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Abstract—Groups where the discrete logarithm problem (DLP) is
believed to be intractable have proved to be inestimable building
blocks for cryptographic applications. They are at the heart of nu-
merous protocols such as key agreements, public-key cryptosystems,
digital signatures, identification schemes, publicly verifiable secret
sharings, hash functions and bit commitments. The search for new
groups with intractable DLP is therefore of great importance.The
goal of this article is to study elliptic curves over the ring Fq[ε], with
Fq a finite field of order q and with the relation εn = 0, n ≥ 3.
The motivation for this work came from the observation that several
practical discrete logarithm-based cryptosystems, such as ElGamal,
the Elliptic Curve Cryptosystems . In a first time, we describe these
curves defined over a ring. Then, we study the algorithmic properties
by proposing effective implementations for representing the elements
and the group law. In anther article we study their cryptographic
properties, an attack of the elliptic discrete logarithm problem, a new
cryptosystem over these curves.

Keywords—Elliptic Curve Over Ring, Discrete Logarithm Prob-
lem.

I. INTRODUCTION

LET p be an odd prime number and n be an integer such
that n ≥ 2. Consider the quotient ring A = Fq[X](Xn)

where Fq is the finite field of characteristic p and q elements.
Then the ring A may be identified to the ring Fq[ε] where
εn = 0. In other word [1, 4]

A =

{
n−1∑
i=0

aiε
i| (ai)0≤i≤n−1 ∈ Fn−1

q

}
.

The following result is easy to prove:
Lemma 1: Let X =

∑n−1
i=0 Xiε

i and Y =
∑n−1

i=0 Yiε
i be

two elements of A. Then

XY =
n−1∑
i=0

Ziε
i where Zj =

j∑
i=0

XiYj−i.

The following result
Lemma 2: The non-invertible elements of A are those ele-

ments of the form:
n−1∑
i=1

Xiε
i.
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Proof 3: Indeed the ring A is a local ring with the
maximal ideal ε A.

Remark 4: Let Y =
∑n−1

i=0 Yiε
i be the inverse of the

element X =
∑n−1

i=0 Xiε
i. Then{

Y0 = X−1
0

Yj = −X−1
0

∑j−1
i=0 YiXj−i, ∀j > 0

II. ELLIPTIC CURVE OVER A
In this section we suppose n = 4. An elliptic curve over

ring A is curve that is given by such Weierstrass equation:[1,
2, 3, 4, 5]

(�) : Y 2Z = X3 + aXZ2 + bZ3

where a, b ∈ A and 4a3 +27b2 is invertible in A. We denote
by Ea,b the elliptic curve over A. The set Ea,b together with
a special point O -called the point infinity-, a commutative
binary operation denoted by +. It is well known that the binary
operation + endows the set Ea,b with an abelian group with
O as identity element.
Defining the curve over A with characteristic 2 or 3 is possible,
but it is indifferent for our purposes.

Lemma 5: The mapping

πa,b : Ea,b −→ Eπ(a),π(b)

[X : Y : Z] �−→ [π(X) : π(Y ) : π(Z)]

is a surjective homomorphism of groups.
Proof 6: Consider [X1 : Y 1 : Z1] and [X2 : Y 2 : Z2]

in Ea,b. We have
(1) : πa,b([X1 : Y 1 : Z1] + [X2 : Y 2 : Z2]) = πa,b([X1 :
Y 1 : Z1]) + πa,b([X2 : Y 2 : Z2]).
We now quickly show how one can also obtain results (1)
using maple procedure ” some and proj2”. So, πa,b is a
homomorphism of groups.
Let [x0 : y0 : z0] in Eπ(a),π(b), then

a = a0 + a1ε + a2ε
2 + a3ε

3

b = b0 + b1ε + b2ε
2 + b3ε

3

X = x0 + x1ε + x2ε
2 + x3ε

3

Y = y0 + y1ε + y2ε
2 + y3ε

3

Z = z0 + z1ε + z2ε
2 + z3ε

3
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If [X : Y : Z] in Ea,b, then

Y 2Z = X3 + aXZ2 + bZ3.

