
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

800

Abstract—Software fault prediction models are created by using

the source code, processed metrics from the same or previous version

of code and related fault data. Some company do not store and keep

track of all artifacts which are required for software fault prediction.

To construct fault prediction model for such company, the training

data from the other projects can be one potential solution. Earlier we

predicted the fault the less cost it requires to correct. The training

data consists of metrics data and related fault data at function/module

level. This paper investigates fault predictions at early stage using the

cross-project data focusing on the design metrics. In this study,

empirical analysis is carried out to validate design metrics for cross

project fault prediction. The machine learning techniques used for

evaluation is Naïve Bayes. The design phase metrics of other projects

can be used as initial guideline for the projects where no previous

fault data is available. We analyze seven datasets from NASA

Metrics Data Program which offer design as well as code metrics.

Overall, the results of cross project is comparable to the within

company data learning.

Keywords—Software Metrics, Fault prediction, Cross project,

Within project.

I. INTRODUCTION

OFTWARE fault prediction focuses on identifying the

fault-prone modules precisely and helps in allocation of

limited resources in software testing and maintenance. This

paper considers the task of identifying fault prone software

modules at design phase by means of design phase metric-

using cross project fault data. It has been pragmatic that the

majority of faults in software are contained in a small number

of modules [3], [4]. Consequently, an early identification of

these modules at design phase facilitates an efficient allocation

of testing resources and may enable architectural

improvements by suggesting a more rigorous design for

mission critical systems. Empirical experiments on this issue

usually trains predictors from the data of the previous releases

of same project and predicts defects in the upcoming releases,

or reported the results of cross-validation on the same data set

[2], [5], [6]. To construct such a fault predictor one needs to

collect, manage and process software repositories of the same

project. However, in practice, such kind of historical data is

not all the time available, because either it does not yet exist or

was not well collected and managed [7], [8]. That means fault

prediction based on historical data of the some project is

Pradeep Singh is with the Department of Computer Science &

Engineering, National Institute of Technology, Raipur, India (e-mail:
psingh.cs@nitrr.ac.in).

Shrish Verna is with the Department of Electronics & Telecommunication

Engineering, National Institute of Technology, Raipur (e-mail:
shrishverma@nitrr.ac.in).

impossible where no previous data of same project is

available. On the other hand, there are many public defect data

sets available, especially in the open source repositories of

projects. A potential way of predicting faults in projects

without historical data is to make use of these public data sets

as training data. Cross-project fault prediction refers to

predicting fault in a project using prediction models trained

from historical data of other projects [7], [9]. There are some

investigations concentrating on this subject and they

concluded that cross-project defect prediction is still a

challenging task [7], [8]. This paper reports results from the 7

PROMISE software fault data sets [10]. In this paper, after

describing our data sets, we show results from learning defect

predictors from design metrics. We conducted experiments

after extraction of design phase metrics from 7 public projects

fault data obtained from PROMISE Data Repository. We

trained the learner from one projects fault data to predict the

faults of other projects .We employed Naïve Bayes machine

learning algorithms to construct prediction models. We found

that 1) models built from design metrics is useful as they are

built in early phases of the development life cycle; 2) Training

data of design phase from other projects may provide better

prediction results than those from the same project. Fault

prediction at early stage is possible by using the information

content of other projects at design phase as the training set.

We therefore recommend that in future, researchers explore

the effects of cross project predicator from multiple projects to

identify faults in early stages of the software development life

cycle. The remainder of the work is broken down as follows.

Sect. II summarizes some related work; Sect. III describes the

methodology of this study, including the data, learning

algorithms, and the performance evaluation criteria; Section

IV presents the experimental analysis. Section V provides

results and discusses their implications, Section VI discusses

threats to validity and Section VII concludes with a summary

and future work.

II. RELATED WORK

 Software testing is one of the most important, time

consuming and critical quality assurance activities. It is a

labor-intensive activity in software development life cycle

while budget allocated for testing are usually limited [8], [12].

Software Testing is also the most expensive, time and resource

consuming phase of the software development lifecycle

requires approximately 50% of the whole project schedule

[27]. Fault prediction has been proved to be effective for

optimizing testing resource allocation by identifying the

modules that are more likely to be fault prone prior to testing

Pradeep Singh, Shrish Verma

 Cross Project Software Fault Prediction at Design

Phase

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

801

[13]. To this purpose, a large number of software code

characteristics will be used for software fault prediction which

reduces the testing time and effort which in turn reduce the

overall cost of software development. In the past decade,

various fault prediction models have been proposed and

machine learning techniques have become more popular in

constructing fault predictors [1], [11], [14], [15]. Menzies et

al. [1] has evaluated the code and design attribute for fault

prediction using Naïve bayes (with logNums) approach.

