic tasks. We don’t have to declare the relative
deadlines in OIL in this case.

III. ASPECTS FOR CUSTOMIZATION

A. Customization with Aspect-Oriented Programming

We use ACC, C-based aspect-oriented programming lan-
guage, to customize the scheduler of TOPPERS/OSEK ker-
nel because TOPPERS/OSEK kernel is implemented in C
language. ACC is an aspect-oriented programming language
based on the join point model like AspectJ[17] and Aspect
C++[18].

An aspect consists of pointcuts and advice. A pointcut
represents a set of join points. Join points are identifiable
points in the execution of a program. ACC supports join points
such as call, execution, set and get. Advice is code to be
executed at join points matched by a pointcut. ACC supports
before, after and around advice. We can run the advice code
before or after the join point by defining before advice or after
advice. We can also run the advice code instead of the join
point by defining around advice.

ACC is implemented as a translator, which inputs ACC
source files and C source files and outputs C source files to
be compiled by a C compiler. Fig. 3 shows a customization
flow based on the ACC compilation process. Original C source
files of TOPPERS/OSEK kernel and ACC and C source files
for the customization are transformed to C source files of the
customized operating system by ACC compiler (translator).
Then the C source files are compiled by a C compiler.

B. Aspects for EDF Scheduling

We present aspects to replace the fixed priority scheduling
mechanism illustrated by Fig. 1 with the EDF scheduling
mechanism illustrated by Fig. 2. We show the aspects in
the case that the relative deadlines are used to calculate the
absolute deadlines in this section.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1380

ACC Compiler (Translator)

Aspect 
Source File

C
Source File

Source Files of 
TOPPERS/OSEK Kernel

Source Files for 
Customization

C
Source File

C Source File

C Source Files of Customized OS

C Source File

C Compiler

Object File

Object Files of Customized OS

Object File

Fig. 3. Customization with ACC

/* replace fixed-priority-based task search
with EDF-based task search */

void around() : 
execution(void search_schedtsk(void)) {

search_schedtsk_edf();

/* get the task at the head of the ready queue
and remove the head from the queue */

}

Fig. 4. Aspect to Extract a Task to be Executed

Fig. 4 shows an aspect to get a task to be executed
by the CPU. The aspect replaces the task search for
fixed priority scheduling with the task search for EDF
scheduling. The around advice of the aspect calls function
search schedtsk edf() instead of executing the code of func-
tion search schedtsk() that selects the first task in the highest-
priority no-empty ready queue as shown in Fig. 1. Function
search schedtsk edf() selects the task at the head of the ready
queue to be executed by the CPU as shown in Fig. 2.

Fig. 5 shows an aspect for the ready queue operation. When
the state of a task transits to ready, the task is enqueued in the
ready queue. The aspect replaces the prioritized ready queue
operation for fixed priority scheduling with the deadline-based
ready queue operation for EDF scheduling. The around advice
of the aspect calls function make runnable edf() instead of
executing the code of function make runnuble() that enqueues
the ready task in a prioritized ready queue as shown in Fig. 1.
Function make runnable edf() enqueues the ready task in the
ready queue as shown in Fig. 2, referring to the absolute
deadlines of the tasks stored in the TCB.

Fig. 6 shows an aspect for preemption. The aspect replaces
the preemption mechanism for fixed priority scheduling with
the preemption mechanism for EDF scheduling. The around
advice of the aspect calls function preempt edf() instead of
executing the code of function preempt() that enqueues a
preempted task in a prioritized ready queue as shown in Fig. 1.
Function preempt edf() enqueues the preempted task in the
ready queue according to the absolute deadlines as shown in

/* replace prioritized ready queue operation
with deadline-based ready queue operation */

BOOL around(TaskType tskid) : 
execution(BOOL make_runnable(TaskType)) 
&& args(tskid) {

return(make_runnable_edf(tskid));
/* enqueue the task specified by argument tskid

