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 
Abstract—Given the increase in the number of e-commerce sites, 

the number of competitors has become very important. This means 
that companies have to take appropriate decisions in order to meet the 
expectations of their customers and satisfy their needs. In this paper, 
we present a case study of applying LRFM (length, recency, 
frequency and monetary) model and clustering techniques in the 
sector of electronic commerce with a view to evaluating customers’ 
values of the Moroccan e-commerce websites and then developing 
effective marketing strategies. To achieve these objectives, we adopt 
LRFM model by applying a two-stage clustering method. In the first 
stage, the self-organizing maps method is used to determine the best 
number of clusters and the initial centroid. In the second stage, k-
means method is applied to segment 730 customers into nine clusters 
according to their L, R, F and M values. The results show that the 
cluster 6 is the most important cluster because the average values of 
L, R, F and M are higher than the overall average value. In addition, 
this study has considered another variable that describes the mode of 
payment used by customers to improve and strengthen clusters’ 
analysis. 

The clusters’ analysis demonstrates that the payment method is 
one of the key indicators of a new index which allows to assess the 
level of customers’ confidence in the company's Website. 
 

Keywords—Customer value, LRFM model, Cluster analysis, 
Self-Organizing Maps method (SOM), K-means algorithm, loyalty. 

I. INTRODUCTION 

CCORDING to the figures released by Interbank 
Electronic banking Centre (IEBC), the e-commerce 

sector in Morocco has experienced a +10,3 % increase in the 
first quarter of 2015 in the number of transactions and +10,5 
% in the amount of spent relative to the same period in 2014 
[1]. 

The birth of the company Morocco Telecommerce in 2001, 
the first leading operator of electronic commerce in Morocco 
helped to crystallize the ambitions of many entrepreneurs who 
have found an effective way to secure their transactions 
through the electronic payment security system. This was 
setup by the company in question, which is certified and 
recognized by the Interbank Electronic Banking Centre 
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(IEBC), Moroccan banks, and by international organizations 
such as Visa and MasterCard. 

577 contracts were signed late in 2014 with certifying 
bodies such as Morocco Telecommerce (MTC) and the 
Interbank Electronic Banking Centre (IEBC). There were 140 
at the end of 2010. In the end, it is 577 e-commerce sites that 
are currently active and referenced by Morocco Telecommerce 
(MTC). The trend is not ready to calm down. The year 2015 
should also know its own share of novelties, since the IEBC 
expects to reach 700 affiliated online merchants by the end of 
2015. No doubt, this continuous increase of new sites allows 
for the improvement and activation of more online sales [1]. 

With this increase in the number of merchant sites affiliated 
with the IEBC, they have realized 527000payment online-
operations with credit cards, both local and foreign, for a total 
of MAD 285,3 million in the first quarter of 2015. The IEBC 
added that the activity by the Moroccan card rose from 487 
000 transactions in the first quarter of 2014 to MAD 506 
million during the same period in 2015 (+5,8%) and from 
242,5 million to MAD 249,8 million (+3%) in terms of their 
amount [1]. According to these figures, the Moroccan internet 
users become more familiar with the online payment. In order 
to survive and cope with the competition related to the 
explosive growth of electronic commerce, the companies must 
develop innovative marketing activities to identify different 
customers and try its best and utmost to preserve them or, at 
least, care for the most loyal ones and get their satisfaction, 
because the identification of such segments can be the basis 
for an effective strategy to target and predict potential 
customers [2]. 

Market segmentation is the process of identifying key 
groups within the general market that share specific 
characteristics and consuming habits and it provides the 
management to customize the products or services to fulfill 
their needs [3]. Nowadays, RFM model, which was developed 
by Hughes (1994), is one of the most common methods for 
segmenting and identifying customer values in companies. 
This method depends on Recency, Frequency and Monetary 
measures which are considered as three important variables 
used to extract the behavioral characteristics of customers, and 
that influence their future purchasing possibilities [4]. By 
adopting RFM model, marketing managers can effectively 
target valuable customers and then develop marketing 
strategies for them based on their values [5]. 

