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Abstract—Software fault prediction models are created by using 

the source code, processed metrics from the same or previous version 

of code and related fault data. Some company do not store and keep 

track of all artifacts which are required for software fault prediction. 

To construct fault prediction model for such company, the training 

data from the other projects can be one potential solution. Earlier we 

predicted the fault the less cost it requires to correct. The training 

data consists of metrics data and related fault data at function/module 

level. This paper investigates fault predictions at early stage using the 

cross-project data focusing on the design metrics. In this study, 

empirical analysis is carried out to validate design metrics for cross 

project fault prediction. The machine learning techniques used for 

evaluation is Naïve Bayes. The design phase metrics of other projects 

can be used as initial guideline for the projects where no previous 

fault data is available. We analyze seven datasets from NASA 

Metrics Data Program which offer design as well as code metrics. 

Overall, the results of cross project is comparable to the within 

company data learning.  

 

Keywords—Software Metrics, Fault prediction, Cross project, 

Within project.  

I. INTRODUCTION 

OFTWARE fault prediction focuses on identifying the 

fault-prone modules precisely and helps in allocation of 

limited resources in software testing and maintenance. This 

paper considers the task of identifying fault prone software 

modules at design phase by means of design phase metric- 

using cross project fault data. It has been pragmatic that the 

majority of faults in software are contained in a small number 

of modules [3], [4]. Consequently, an early identification of 

these modules at design phase facilitates an efficient allocation 

of testing resources and may enable architectural 

improvements by suggesting a more rigorous design for 

mission critical systems. Empirical experiments on this issue 

usually trains predictors from the data of the previous releases 

of same project and predicts defects in the upcoming releases, 

or reported the results of cross-validation on the same data set 

[2], [5], [6]. To construct such a fault predictor one needs to 

collect, manage and process software repositories of the same 

project. However, in practice, such kind of historical data is 

not all the time available, because either it does not yet exist or 

was not well collected and managed [7], [8]. That means fault 

prediction based on historical data of the some project is 
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impossible where no previous data of same project is 

available. On the other hand, there are many public defect data 

sets available, especially in the open source repositories of 

projects. A potential way of predicting faults in projects 

without historical data is to make use of these public data sets 

as training data. Cross-project fault prediction refers to 

predicting fault in a project using prediction models trained 

from historical data of other projects [7], [9]. There are some 

investigations concentrating on this subject and they 

concluded that cross-project defect prediction is still a 

challenging task [7], [8]. This paper reports results from the 7 

PROMISE software fault data sets [10]. In this paper, after 

describing our data sets, we show results from learning defect 

predictors from design metrics. We conducted experiments 

after extraction of design phase metrics from 7 public projects 

fault data obtained from PROMISE Data Repository. We 

trained the learner from one projects fault data to predict the 

faults of other projects .We employed Naïve Bayes machine 

learning algorithms to construct prediction models. We found 

that 1) models built from design metrics is useful as they are 

built in early phases of the development life cycle; 2) Training 

data of design phase from other projects may provide better 

prediction results than those from the same project. Fault 

prediction at early stage is possible by using the information 

content of other projects at design phase as the training set. 

We therefore recommend that in future, researchers explore 

the effects of cross project predicator from multiple projects to 

identify faults in early stages of the software development life 

cycle. The remainder of the work is broken down as follows. 

Sect. II summarizes some related work; Sect. III describes the 

methodology of this study, including the data, learning 

algorithms, and the performance evaluation criteria; Section 

IV presents the experimental analysis. Section V provides 

results and discusses their implications, Section VI discusses 

threats to validity and Section VII concludes with a summary 

and future work. 

II. RELATED WORK  

 Software testing is one of the most important, time 

consuming and critical quality assurance activities. It is a 

labor-intensive activity in software development life cycle 

while budget allocated for testing are usually limited [8], [12]. 

Software Testing is also the most expensive, time and resource 

consuming phase of the software development lifecycle 

requires approximately 50% of the whole project schedule 

[27]. Fault prediction has been proved to be effective for 

optimizing testing resource allocation by identifying the 

modules that are more likely to be fault prone prior to testing 
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[13]. To this purpose, a large number of software code 

characteristics will be used for software fault prediction which 

reduces the testing time and effort which in turn reduce the 

overall cost of software development. In the past decade, 

various fault prediction models have been proposed and 

machine learning techniques have become more popular in 

constructing fault predictors [1], [11], [14], [15]. Menzies et 

al. [1] has evaluated the code and design attribute for fault 

prediction using Naïve bayes (with logNums) approach. 