(insert the task into the ready queue
accoording to the absolute deadlines) */

}

Fig. 5. Aspect for Deadline-Based Ready Queue Operation

/* replace fixed-priority-based preemption
with EDF-based preemption */

void around() :
execution(void preempt()) {

preempt_edf();
/* enqueue the ruuning task 

and call function search_schedtsk_edf() */
}

Fig. 6. Aspect for EDF-Based Preemption

Fig. 2.
The absolute deadlines stored in the TCB must be main-

tained for EDF scheduling. Fig. 7 shows an aspect to call
function update deadline() before executing the code of func-
tion ActivateTask(). Function update deadline() updates the
absolute deadline of the activated task referring to the relative
deadline in the configuration data. The value of the absolute
deadline is calculated by adding the value of the relative
deadline to the time when the task is activated.

Fig. 8 shows aspects for EDF scheduling other than the
aspects shown above. The first aspect replaces the execution
of the code of function Schedule() with the call of function
Schedule edf() that executes the EDF scheduler. The second
aspect replaces the initialization of the fixed-priority scheduler
with the initialization of the EDF scheduler. The third aspect
replaces deleting the head of the prioritized ready queue for
fixed priority scheduling with deleting the head of the ready
queue for EDF scheduling.

C. Aspects for EDF Scheduling of Periodic Tasks

We show the aspects in the case that all tasks managed
by the operating system are periodic tasks and their relative
deadlines are equal to their periods in this section. In this case,
we don’t have to declare the relative deadlines in OIL because

/* update absolute deadline */
before(TaskType tskid) : 

execution(StatusType ActivateTask(TaskType))
&& args(tskid) {

update_deadline(tskid);
/* update the absolute deadline of the task 

specified argument tskid (activated task) 
referring to the relative deadline 
in the configuration data */

}

Fig. 7. Aspect for Absolute Deadline Update



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1381

/* replace fixed-priority scheduler call
with EDF scheduler call */

StatusType around() : 
execution(StatusType Schedule()) {

return(Schedule_edf());
/* call the EDF scheduler */

}

/* replace fixed-priority scheduler initialization
with EDF scheduler initialization */

void around() : 
execution(void task_initialize(void)) {

task_initialize_edf();
/* initialize the EDF scheduler */

}

/* replace prioritized queue head operation
with deadline-based queue head operation */

TaskType around() :
execution(Inline TaskType ready_delete_first($)) {

return( ready_delete_first_edf() );
/* delete the head of the ready queue */

}

Fig. 8. Other Aspects for EDF Scheduling

/* update absolute deadline */
after(AlarmType almid) : 

call(void enqueue_alarm(AlarmType))
&& args(almid) {

update_deadline_alm(almid);
/* update the absolute deadline of the task 

activated by the alarm specified by argument 
almid */

}

Fig. 9. Aspect for Absolute Deadline Update with Alarm

the absolute deadlines of tasks can be calculated with the
periods not relative deadlines. However, the periods of tasks
are not explicitly declared. Periodic tasks are implemented by
the alarm mechanism of OSEK OS. The absolute deadlines
can be obtained by referring to the parameters of the alarm
mechanism because the absolute deadline of a periodic task
is equal to the next activation time of the task. The aspects
shown below are used in this case instead of the aspect shown
by Fig. 7.

Fig. 9 shows an aspect to update the absolute deadline of a
periodic task. The after advice of the aspect calls function up-
date deadline alm() after the call of function enque alarm()
that enqueues the alarm. Function update deadline alm() sets
the absolute deadline in the TCB referring to the next activa-
tion time of the alarm specified by argument almid.

Fig. 10 shows an aspect for initialization of EDF sched-
uler. The before advice of the aspect calls function dead-
line initialize() before starting the dispatcher. Function dead-
line initialize() sets up the alarm-id to task-id table and
initialize the absolute deadlines of the TCB. The alarm-id to
task-id table is used to get the identifier of the task activated
by the alarm specified by the alarm identifier in function
update deadline alm().