However, most prediction models reported previously are

intra-project models. The application field of these models is

restricted for the projects where historical releases data is

unavailable. It is also shown by NASA Researchers that a fault

introduced in the requirements, which leaks into the design,

code, test, integration and operational phase ensues the

correction cost factor of 5 ,10, 50,130 and 368 respectively

[19]. So fault prediction as early as possible can reduce the

cost of correction. This research aims to extend the application

field of fault prediction at design time. It is unlike most

previous software fault prediction research for its focus on a

cross-project context. The problem of predicting faults in a

cross-project context drew the attention of many researchers in

recent years. To the best of our knowledge, studies on cross

project fault prediction do not show a conclusive picture so

far. Prior to this paper, no study was performed to investigate

the relative merits of design metrics using cross project data

for constructing defect predictors. However, there are few

studies focusing on cross project fault prediction using static

codes. Twelve real world application were used by [7] for

cross-project fault predictions and they found that only few of

them employed well .That means cross-project fault prediction

will fail in most cases if not selecting training data carefully

also cross-project fault prediction is not balanced. For

example, Firefox Fault data can predict Internet Explorer

faults well (Precision (76.47%) and Recall (81.25%) but the

opposite direction does not work (Recall equal to 4.12%).

Zimmermann et al. [7] explained that cross-project fault

prediction is a serious challenge and more attention should be

paid to this problem. Turhan et al. [8], [16] reported a

comparative analysis between cross-company and within

company data for defect prediction, to build defect predictors

for local projects. They analyzed 10 projects out of which 7

were NASA projects and 3 projects from a Turkish software

company. They used only static code features to build defect

predictors. They concluded that cross-company data increase

the probability of defect detection (pd) at the cost of

increasing false positive rate (pf). Their experimental result

also shows that nearest neighbor filtering can help to reduce pf

when using cross-company data. However, using static code

attributes from the same company is still a better choice for

building defect predictors. Watanabe et al. [9] tried to build

fault prediction models for inter project prediction. They

trained a prediction model from a Java project and applied it to

a C++ project. A method called “metrics compensation” was

introduced to adapt the prediction model. One drawback of

Watanabe’s work is that they only analyzed two projects in

their case study, which weakens the generalization ability of

their conclusions. Jureczko and Madeyski [17] tried to divide

various projects into different groups by using clustering

techniques. According to their definition, a group is a set of

projects with similar characteristics, and a defect prediction

model should work well for all projects that belong to a same

group. Jureczko’s research work point out a potential way for

cross-project defect prediction. If we can identify such groups

successfully, we can predict defects for project without

historical data by reusing defect prediction models trained

from other projects belonging to the same group. Nagappan et

al. [18] studied the generalization ability of prediction models

for post-release defects. After investigating five Microsoft

systems, they found that no single set of metrics fits all

projects and predictors are accurate only when they are

learned from the same or similar projects. Menzies et al. [1]

also found that the best static code attributes for defect

prediction vary from data set to data set, implying different

data characteristics between different data sets. Different data

characteristics, in addition to different contexts of projects

(e.g., process, developers, programming language) make

cross-project defect prediction a big challenge. Previous work

has only focused on static attributes and been limited to intra

project. Several authors have attempted to use cross project,

but as yet at the time of writing there is still no accepted paper

which tried predicting at design time using cross project.

By conducting large-scale experiments on publically

available data sets, this research overcome some shortcomings

of previous research work, e.g., it is hard to repeat

experiments when the data used by the researches not

accessible for public [7].