However, most prediction models reported previously are 

intra-project models. The application field of these models is 

restricted for the projects where historical releases data is 

unavailable. It is also shown by NASA Researchers that a fault 

introduced in the requirements, which leaks into the design, 

code, test, integration and operational phase ensues the 

correction cost factor of 5 ,10, 50,130 and 368 respectively 

[19]. So fault prediction as early as possible can reduce the 

cost of correction. This research aims to extend the application 

field of fault prediction at design time. It is unlike most 

previous software fault prediction research for its focus on a 

cross-project context. The problem of predicting faults in a 

cross-project context drew the attention of many researchers in 

recent years. To the best of our knowledge, studies on cross 

project fault prediction do not show a conclusive picture so 

far. Prior to this paper, no study was performed to investigate 

the relative merits of design metrics using cross project data 

for constructing defect predictors. However, there are few 

studies focusing on cross project fault prediction using static 

codes. Twelve real world application were used by [7] for 

cross-project fault predictions and they found that only few of 

them employed well .That means cross-project fault prediction 

will fail in most cases if not selecting training data carefully 

also cross-project fault prediction is not balanced. For 

example, Firefox Fault data can predict Internet Explorer 

faults well (Precision (76.47%) and Recall (81.25%) but the 

opposite direction does not work (Recall equal to 4.12%). 

Zimmermann et al. [7] explained that cross-project fault 

prediction is a serious challenge and more attention should be 

paid to this problem. Turhan et al. [8], [16] reported a 

comparative analysis between cross-company and within 

company data for defect prediction, to build defect predictors 

for local projects. They analyzed 10 projects out of which 7 

were NASA projects and 3 projects from a Turkish software 

company. They used only static code features to build defect 

predictors. They concluded that cross-company data increase 

the probability of defect detection (pd) at the cost of 

increasing false positive rate (pf). Their experimental result 

also shows that nearest neighbor filtering can help to reduce pf 

when using cross-company data. However, using static code 

attributes from the same company is still a better choice for 

building defect predictors. Watanabe et al. [9] tried to build 

fault prediction models for inter project prediction. They 

trained a prediction model from a Java project and applied it to 

a C++ project. A method called “metrics compensation” was 

introduced to adapt the prediction model. One drawback of 

Watanabe’s work is that they only analyzed two projects in 

their case study, which weakens the generalization ability of 

their conclusions. Jureczko and Madeyski [17] tried to divide 

various projects into different groups by using clustering 

techniques. According to their definition, a group is a set of 

projects with similar characteristics, and a defect prediction 

model should work well for all projects that belong to a same 

group. Jureczko’s research work point out a potential way for 

cross-project defect prediction. If we can identify such groups 

successfully, we can predict defects for project without 

historical data by reusing defect prediction models trained 

from other projects belonging to the same group. Nagappan et 

al. [18] studied the generalization ability of prediction models 

for post-release defects. After investigating five Microsoft 

systems, they found that no single set of metrics fits all 

projects and predictors are accurate only when they are 

learned from the same or similar projects. Menzies et al. [1] 

also found that the best static code attributes for defect 

prediction vary from data set to data set, implying different 

data characteristics between different data sets. Different data 

characteristics, in addition to different contexts of projects 

(e.g., process, developers, programming language) make 

cross-project defect prediction a big challenge. Previous work 

has only focused on static attributes and been limited to intra 

project. Several authors have attempted to use cross project, 

but as yet at the time of writing there is still no accepted paper 

which tried predicting at design time using cross project. 

By conducting large-scale experiments on publically 

available data sets, this research overcome some shortcomings 

of previous research work, e.g., it is hard to repeat 

experiments when the data used by the researches not 

accessible for public [7]. 

III. PROPOSED SOFTWARE FAULT PREDICTION FRAMEWORK 

A. Dataset Used 

The data sets were obtained through the NASA Metrics 

Data Program, and include software measurement data and 

associated error data collected at the function level [22]. These 

software project data sets are publicly available under the 

PROMISE software engineering repository [10]. The types 

and numbers of software metrics made available are 

determined by the NASA Metrics Data Program. Each 

instance of these data sets is a program module. The quality of 

a module is described by its Error Rate, i.e., number of defects 

in the module, and Defect, whether or not the module has any 

defects. The latter is used as the class label. The analyses of 

this paper use the design code features of 7 projects tabulated 

in Table I. Available design codes extracted from all static 

features are shown in Table II. An advantage of design code 

features is that they can be quickly and automatically collected 

prior to coding, even if no other information is available. The 

module metrics shown in Table II have been extracted by 

using McCabe IQ 7.1, a reverse engineering tool that derives 

software quality metrics from code, visualize flow graphs and 

generate report documents [20]. McCabe IQ 7.1 is a reverse 

engineering tool that calculates metrics from flow graphs. We 

use the available design level module metrics. The design 

metrics are extracted from design phase artifacts, design 
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diagrams such as UML diagrams, data flow graphs and control 