Recent studies find that the addition of supplementary 
variables to the classical model RFM can improve its 
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predictability when predicting customer behaviors [6]. For 
example, the model RFM was extended by [7] by adding an 
additional variable customer relation length (L) to it, to 
become LRFM model, because by adopting RFM model, the 
companies cannot effectively distinguish between the short-
life and long-life customers [8]. (L) measures the time period 
between the first visit and the last visit of a particular 
customer. In this paper, we use the results of this method 
(LRFM) as inputs for clustering algorithms to determine the 
customer’s loyalty for an online selling company in Morocco. 
A real case study for an online selling company in Morocco is 
employed by combining LRFM model and data mining 
techniques (cluster analysis) to achieve better market 
segmentation and improve customer satisfaction. Data mining 
techniques such as Self Organizing Maps and K-means are 
used in this study to group all customers into clusters. The 
characteristics of each cluster are examined in order to 
determine and retain profitable and loyal customers. As 
mentioned before, the customers are segmented into similar 
clusters according to their LRFM values. 

The customer purchases database consists of 730 customers 
who purchased directly from the company website from 
November 2013 to January 2015. The profile for each 
customer includes the customer identifier, gender, birth date, 
city, shopping frequency, date of first transaction, date of last 
purchase, the total expense, and mode of payment. 

The remainder of the paper is as follows: Section II 
provides the literature review on RFM, LRFM models and 
data mining techniques. Section III reports the methodology 
used to conduct this study. Section IV presents the empirical 
results. Finally, conclusions, managerial implications, 
limitations and further research are depicted. 

II. LITERATURE REVIEW OF SEGMENTATION METHODS AND 

CLUSTERING 

A. RFM and LRFM Models 

Recency, frequency and monetary (RFM) is an effective 
method of segmenting and it is likewise a behavioral analysis 
that can be employed for market segmentation [9], [10]. 
Reference [9] describes that the main asset of the RFM 
method is, on the one hand, to obtain customers’ behavioral 
analysis in order to group them into homogeneous clusters, 
and, on the other hand, to develop a marketing plan tailored to 
each specific market segment. RFM analysis improves the 
market segmentation by examining the when (recency), how 
often (frequency), and the money spent (monetary) in a 
particular item or service [11]. Reference [11] summarized 
that customers who had bought most recently, most 
frequently, and had spent the most money would be much 
more likely to react to the future promotions.  

The advantage of RFM model resides in its relevance as 
long as it operates on several variables which are all 
observable and objective. They are all available at the order’s 
past for each customer. These variables are classified 
according to three independent criteria, namely recency, 
frequency and monetary [12]. Recency is the time interval 

between the last purchase and a present time reference; a 
lower value corresponds to a higher probability that a 
customer will make a repeat purchase. Frequency is the 
number of transactions that a customer has made in a 
particular time period and monetary means the amount of 
money spent in this specified time period [13]. 

The traditional approach to adopt RFM model is to sort the 
customers’ data via each variable of RFM and then divide 
them into five equal quintiles [2], [14]. The process of 
segmentation begins with sorting all customers based on 
recency, then frequency and monetary. For recency, the 
customer database is sorted in an ascending order (most recent 
purchasers at the top). Customers are then sorted for frequency 
and monetary in a descending order (most frequently and had 
spent the most money were at the top).The customers are then 
split into quintiles (five equal groups), and given the top 
20%segmentis assigned as a value of 5, the next 20% segment 
is coded as a value of 4, and so on. Therefore, all customers 
are represented by one of 125 RFM cells, namely, 555, 554, 
553, . . . , 111[15], [16]. 

Customers who have the most score are profitable. In this 
study, we adopt another approach proposed by [17], it consists 
of using the original data rather than the coded number. The 
definitions are as follows: Recency is the time interval 
between the first day of study period and the last purchase; 
frequency is the number of transactions that a customer has 
made in a particular time period and monetary means the 
amount of money spent in this specified time period. 