III. PROPOSED SOFTWARE FAULT PREDICTION FRAMEWORK

A. Dataset Used

The data sets were obtained through the NASA Metrics

Data Program, and include software measurement data and

associated error data collected at the function level [22]. These

software project data sets are publicly available under the

PROMISE software engineering repository [10]. The types

and numbers of software metrics made available are

determined by the NASA Metrics Data Program. Each

instance of these data sets is a program module. The quality of

a module is described by its Error Rate, i.e., number of defects

in the module, and Defect, whether or not the module has any

defects. The latter is used as the class label. The analyses of

this paper use the design code features of 7 projects tabulated

in Table I. Available design codes extracted from all static

features are shown in Table II. An advantage of design code

features is that they can be quickly and automatically collected

prior to coding, even if no other information is available. The

module metrics shown in Table II have been extracted by

using McCabe IQ 7.1, a reverse engineering tool that derives

software quality metrics from code, visualize flow graphs and

generate report documents [20]. McCabe IQ 7.1 is a reverse

engineering tool that calculates metrics from flow graphs. We

use the available design level module metrics. The design

metrics are extracted from design phase artifacts, design

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

802

diagrams such as UML diagrams, data flow graphs and control

flow graphs and. For example, Ohlsson and Alberg extract

design metrics such as McCabe cyclomatic complexity from

Formal Description Language (FDL) graphs in [21]. The

NASA data was collected across the United States over a

period of five years from numerous NASA contractors

working at different geographical centers. These projects

represent a wide array of projects, including satellite

instrumentation, ground control systems and partial flight

control modules .The data sets also represent a wide range of

code reuse: some of the projects are 100% new, and some are

modifications to previously deployed code. Seven projects

shown in Table I are used in this study.

TABLE I

DATASETS USED IN THIS STUDY
Data Modules Faulty

Modules

Langua

ge

Description

KC3 458 43 Java Storage management for ground

data
PC3 1563 160 C Flight software for earth orbiting

satellite

PC4 1458 178 C Flight software for earth orbiting
satellite

MW1 403 31 C a zero gravity experiment related to

combustion
MC2 161 52 C++ a video guidance system

MC1 9466 68 C\C++ a combustion experiment of a

space shuttle
PC2 5589 23 C dynamic simulator for attitude

control systems

TABLE II
DESIGN METRICS USED IN THIS STUDY

Metrics Description

Branch Count Branch count metrics

Call Pairs Number of calls to other functions in a

module
Condition Count Number of conditions in a module

Cyclomatic Complexity: v(g) The number of logical independent paths

v(g)=e-n+2
Decision Count Number of decision points in a given module

Decision Density Coundition_count/Decision_count

Design Complexity: iv(G) The design complexity of a module

Design Density Design density = iv(g)/v(g)

Edge Count Number of edges found in a given module
control from one module to another

Essential Complexity: ev(g) The essential complexity of a module

Essential Density Essential density is calculated as:(ev(g)-

1/v(g)-1)

Maintenance Severity Maintenance Severity is calculated as:
:(ev(g)/v(g))

Modified Condition Count The effect of a condition affect a decision

outcome by varying that condition only
Multiple Condition Count Number of multiple conditions that exist

within a module

Node Count Number of nodes found in a given module

We only selected 15 primitive software design metrics for

our study. Design metrics are easy to extract them from design

diagrams before the code becomes available. The design

metrics include node_count, edge_count, and Mc- Cabe

cyclomatic complexity measures which can be extracted from

flowgraphs by using the McCabe IQ 7.1 tool. The static code

metrics, such as num_operators, num_operands, and Halstead

metrics are calculated from source codes. The other metrics

are related to both the design and code. Most data sets have 15

design metrics as shown in Table II; the exception data sets

are MC1 having 14 design metrics. The data sets are related to

projects of various sizes written with various programming

languages. Since this study focuses only on a

unirepresentation approach (i.e., same design features across

data sets), so only design based metrics provided by the

NASA Metric Data Program are extracted. Each design

metrics extracted for fault prediction and used in our study is

briefly described in Table II.

Menzies et al. [1] have explored a range of data mining

methods for defect prediction and found that classifiers based

on Bayes theorem yields better performance than rule based

methods (i.e. decision trees, oneR), for NASA data. A

comparative study by Lessmann et.al also shows that Naive

Bayes performs equivalently well with 15 other classifiers [2].

Therefore, Naive Bayes is a viable choice for classifier in our

analysis. Naive Bayes classifiers are called “naive” because

they presume independence of each feature. Naive Bayes is

probabilistic classifiers and a well-known machine learning

algorithm, details are skipped here.

B. Experimental Design

The pseudo code for Within Project (WP) -vs-Cross Project

(CP) analysis at design level for all 7 NASA projects used in

the study is given below. For each project, test sets were built

from the data, selected at random. Defect predictors were then

learned from:

CP data: Using each project data for model building and

remaining projects for testing.