In order to simplify this last expression, we have

(2) : f0 + f1ε + f2ε
2 = 0 + f3ε

3 = 0

where
f0 = −y2

0z0 + b0z
3
0 + a0x0z

2
0 + x3

0

f1 = (z2
0a0+3x2

0)x1−2y0z0y1+(−y2
0+3b0z

2
0 +2a0x0z0)z1+

b1z
3
0 + z2

0a1x0

f2 = (z2
0a0+3x2

0)x2−2z0y0y2+(−y2
0+3b0z

2
0 +2a0x0z0)z2+

z2
0a1x1−2y0y1z1−z0y

2
1 +3x2

1x0+3b0z
2
1z0+3b1z

2
0z1+b2z

3
0 +

a0x0z
2
1 + 2z0z1a0x1 + 2z0z1a1x0 + z2

0a2x0.

(2) ⇔ f0 = 0, f1 = 0, f2 = 0, f3 = 0

f0 = 0 ⇔ [x0 : y0 : z0] ∈ Eπ(a),π(b)

Coefficients z2
0a0 + 3x2

0, 2z0y0 and −y2
0 + 3b0z

2
0 + 2a0x0z0

are partial derivative of a function F (X,Y, Z) = Y 2Z−X3−
aXZ2−bZ3 at the point (x0, y0, z0), can not be all three null.
We can then at last conclude that [x1 : y1 : z1], [x2 : y2 : z2]
and [x3 : y3 : z3]. Finally, πa,b is a surjective homomorphism
of groups.

Lemma 7: The mapping

θ4 : F 3
q −→ Ea,b

(l, k, h) �−→ [lε + kε2 + hε3 : 1 : l3ε3]

is a injective homomorphism of groups.
Proof 8: Evidently, θ4 is injective.

Every [lε+kε2+hε3 : 1 : l3ε3] satisfies the equation of (�), we
calls its points points at infinity of the curve Ea,b. We have:
[lε + kε2 + hε3 : 1 : l3ε3] + [l

′
ε + k′ε2 + h′ε3 : 1 : l

′3ε3] =
[(l + l

′
)ε + (k + k′)ε2 + (h + h′)ε3 : 1 : (l + l

′
)3ε3]

Finally θ4((l, k, h) + (l
′
, k′, h′)) = θ4(l, k, h) + θ4(l

′
, k′, h′),

and we concluded θ4 is injective homomorphism of groups.
Definition 9: We definite G4 by G4 = Ker(πa,b).
Proposition 10: G4 = θ4(F 3

q ).
Proof 11: Let [lε + kε2 + hε3 : 1 : l3ε3] ∈ θ4(F 3

q ), then
πa,b([lε + kε2 + hε3 : 1 : l3ε3]) = [0 : 1 : 0], we concluded
[lε + kε2 + hε3 : 1 : l3ε3] ∈ ker(πa,b).
Let P = [X : Y : Z] ∈ ker(πa,b), then πa,b(P ) = [0 : 1 : 0].
We set X = x1ε + x2ε

2 + x3ε
3, Y = 1 + y1ε + y2ε

2 + y3ε
3,

Z = z1ε + z2ε
2 + z3ε

3, and Y −1 = 1 + s1ε + s2ε
2 + s3ε

3.
So, P = [Y −1X : 1 : Y −1Z] = [x1ε + x′

2ε
2 + x′

3ε
3 : 1 :

z1ε + z′2ε
2 + z′3ε

3].
We have P ∈ Ea,b, thus z1 = 0, z′2 = 0, z′3 = x3

1 and P ∈
θ4(F 3

q ).
Finally, G4 = θ4(F 3

q ).
We deduce easily the following corollaries.

Corollary 12: The group G4 is an elementary abelian p-
group, called group at infinity of Ea,b.

Corollary 13: The sequence

0 → G4
j→ Ea,b

πa,b→ Eπ(a),π(b) → 0

be a short exact sequence defining the group extension Ea,b

of Eπ(a),π(b) by G4.

III. A STRONGLY COLLISION RESISTANT FUNCTION ON
Ea,b

Let m be a prime number such that s = m−1
2 is also prime.