Some researchers try to develop new RFM models by 
adding some additional parameters to it so as to examine 
whether they achieve good results than the basic RFM model 
or not [18]-[20]. For example, [19] selected targets for direct 
marketing from a database by extending RFM model to 
RFMTC, by adding two parameters, namely time since the 
first purchase (T) and churn probability (C). Another version 
was proposed by [21] Timely RFM (TRFM) model consists of 
adding one additional parameter, the period of product activity 
to determine the relationship of product properties and 
purchase periodicity i.e. to analyze different product demands 
at different moments. Chang and Tsay propose the LRFM 
model, by taking the customer relation length into account, in 
order to resolve RFM model problem related to the difficulty 
of distinguishing between customers, who have long-term or 
short-term relationships with the company [7]. In addition, 
[22] suggests that the customer’s loyalty and profitability 
depend on the relationship between a company and its 
customers. In this regard, in order to identify most loyal 
customers, it is necessary to consider the customer’s relation 
length (L), where L is defined as the number of time periods 
(such as days) from the first purchase to the last purchase in 
the database. 

B. Cluster Analysis 

Data mining techniques have been widely employed in 
different domains. As the transactions of an organization 
become much larger in size, data mining techniques, 
particularly the clustering technique, can be applied to divide 
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all customers into several clusters based on some similarities 
in these customers [23]. Clustering techniques are used to 
identify a set of groups that both minimize within-group 
variation and maximize between-group variation according to 
a distance or dissimilarity function [24]. 

The SOM (Self-Organizing Map) is an unsupervised neural 
network methodology, which needs only the input is used to 
clustering for problem solving [25] and market screening [26]. 
The network is formed by an unsupervised competitive 
learning algorithm, which can detect for itself (which means 
that no human intervention is needed during the learning 
process) patterns, strong features, and correlation in the large 
input data and code them in the output [27]. The patterns of 
SOM in a high-dimensional input space are originally very 
complicated. When projected on a graphical map display, its 
structure, after clustering, turns out to be not only 
understandable but more transparent as well [28]. 

K-means clustering is the most common algorithm used to 
cluster n vectors based on attributes into k partitions, where k 
< n, depending to some measures [29]. The name comes from 
the fact that k clusters are identified and the center of a cluster 
is the mean of all vectors within this cluster. The algorithm 
starts with choosing k random initial centroids, then assigns 
vectors to the nearest centroid using Euclidean distance and 
recalculates the new centroids as means of the assigned data 
vectors. This process is repeated many times until vectors no 
longer altered clusters between iterations [30]. The K-means 
method is arguably a non-hierarchical method. However, 
SOM has a few disadvantages. For example, with the result 
generated by SOM technique, it is difficult to detect clustering 
boundaries, a fact which limits their application to automatic 
knowledge [25]. Furthermore, in the k-means technique, the 
number of clusters and the initial starting point are randomly 
selected, which means that the algorithm has to turn several 
times to identify strong forms, because the final result depends 
on the initial starting points (different initial k objects may 
produce different clustering results). Due to the weakness of 
SOM and k-means method, the integration of these methods 
becomes desirable. Reference [31] took this view, adopting a 
two-staged clustering method by integrating the hierarchical 
method into the non-hierarchical. 

Kuo et al. [32] have pointed out that it is preferable to use 
iterative partitioning methods instead of the hierarchical 
methods if the initial centroid and number of clusters are 
provided. If the information is provided, the iterative method 
consistently finds better clusters and higher accuracy than the 
hierarchical methods and yields faster results because the 
initialization procedure that ultimately determines the number 
of iteration is already executed. One example proposed by 
[31] is to adopt a two-staged clustering method by deploying 
Ward’s minimum variance method to obtain the number of 
clusters and also to provide the starting point. Then the non-
hierarchical methods, like the k-means method can use the 
result of the Ward’s minimum variance method to find the 
final cluster solution. On the other hand, [32] have proposed a 
modified two-stage method by applying self-organizing 
feature maps to determine the number of clusters for K-means 

method. The reason is that Self-Organizing Maps can 
converge very fast since it is a kind of learning algorithm that 
can continually update or reassign the observations to the 
closest cluster. Therefore, this study uses self-organizing 
feature maps to determine the number of clusters and the 
initial starting points that K-means method need. 