WP data: using 2/3 of the data for model building and

remaining 1/3 data of that project for testing

DATA = [KC3, PC3, PC4, MW1, MC2, and MC1and PC2] // all

 available data

LEARNER = [Naive Bayes] // defect predictor

C_FEATURES <- Find common design features in DATA

FOR EACH data in DATA

data = Select C_FEATURES in data // use common design

 features

END

FOR EACH data in DATA

CP_TRAIN = DATA - data // cross project training data

WP_TRAIN = random 2/3% of data // within project training

 data

TEST = data - WP_TRAIN // 1/3 % shared test data

//construct predictor from CC data

CP_PREDICTOR = Train LEARNER with CP_TRAIN

// construct predictor from WP data

WP_PREDICTOR = Train LEARNER with WP_TRAIN

//Evaluate both predictors on the same test data

[cp_auc] = CP_PREDICTOR on TEST

[wp_auc] = WP_PREDICTOR on TEST

END

IV. ANALYSIS OF EXPERIMENT

This section shows the analysis of our experiments. We use

Naïve Bayes classifier to evaluate the performance of a cross

project design fault predicators. In this study the classifier has

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

803

four possible outcomes: If a module is fault-prone (fp) and is

classified accordingly, it is counted as true positive (TP); if it

is wrongly classified as not- fault- prone (nfp), it is counted as

false negative (FN). Conversely, an nfp module is counted as

true negative (TN) if it is classified correctly or as false

positive (FP) otherwise. A large number of performance

indicators which can be constructed by using these four

measures explained by [22]. A good fault prediction model

should identify as many fault prone modules as possible while

avoids false alarms. Therefore, classifiers are predominantly

evaluated by means of their TP rate (TPR), also known as rate

of detection and by their FP rate (FPR) or false alarm rate [1],

[23].

TPR =TP+ (FN+TP); FPR = FP/(TN+ FP)

Note that, such metrics, although having undoubted

practical value, are conceptually inappropriate for empirical

comparisons of the performance of classification algorithms.

Receiver Operating Characteristic (ROC) curves compares

the classification performance by a plotting the TP rate on y

axis and FP rate on X axis across all the possible experiments.

A typical ROC curve has a concave shape with (0, 0) as the

beginning and (1, 1) as the end point. ROC curves output by

two machine learner are shown in Fig. 1. The ideal point on

the ROC curve would be the one when no positive examples

are classified incorrectly and negative examples are classified

as negative. As shown in figure the curve C1 intersects C2,

determination of which model is dominating requires to

calculate the area under each curve. Every model gets

different values for area under curve. AUC is used to get

complete order of model performance and is independent of

the decision criterion selected and prior probabilities.

Fig. 1 ROC Curve of three experiments

AUC has also been extensively used as performance

measure in other fields of research like communication

(Radar), machine learning, financial and medical data mining

applications. The AUC comparison can establish a dominance

relationship between classifiers. The bigger the area under

curve, the better the model is. As opposed to other measures,

the area under the ROC curve (AUC) does not depend on the

imbalance of the training set. ROC curve demonstrates several

things: It shows the tradeoff between sensitivity (true positive

TP) and specificity (false positive FP) and any increase in

sensitivity will be accompanied by a decrease in specificity.

To get fairer and more informative measure than comparing

their misclassification rates area under receiver operating

characteristic (AUC) is used in this study.

Higher AUC values indicate the classifier is, on average,

more to the upper left region of the graph. AUC represents the

most informative and commonly used, thus it is used as

another performance measure in this paper. Additionally, the

AUC has a clear statistical interpretation: It measures the

probability that a classifier ranks a randomly chosen fp

module higher than a randomly chosen nfp module, which is

equivalent to the Wilcoxon test of ranks [24]. Therefore, any

classifier achieving AUC well above 0.5 is demonstrably

effective for identifying fault-prone modules and gives

valuable advice as to which modules should receive particular

attention during software testing. Comparisons are based on

the area under the receiver operating characteristics curve

(AUC). The merit of classifier in terms of AUC is estimated

on a randomly selected hold out test set when training and

testing by the same project data set, we randomly partitioned

the data into training and test set using 2/3 of the data for

model building and 1/3 for performance estimation. We adopt

a cross testing approach to train the predictors with one project

data and then after training it is applied to test the rest of the

projects for fault prediction. That is, one data set is used for

model building and rest of the data set is used for performance

evaluation. Since we advocate using the AUC for cross project

classifier comparison, the same design metric is used during

model building. Most classifiers achieve promising AUC

results of 0.7 and more, i.e., rank deficient modules higher

than accurate ones with probability > 70 percent. Overall, this

level of accuracy confirms Menzies et al.’s conclusion that

“defect predictors are demonstrably useful” for identifying fp

modules and guiding the assignment of testing resources [1].