/* initialize absolute deadlines */
before() : call(void start_dispatch() {
deadline_initialize();
/* set up the alarm-id to task-id table, and

initialize the absolute deadlines of TCB */
}

Fig. 10. Aspect for Absolute Deadline Initialization with Alarm

TABLE I
EXECUTION TIME OF ActivateTask()

Operating System ActivateTask() Execution Time [μsec]
(Scheduling) without task switch with task switch

Customized with Aspects (EDF) 49.20 50.55
Directly Rewritten (EDF) 45.65 47.30
Original (Fixed Priority) 25.40 26.50

IV. EXPERIMENTAL EVALUATION

A. Experimental Environment

We have done experiments to evaluate the performance of
the customized operating system with EDF scheduling. We
use an evaluation board with M16C/26 microprocessor with
a clock rate of 20MHz. The microprocessor contains 64kB
flash ROM and 2kB RAM. The base operating system is
TOPPERS/OSEK kernel ver.1.1. We also use ACC Compiler
ver.0.9, GCC ver.4.2.2, C compiler NC30 ver.5.10, assembler
AS30 ver.4.20, linker LN30 ver.410 and load module compiler
LMC ver.3.30.00.

We have measured the execution times of system calls and
the memory consumption of the operating system customized
with the aspects shown in section III-B. We have also di-
rectly rewritten the source code of TOPPERS/OSEK kernel to
support EDF scheduling and measured the execution times of
system calls and the memory consumption for comparison.

B. Experimental Results

Table I shows the execution time of system call Activate-
Task(). We have measured the execution time in two cases:
the case without a task switch and the case with a task
switch. The number of tasks is 10 in the every case. The
table shows execution times of three operating systems: the
operating system customized with aspects, the directly rewrit-
ten operating system with EDF scheduling and the original
TOPPERS/OSEK kernel with fixed priority scheduling. In
EDF scheduling, the execution time increases by 3.25 μsec
a task, because the ready queue is scanned when a task is
activated.

The difference between the execution time of the operating
system customized with aspects and the execution time of
the directly rewritten operating system means the overhead
of aspect-oriented programming. The overhead is less than
10% of the execution time in the worst case, so we think the
overhead is sufficiently small.

Table II shows the memory consumption of the operating
systems. The table shows the size of the code section, the size
of the data section of ROM and the size of the data section of
RAM. The memory consumption of the data section depends



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:11, 2012

1382

TABLE II
MEMORY CONSUMPTION

Operating System Memory Consumption [Byte]
(Scheduling) Code Data(ROM) Data(RAM)

Customized with Aspects (EDF) 9625 64 425
Directly Rewritten (EDF) 9535 64 425
Original (Fixed Priority) 9085 74 418

on the number of tasks. The table shows the value in the case
that no application task exists. In EDF scheduling, the size of
the data section of ROM increases by 5 bytes a task and the
size of the data section of RAM increases by 5 bytes a task. In
original TOPPERS/OSEK kernel, the size of the data section
of ROM increases by 7 bytes a task and the size of the data
section of RAM increases by 5 bytes a task.

The difference between the code size of the operating
system customized with aspects and the code size of the
directly rewritten operating system is about 1% and negligible.
We think the customization with aspect-oriented programming
is efficient enough.

V. CONCLUSION

We have presented a method to customize the scheduler of
a RTOS using aspect-oriented programming in this paper. We
have defined aspects to replace the fixed priority scheduling
mechanism of an OSEK OS with an EDF scheduling mech-
anism without modifying the original source code. We have
applied the aspects to TOPPERS OSEK kernel and have got a
customized operating system with EDF scheduling. We have
also evaluated the customized operating system and have got
the result that the overhead of aspect-oriented programming is
small enough. We are going to present aspects to customize
other mechanisms of the RTOS, for example, the resource
mechanism with the priority-ceiling protocol.