In the first stage, data set is clustered via adopting the SOM. 
From the final output array, we can easily determine the 
candidate number of clusters as well as the initial centroid. In 
the second stage, the starting point and the derived 
approximation of the clusters (k) determined in the first stage 
are used with K-means method. Wei et al. [24] pointed out 
that self-organizing maps (SOM) and K-means method are 
commonly used for cluster analysis. 

III. RESEARCH METHODOLOGY 

In this section the proposed model to determine loyal and 
profitable customers is described. 

The purpose of this case study is customer segmentation 
using LRFM model and clustering algorithms (SOM and K-
means) to specify loyal and profitable customers for achieving 
maximum benefit and a win-win situation. 

In order to identify most profitable customers, it is 
necessary to consider the ‘‘mode of payment factor’’ in the 
company. Fig. 1 shows the required steps for the proposed 
model. 

A. Understanding Data 

Dataset used in this case study was provided by a company 
selling online in Morocco and collected through its e-
commerce website. 

All of the transactions carried out by customers are stored in 
a MySQL database. From this database, we will design a data 
warehouse that contains a wide variety of products, descriptive 
information on each customer and transactional data. 

The transactional data consist of 730 customers who have 
purchased the website of the company from November 2013 
to January 2015.  

Customers have four modes of payment: Cash on delivery, 
online credit card, bank transfer and payment in three 
installments. 

B. Data Preparation for Segmentation 

Data preprocessing is one of the most important and often 
time-consuming aspects of data mining project [33], [34]. In 
this case study, data preprocessing techniques such as data 
selecting, data cleaning, data integration and data 
transformation were used to improving the quality of data 
clustering. 

The purchase orders included many columns such as 
transaction id, product id, customer id, ordering date, item 
price, item quantity purchased, total amount of money spent, 
and payment modes. 

While customer table includes the following fields such as 
customer id, gender, marital status, birth date, email, address, 
city; product table included attributes such as product id, 
barcode, brand, category subcategory, price and quantity. 
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TABLE V 
DESCRIPTIVE STATISTICS OF NINE CLUSTERS BASED ON K-MEANS METHOD 

Cluster Size Average of L Average of R Average of F Average of M Pattern 

Cluster 1 95 697.74 342.14 16.33 3 559.70 ܮ	ܯܨܴ 
Cluster 2 83 770.63 368.29 5.81 1 743.49 ܮ	ܨܴ	ܯ 
Cluster 3 88 143.13 84.73 2.41 684.45 ܮ	ܴ	ܨ	ܯ 

Cluster 4 60 220.00 362.67 6.80 6 284.83 ܯܨܴܮ 
Cluster 5 73 211.21 182.42 13.37 4 074.19 ܮ	ܯܨܴ 
Cluster 6 72 679.21 381.04 16.03 11 127.82 ܯܨܴܮ 
Cluster 7 104 296.78 367.78 16.76 6 340.59 ܴܮ	ܯܨ 
Cluster 8 77 537.95 165.97 7.25 2 076.83 ܴܮ	ܯܨ 
Cluster 9 78 355.33 334.62 4.23 924.11 ܨܴܮ	ܯ 