flow graphs and. For example, Ohlsson and Alberg extract 

design metrics such as McCabe cyclomatic complexity from 

Formal Description Language (FDL) graphs in [21]. The 

NASA data was collected across the United States over a 

period of five years from numerous NASA contractors 

working at different geographical centers. These projects 

represent a wide array of projects, including satellite 

instrumentation, ground control systems and partial flight 

control modules .The data sets also represent a wide range of 

code reuse: some of the projects are 100% new, and some are 

modifications to previously deployed code. Seven projects 

shown in Table I are used in this study. 

 
TABLE I 

DATASETS USED IN THIS STUDY 
Data Modules Faulty 

Modules 

Langua

ge 

Description  

KC3 458 43 Java Storage management for ground 

data 
PC3 1563 160 C Flight software for earth orbiting 

satellite 

PC4 1458 178 C Flight software for earth orbiting 
satellite 

MW1 403 31 C a zero gravity experiment related to 

combustion 
MC2 161 52 C++ a video guidance system 

MC1 9466 68 C\C++ a combustion experiment of a 

space shuttle 
PC2 5589 23 C dynamic simulator for attitude 

control systems 

 

TABLE II 
DESIGN METRICS USED IN THIS STUDY 

Metrics Description  

Branch Count Branch count metrics 

Call Pairs Number of calls to other functions in a 

module 
Condition Count Number of conditions in a module 

Cyclomatic Complexity: v(g) The number of logical independent paths 

v(g)=e-n+2 
Decision Count Number of decision points in a given module 

Decision Density Coundition_count/Decision_count 

Design Complexity: iv(G) The design complexity of a module 

Design Density Design density = iv(g)/v(g) 

Edge Count Number of edges found in a given module 
control from one module to another 

Essential Complexity: ev(g) The essential complexity of a module 

Essential Density Essential density is calculated as:(ev(g)-

1/v(g)-1) 

Maintenance Severity Maintenance Severity is calculated as: 
:(ev(g)/v(g)) 

Modified Condition Count The effect of a condition affect a decision 

outcome by varying that condition only 
Multiple Condition Count Number of multiple conditions that exist 

within a module 

Node Count Number of nodes found in a given module 

 

We only selected 15 primitive software design metrics for 

our study. Design metrics are easy to extract them from design 

diagrams before the code becomes available. The design 

metrics include node_count, edge_count, and Mc- Cabe 

cyclomatic complexity measures which can be extracted from 

flowgraphs by using the McCabe IQ 7.1 tool. The static code 

metrics, such as num_operators, num_operands, and Halstead 

metrics are calculated from source codes. The other metrics 

are related to both the design and code. Most data sets have 15 

design metrics as shown in Table II; the exception data sets 

are MC1 having 14 design metrics. The data sets are related to 

projects of various sizes written with various programming 

languages. Since this study focuses only on a 

unirepresentation approach (i.e., same design features across 

data sets), so only design based metrics provided by the 

NASA Metric Data Program are extracted. Each design 

metrics extracted for fault prediction and used in our study is 

briefly described in Table II. 

Menzies et al. [1] have explored a range of data mining 

methods for defect prediction and found that classifiers based 

on Bayes theorem yields better performance than rule based 

methods (i.e. decision trees, oneR), for NASA data. A 

comparative study by Lessmann et.al also shows that Naive 

Bayes performs equivalently well with 15 other classifiers [2]. 

Therefore, Naive Bayes is a viable choice for classifier in our 

analysis. Naive Bayes classifiers are called “naive” because 

they presume independence of each feature. Naive Bayes is 

probabilistic classifiers and a well-known machine learning 

algorithm, details are skipped here. 

B.  Experimental Design  

The pseudo code for Within Project (WP) -vs-Cross Project 

(CP) analysis at design level for all 7 NASA projects used in 

the study is given below. For each project, test sets were built 

from the data, selected at random. Defect predictors were then 

learned from: 

CP data: Using each project data for model building and 

remaining projects for testing.  