ACKNOWLEDGMENT

K. Abe, M. Yoo and T. Yokoyama thank the developers
of TOPPERS/OSEK kernel and the developers of AspeCt-
oriented C. This work is supported in part by KAKENHI
(24500046).

REFERENCES

[1] OSEK/VDX, Operating System, Version 2.2.3, 2005.
[2] Liu, C. L. and Layland, J. W., Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment, Journal of the ACM, Vol.20,
No.1, pp.46–61, 1973.

[3] Dertouzos, M. L., Control Robotics: The Procedural Control of Physical
Processes, Proceedings of IFIP Congress 1974, pp.807–813, 1974.

[4] Bimbard, F. and George, L., EDF Feasibility Conditions with Kernel
Overheads on an Event Driven OSEK System, Proceedings of third
International Conference on Systems, pp.277–284

[5] Diederichs, C., Margull, U., Slomka, F. and Wirrer, G., An application-
based EDF scheduler for OSEK/VDX, Proceedings of Design, Automa-
tion and Test in Europe 2008, pp.1045–1050, 2008.

[6] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. Lo-
ingtier, J. M. and Irwin, J., Aspect-Oriented Programming, Proceedings
of the 11th European Conference on Object-Oriented Programming, pp.
220–242, 1997.

[7] Beuche, D., Fröhlich, A. A., Reinhard, M., Papajewski, H., Schön,
F., Schröder-Preikschat, W., Spinczyk, O. and Spinczyk, U., On Ar-
chitecture Transparency in Operating Systems, Proceedings of the 9th
Workshop on ACM SIGOPS European Workshop: Beyond the PC: New
Challenges for the Operating system, pp. 147–152, 2000.

[8] Coady, Y., Kiczales, G., Feeley, M. and Smolyn G., Using AspectC to
Improve the Modularity of Path-Specific Customization in Operating
System Code, Proceedings of the 8th European Software Engineering
Conference, pp.88–98, 2001.

[9] Afonso, F., Silva, C., Montenegro, S. and Tavares, A., Applying Aspects
to a Real-Time Embedded Operating System, Proceedings of the 6th
Workshop on Aspects, Components, and Patterns for Infrastructure
Software, Article No.1, 2007.

[10] Park, J. and Hong S., Building a Customizable Embedded Operating
System with Fine-Grained Joinpoints Using the AOX Programming
Environment. Proceedings of the 2009 ACM symposium on Applied
Computing, pp.1952-1956, 2009.

[11] Lohmann, D., Hofer, W., Schröder-Preikschat, W. and Spinczyk, O.,
Aspect-Aware Operating System Development, Proceedings of the 10th
International Conference on Aspect-Oriented Software Development
2011, pp.69-80, 2011.

[12] Hatun, K., Bockisch, C., Sözer, H. and Akşit, M., A Feature Model and
Development Approach for Schedulers, Proceedings of the 1st Workshop
on Modularity in Systems Software, pp.1–5, 2011

[13] TOPPERS Project, http://www.toppers.jp/en/
[14] Gong, M., Zhang, C. and Jacobsen, H.-A., Systems Development with

AspeCt-oriented C (ACC), Connections 2007 (ECE Graduate Sympo-
sium, University of Toronto), Talk 5.6, 2007.

[15] AspeCt-oriented C, https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc/
[16] OSEK VDX, OSEK/VDX System Generation OIL: OSEK Implementa-

tion Language Version 2.5, 2004.
[17] Kiczales, G., Hilsdale, E., Hugonin, J, Kersten, M., Palm, J. and

Griswold, W. G., An Overview of AspectJ, Proceedings of the 15th
European Conference on Object-Oriented Programming, pp.327–353,
2001.

[18] Spinczyk, O., Gal, A., and Schröder-Preikschat, W., Aspect C++: An
Aspect-Oriented Extension to the C++ Programming Language, Pro-
ceedings of the 40th International Conference on Technology of Object-
Oriented Languages and Systems, pp.53–59, 2002.