Total 730 438.86 287.90 10.16 3 986.63  

 
TABLE VI 

MODES OF PAYMENT DISTRIBUTION AND GENDER FOR EACH CLUSTER BY K-MEANS TECHNIQUE 

Variables  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Total 

Modes of payment 

Cash on delivery (A) 427 125 158 178 596 67 1010 83 241 1384 

Credit card (B) 820 190 30 0 210 748 340 150 32 2885 

Bank transfer (C) 287 167 24 39 22 287 178 325 55 2520 

Three installments (D) 17 0 0 191 148 52 215 0 2 625 

 Total 1551 482 212 408 976 1154 1743 558 330 7414 

Gender 
Female 15 24 61 14 26 12 20 24 38 234 

Male 80 59 27 46 47 60 84 53 40 496 

 Total 95 83 88 60 73 72 104 77 78 730 

 
The customers in Cluster 7 have low L value (ܴܮ	ܨ	ܯ). The 

low L value indicates that these customers have not yet 
established a long relationship with the online store. In 
addition, despite the lower value of L, it is observed that the 
average value of R, F and M are above the overall average, 
which might indicate that these customers purchase recently 
and frequently with a high money spent. So, they could be the 
customers with profit potential in the near future. The 
company must develop an effective marketing strategy whose 
aim is to encourage the customers in this cluster to migrate to 
the Cluster 6, by encouraging them to continue performing 
their online purchases, by providing a marketing program 
adapted to their purchases and by sending emails focused on 
their needs (monthly newsletter that is informing customers 
about the latest news of special promotions or sending emails 
to these customers to wish them a “happy birthday” or “happy 
anniversary” of the date they became customers, Request of 
opinion and so on).This allows to build a solid relationship 
between the online store and customers, and is more likely to 
create loyal customers. 

Cluster 4 includes the minimum number of customers (only 
60 customers). They have low average length and relatively 
low average frequency, but the average recency and monetary 

are very high (ܯܨܴܮ). Even though they have made very few 
transactions they have managed to spend a very significant 
amount of money. 

Table VI illustrates that the majority of these customers 
prefer to use payment in three installments (D) as a mode of 
payment, which has been recently proposed by the online 
store, and it is reserved exclusively for the products, whose 
prices exceed MAD 1500. This indicates that these customers 

usually buy expensive items. Cluster 4 is called big spender 
customers potentially loyal. 

The online store might concentrate its efforts in maximizing 
the loyalty of these big spenders. Therefore, it should place a 
particular emphasis on the satisfaction of these customers 
because the customer satisfaction contributes to increase the 
customer loyalty [35], e.g. by offering these customers special 
services such as a special discount, providing targeted and 
personalized promotions according to their profiles and their 
previous purchases. In this way, the online store keeps these 
customers coming back for more purchases. 

Cluster 8 has higher L value but lower R, F and M values 
compared to the overall average L, R, F and M values 

 The customers in Cluster 8 belong to former .(ܯ	ܨ	ܴܮ)
customers, who show little interest in items and services 
provided by the online store. This lack of attention is 
determined by the low number of transactions made by these 
customers, the low value of recency and their small 
contribution to the company. They begin to lose contact with 
the online store because they have not been heard of for a long 
time. Perhaps these customers were not satisfied with the 
services and products which they have received, or they have 
been attracted by the competitors, or they have lost confidence 
in the merchant site. This cluster is called the lost customers. 
Therefore, the company should identify the reasons and solve 
problems quickly to bring back those customers. 

For Cluster 1 and 2, the values of L and R are above the 
average values. They have the characteristics of high recency, 
and more importantly, longer relationships with the online 
store. It can be said that these two clusters are loyal, but they 
do not have the right profile to become profitable customers, 
because their contribution to the company is still low even 
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though they have the longest relationship with the online store 
compared with other clusters. The only difference between the 
customers in Cluster 1 and the customers in Cluster 2 is that 
the former purchased more often. 

Customers in these clusters might become more important if 
the online store transfers them to Cluster 6, which represents 
the best customers of the company. The best strategy to 
achieve this goal would be to set up psychological pricing 
techniques and a special discount, which have a great impact 
on purchasing decisions. Again, this strategy proves efficient 
in that it encourages customers to purchase more frequently 
and spend much more money. Among these techniques, we 
can mention the term “FREE” that attracts the attention of any 
customer, even the ones who were not planning on spending 
anything in the first place. Another “FREE” technique is 
offering free delivery on all purchases of MAD150or more, 
proposing special promotional offers such as 1+1=3. The last 
technique is “The charming #9” which serves to lower items’ 
prices by one cent (prices ending in 9 ex. MAD 4,99) in order 
to boost sales. 