WP data: using 2/3 of the data for model building and 

remaining 1/3 data of that project for testing 

DATA = [KC3, PC3, PC4, MW1, MC2, and MC1and PC2] // all 

 available data 

LEARNER = [Naive Bayes] // defect predictor 

C_FEATURES <- Find common design features in DATA 

FOR EACH data in DATA 

data = Select C_FEATURES in data // use common design 

 features 

END 

FOR EACH data in DATA 

CP_TRAIN = DATA - data // cross project training data 

WP_TRAIN = random 2/3% of data // within project training 

 data 

TEST = data - WP_TRAIN // 1/3 % shared test data 

//construct predictor from CC data 

CP_PREDICTOR = Train LEARNER with CP_TRAIN 

// construct predictor from WP data 

WP_PREDICTOR = Train LEARNER with WP_TRAIN 

//Evaluate both predictors on the same test data 

[cp_auc] = CP_PREDICTOR on TEST 

[wp_auc] = WP_PREDICTOR on TEST 

END 

IV. ANALYSIS OF EXPERIMENT  

This section shows the analysis of our experiments. We use 

Naïve Bayes classifier to evaluate the performance of a cross 

project design fault predicators. In this study the classifier has 
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four possible outcomes: If a module is fault-prone (fp) and is 

classified accordingly, it is counted as true positive (TP); if it 

is wrongly classified as not- fault- prone (nfp), it is counted as 

false negative (FN). Conversely, an nfp module is counted as 

true negative (TN) if it is classified correctly or as false 

positive (FP) otherwise. A large number of performance 

indicators which can be constructed by using these four 

measures explained by [22]. A good fault prediction model 

should identify as many fault prone modules as possible while 

avoids false alarms. Therefore, classifiers are predominantly 

evaluated by means of their TP rate (TPR), also known as rate 

of detection and by their FP rate (FPR) or false alarm rate [1], 

[23]. 

 

TPR =TP+ (FN+TP);      FPR = FP/(TN+ FP) 
 

Note that, such metrics, although having undoubted 

practical value, are conceptually inappropriate for empirical 

comparisons of the performance of classification algorithms.  

Receiver Operating Characteristic (ROC) curves compares 

the classification performance by a plotting the TP rate on y 

axis and FP rate on X axis across all the possible experiments. 

A typical ROC curve has a concave shape with (0, 0) as the 

beginning and (1, 1) as the end point. ROC curves output by 

two machine learner are shown in Fig. 1. The ideal point on 

the ROC curve would be the one when no positive examples 

are classified incorrectly and negative examples are classified 

as negative. As shown in figure the curve C1 intersects C2, 

determination of which model is dominating requires to 

calculate the area under each curve. Every model gets 

different values for area under curve. AUC is used to get 

complete order of model performance and is independent of 

the decision criterion selected and prior probabilities. 
 

 

 
Fig. 1 ROC Curve of three experiments 

 

AUC has also been extensively used as performance 

measure in other fields of research like communication 

(Radar), machine learning, financial and medical data mining 

applications. The AUC comparison can establish a dominance 

relationship between classifiers. The bigger the area under 

curve, the better the model is. As opposed to other measures, 

the area under the ROC curve (AUC) does not depend on the 

imbalance of the training set. ROC curve demonstrates several 

things: It shows the tradeoff between sensitivity (true positive 

TP) and specificity (false positive FP) and any increase in 

sensitivity will be accompanied by a decrease in specificity. 

To get fairer and more informative measure than comparing 

their misclassification rates area under receiver operating 

characteristic (AUC) is used in this study.  

Higher AUC values indicate the classifier is, on average, 

more to the upper left region of the graph. AUC represents the 

most informative and commonly used, thus it is used as 

another performance measure in this paper. Additionally, the 

AUC has a clear statistical interpretation: It measures the 

probability that a classifier ranks a randomly chosen fp 

module higher than a randomly chosen nfp module, which is 

equivalent to the Wilcoxon test of ranks [24]. Therefore, any 

classifier achieving AUC well above 0.5 is demonstrably 

effective for identifying fault-prone modules and gives 

valuable advice as to which modules should receive particular 

attention during software testing. Comparisons are based on 

the area under the receiver operating characteristics curve 

(AUC). The merit of classifier in terms of AUC is estimated 

on a randomly selected hold out test set when training and 

testing by the same project data set, we randomly partitioned 

the data into training and test set using 2/3 of the data for 

model building and 1/3 for performance estimation. We adopt 

a cross testing approach to train the predictors with one project 

data and then after training it is applied to test the rest of the 

projects for fault prediction. That is, one data set is used for 

model building and rest of the data set is used for performance 

evaluation. Since we advocate using the AUC for cross project 

classifier comparison, the same design metric is used during 

model building. Most classifiers achieve promising AUC 

results of 0.7 and more, i.e., rank deficient modules higher 

than accurate ones with probability > 70 percent. Overall, this 

level of accuracy confirms Menzies et al.’s conclusion that 

“defect predictors are demonstrably useful” for identifying fp 

modules and guiding the assignment of testing resources [1]. 