Let P and Q be two elements of order m. Assume that is
difficult to calculate r = logP Q. We define the function h by:
h: {0, 1, 2, ....., s − 1}2 −→ Ea,b

(x, y) �−→ xP + yQ
Theorem 14: All collision in the function h allow to calcu-

late r.
Proof 15: Suppose we have a collision i.e, there are two

distinct pairs (x, y) and (x
′
, y

′
) such as

xP + yQ = x
′
P + y

′
Q.

This gives
(x − x

′
)P = (y

′ − y)Q.

Therefore
(x − x

′
)P = r(y

′ − y)P.

i.e
(x − x

′
) = r(y

′ − y)[m].

Let d = gcd(2s, y
′ − y).

Since s is prime and y
′ − y < s, then d = 1 or d = 2.

If d = 1 then, we calculate z the inverse of y
′ −y mod m−1,

therefore r = (x − x
′
)z[m − 1].

If d = 2 then we calculate z
′

the inverse of y
′ − y mod s,

therefore r = (x−x
′
)z

′
[m− 1] or r = (x−x

′
)z

′
+ s[m− 1].

Remark 16: The function h is strongly collision resistant.

IV. IDENTIFICATION METHODS ON Ea,b

Let m be a prime number such that s = m−1
2 is also prime.

Let P and Q be two elements of order m. An Authority form a
pair (xA, yA) from the identity of Alice. It chooses a random
number 0 ≤ d ≤ m − 1 , compute PA = dh(xA, yA) and
sends it to Alice.

1) Alice chooses a random number 0 ≤ a ≤ m − 1 and
compute K = aPA.

2) Alice sends K to Bob.
3) Bob chooses a random number 0 ≤ b ≤ m−1, computes

B = bh(xA, yA) and sends it to Alice.
4) Alice computes C = ah(xA, yA) + aB and sends it to

Bob.
5) Bob computes D = b−1C and sends it to authority.
6) The authority calculate E = dD and sends it to Bob.
7) Bob verifies that K = b(E − K).
Under this protocol, Bob identifies Alice without disclosure

information.
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VI. KEY DISTRIBUTION PROTOCOLS
Let m be a prime number such that s = m−1

2 is also prime.
Let P and Q be two elements of order m.
An Authority distributes a random number 0 ≤ k ≤ m − 1,
sends it to Alice and to Bob.

1) Alice take a private key t such that 0 ≤ t ≤ m − 1,
compute PA = h(t, kt), and he transmits PA to Bob.

2) Similar, Bob takes a private key l such that 0 ≤ l ≤
m − 1, computes PB = h(l, kl), and transmits PB to
Alice.

3) Then Alice and Bob computes tPB and lPA respectively.
The secret key is

K = tPB = lPA

VII. DESCRIPTION OF CRYPTOSYSTEM BASED ON Ea,b

Let m be a prime number such that s = m−1
2 is also prime.

Let P and Q be two elements of order m.
1) Space of lights: P = Ea,b.
2) Space of quantified: C = Ea,b.
3) Space of the keys: K = Ea,b.
4) Function of encryption: ∀K ∈ K,

eK : P −→ C
X �−→ X+K

5) Function of decryption: ∀K ∈ K,

dK : C −→ P
X �−→ X-K

Remark 17:
dKoeK(X) = X

Secret key :
K

Public keys:
Espace of lights P

Espace of quantified C

Espace of the keys K

P a generator of the group P

Q

Fonction of encryption eK

Fonction of deciphering dK

Remark 18: P and Q are public and can known by another
person, but to obtain the private key K, it is necessary to solve
the problem of the discrete logarithm in Ea,b, what returns the
discovery of the difficult key K.

VIII. CONCLUSION

The conclusion in this work we study the elliptic curve over
the artinian principal ideal ring A = Fq[ε], ε4 = 0. More pre-
cisely, we establish a group homomorphism betweens (F 3

q , +)
and the abelian group Ea,b of elliptic curve. For cryptography
applications, we give a strongly collision resistant function on
Ea,b and identification methods on Ea,b.
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