A number of studies and experiments have confirmed this 
trend, for example, the experiments of winter clearance 
catalog of a direct-mail women’s clothing retailer conducted 
by Drs. Robert Schindler and Thomas Kibarian in 1996 [36], 
the cheese experience was conducted in 2005 by Nicolas 
Gueguen and Odile Jacob [37] and the experience of pancakes 
with door-to-door still in 2005 was conducted by Nicolas 
Gueguen and Odile Jacob [37] in order to confirm the results 
of the previous experiments. All of these experiences confirm 
increased numbers of customers to 29,7% by just lowering 
prices by one cent (e.g., $5.99 vs. $6.00). Finally, Cluster 5 

has high F and M values but low L and R values (ܯܨܴܮ), 
spending and number of transactions indicate that these 
customers are more frequent and spend enough money in a 
short period. They can be considered as profitable customers, 
but the very low value of R indicates that these customers 
have not purchased from the online store for a long period of 
time. They are dormant customers. Something went wrong 
with these customers, because they have shown a keen interest 
in the online store so early. Perhaps these customers will soon 
stop making purchases on the Website due to several reasons 
including: The customers no longer need products and 
services offered by the company, or they are dissatisfied with 
the poor quality of the produce. Therefore, the online store 
must maintain a close contact with these customers. The major 
marketing strategies for these customers is to come into 
contact with them by the creation of a customer reactivation 
program, e.g., providing exceptional promotional offers 
limited in time to establish a sense of urgency to trigger 
customer purchasing to restore the relationship with these 
customers and, therefore, to increase the retention rate. 

To be responsive and in order to make the right decisions 
for the development of the activity of the online store, we used 

a tool called Microsoft Power Business Intelligence, which 
integrates a decision-making approach. This tool allows us to 
produce secured and interactive dashboards which provide 
marketing managers and sales directors to: consult regularly 
with the statistics and the reports, share the reports with the 
main actors (direction committee, marketing team, PDG, etc.) 
and announce the reports according to the period, with the 
intention of having a global vision and a high quality in terms 
of the performances of the merchant site. 

A more detailed analysis regarding the length of the 
relation, recency, frequency, monetary, gender and the mode 
of payment for the nine clusters are reported in Fig. 3. 

Fig. 3 is a report that contains multiple visualizations that 
energize clusters data. With the exception of customers in 
Cluster 3, the number of male customers is always larger than 
that of females. The majority of customers in Cluster 3, 9, 7 
and 5 prefer to use payment by cash on delivery to pay for 
their purchases. Payment by credit card is the most popular 
mode used by Clusters 6, 1 and 2. The mode of payment by 
bank transfer is often used by customers in Cluster 8. Finally 
payment in three installments remains the preferred mode by 
the customers in Cluster 4. When examining the length (L) 
among different payment methods, the results have shown that 
the longer the relationship between the merchant site and the 
customers is; the more customers put their trust in the 
electronic system of payment proposed by the online store. 
This applies to Clusters 1, 2 and 6 wherein customers prefer to 
use the credit card such as the payment method. Moreover, 
clusters that have a low value of L such as Clusters 3, 5, 7 and 
9 prefer to pay for their purchases using cash on delivery. 
Perhaps those customers that have recently joined the 
merchant site did not trust the electronic payment systems. 

The payment method is one of the key indicators of a new 
index which allows assessing the level of customer confidence 
in the company's Website. The online store should, therefore, 
encourage customers to pay for their online purchases by the 
use of Moroccan or foreign cards in order to create a climate 
of trust with these customers, Because if the company 
manages to establish a link of trust with its customers, this will 
help it in promoting a sense of satisfaction and encouraging a 
long-term relationship [38], [39]. 

Fig. 4 shows how the visualizations belonging to the same 
report can be filtered, exploit other visualizations, and interact 
with them. For example, to visualize the results of Cluster 7, 
just click in the legend CLUSTER on Cluster 7. Therefore, the 
results for this Cluster are highlighted in the report and the rest 
of the results are dimmed. Another report illustrated in Fig. 5 
provides more details about the nine clusters, including the 
total revenue, the relative value of each cluster in terms of 
total revenue and number of transactions, the value of the 
average basket per cluster and, finally, the number of 
transactions and revenue generated by payment method. 
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home appliances, and children's items for providing us with 
the data. 
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