V. RESULTS 

The experiments were conducted to evaluate the cross 

project fault prediction in early phases of software 

development. We used design metrics to build cross company 

fault prediction model. Table III presents the result of the 

experiment on 7 NASA MDP datasets. The bold face shows 

when training and testing is done with the same data set i.e 

model building and evaluation. 
 

TABLE III 

PREDICTION AUC COMPARISON OF 7 DIFFERENT PROJECTS 

 Naïve Bayes learner 

Training Set 

Test Set  

PC3 KC3 PC4 MW1 MC2 MC1 PC2 

PC3 0.718 0.68 0.588 0.684 0.681 0.691 0.694 

KC3 0.792 0.77 0.624 0.801 0.813 0.816 0.81 

PC4 0.743 0.668 0.755 0.695 0.638 0.634 0.646 

MW1 0.743 0.739 0.511 0.785 0.749 0.756 0.746 

MC2 0.526 0.683 0.375 0.661 0.709 0.699 0.684 

MC1 0.781 0.843 0.71 0.541 0.852 0.794 0.833 

PC2 0.715 0.777 0.649 0.772 0.773 0.815 0.693 

 

Column 2 shows the result of experiment when training is 

done by PC2-1563 dataset and prediction performance were 

evaluated for rest of the data sets. As our results indicate that 

FP Rate  

T
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out of six cross project data, KC3,PC4,MW1,MC1 i.e. 4 

projects has given better result than within project. Also all 

these four cross projects achieved promising AUC results of 

more than 0.7. This means that the performance of fault 

prediction based on design metric improves when cross 

project modules are evaluated. From Table III it can be seen 

that almost every cross project design level prediction 

achieving AUC well above 0.5 which is effective for 

identifying fault-prone modules [2] and can give valuable 

advice to designer of the software about that which modules 

should receive particular attention. For all the result, we 

noticed that max value AUC is 0.852 which is achieved during 

cross project prediction and the max value of within project 

AUC is 0.785. As our results indicate that most of the result of 

cross project are competitive and value of AUC > 0.5. It 

indicates that the cross projects fault prediction using design 

metrics are surprisingly good at fault proneness prediction. 

VI.  THREATS TO VALIDITY  

When conducting an empirical study, it is important to be 

aware of potential threats to the validity of the obtained results 

and derived conclusions. Threats to generalized the results are 

bias relates to the data used, e.g., its measurement, tools used 

for measurement, developers efficiency accuracy and 

representativeness. Using public domain data secures the 

results in so far as that they can be verified by replication and 

compared with findings from previous experiments. Also, 

several authors have argued in favor of the appropriateness 

and representativeness of the NASA MDP repository and/or 

used some of its data sets for their experiments [1], [26]. 

Therefore, we are confident that the obtained results are 

relevant for the software defect prediction community. To be 

trustworthy the software engineering community stipulates 

that the subject of an empirical study have the following 

characteristics. 

 The software project should be developed by a group, large 

enough as industry-size projects, and not a dummy problem. It 

should be developed by software professionals and not by 

students, developed in an industry/government organization 

setting, and not in labs [25]. 

We note that our case studies fulfill all of the above criteria. 

The software systems investigated in our study were 

developed by professionals in a government software 

development organization. In addition, each system was 

developed to address a real-world problem. Empirical studies 

that evaluate measurements and models across multiple 

projects should take care in assessing the scope and impact of 

its analysis and conclusion.  

VII. CONCLUSIONS  

In this paper, we have reported an empirical study for cross 

project fault prediction at design phase over 7 public domain 

software development data sets from the NASA MDP 

repository. The AUC was recommended as the primary 

accuracy indicator for comparative studies in software fault 

prediction since it separates predictive performance from class 

and cost distributions. The overall predictive accuracy across 

all cross project are confirmed the general appropriateness of 

fault prediction using at design level to identify fault prone 

software modules (with AUC > 0.5) and guide the assignment 

of testing resources. The experiment we have conducted revels 

that design metrics, from software early lifecycle are good 

predictors for software faulty modules. Thus, we conclude that 

metrics from the early software lifecycle are useful and should 

be used. Regardless of the data from within project, software 

fault prediction model can be built at design phase with other 

project’s design level fault data. 
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