V. RESULTS

The experiments were conducted to evaluate the cross

project fault prediction in early phases of software

development. We used design metrics to build cross company

fault prediction model. Table III presents the result of the

experiment on 7 NASA MDP datasets. The bold face shows

when training and testing is done with the same data set i.e

model building and evaluation.

TABLE III

PREDICTION AUC COMPARISON OF 7 DIFFERENT PROJECTS

 Naïve Bayes learner

Training Set

Test Set

PC3 KC3 PC4 MW1 MC2 MC1 PC2

PC3 0.718 0.68 0.588 0.684 0.681 0.691 0.694

KC3 0.792 0.77 0.624 0.801 0.813 0.816 0.81

PC4 0.743 0.668 0.755 0.695 0.638 0.634 0.646

MW1 0.743 0.739 0.511 0.785 0.749 0.756 0.746

MC2 0.526 0.683 0.375 0.661 0.709 0.699 0.684

MC1 0.781 0.843 0.71 0.541 0.852 0.794 0.833

PC2 0.715 0.777 0.649 0.772 0.773 0.815 0.693

Column 2 shows the result of experiment when training is

done by PC2-1563 dataset and prediction performance were

evaluated for rest of the data sets. As our results indicate that

FP Rate

T
P
 r
a
te

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

804

out of six cross project data, KC3,PC4,MW1,MC1 i.e. 4

projects has given better result than within project. Also all

these four cross projects achieved promising AUC results of

more than 0.7. This means that the performance of fault

prediction based on design metric improves when cross

project modules are evaluated. From Table III it can be seen

that almost every cross project design level prediction

achieving AUC well above 0.5 which is effective for

identifying fault-prone modules [2] and can give valuable

advice to designer of the software about that which modules

should receive particular attention. For all the result, we

noticed that max value AUC is 0.852 which is achieved during

cross project prediction and the max value of within project

AUC is 0.785. As our results indicate that most of the result of

cross project are competitive and value of AUC > 0.5. It

indicates that the cross projects fault prediction using design

metrics are surprisingly good at fault proneness prediction.

VI. THREATS TO VALIDITY

When conducting an empirical study, it is important to be

aware of potential threats to the validity of the obtained results

and derived conclusions. Threats to generalized the results are

bias relates to the data used, e.g., its measurement, tools used

for measurement, developers efficiency accuracy and

representativeness. Using public domain data secures the

results in so far as that they can be verified by replication and

compared with findings from previous experiments. Also,

several authors have argued in favor of the appropriateness

and representativeness of the NASA MDP repository and/or

used some of its data sets for their experiments [1], [26].

Therefore, we are confident that the obtained results are

relevant for the software defect prediction community. To be

trustworthy the software engineering community stipulates

that the subject of an empirical study have the following

characteristics.

 The software project should be developed by a group, large

enough as industry-size projects, and not a dummy problem. It

should be developed by software professionals and not by

students, developed in an industry/government organization

setting, and not in labs [25].

We note that our case studies fulfill all of the above criteria.

The software systems investigated in our study were

developed by professionals in a government software

development organization. In addition, each system was

developed to address a real-world problem. Empirical studies

that evaluate measurements and models across multiple

projects should take care in assessing the scope and impact of

its analysis and conclusion.

VII. CONCLUSIONS

In this paper, we have reported an empirical study for cross

project fault prediction at design phase over 7 public domain

software development data sets from the NASA MDP

repository. The AUC was recommended as the primary

accuracy indicator for comparative studies in software fault

prediction since it separates predictive performance from class

and cost distributions. The overall predictive accuracy across

all cross project are confirmed the general appropriateness of

fault prediction using at design level to identify fault prone

software modules (with AUC > 0.5) and guide the assignment

of testing resources. The experiment we have conducted revels

that design metrics, from software early lifecycle are good

predictors for software faulty modules. Thus, we conclude that

metrics from the early software lifecycle are useful and should

be used. Regardless of the data from within project, software

fault prediction model can be built at design phase with other

project’s design level fault data.

ACKNOWLEDGMENT

This study is supported by The Scientific and Technological

Council of C.G. under Grant 8068/CCOST. The findings and

opinions in this study belong solely to the authors, and are not

necessarily those of the sponsor.

REFERENCES

[1] Menzies, T., Greenwald, J., Frank, “A.: Data mining static code
attributes to learn defect predictors” IEEE Trans. Softw. Eng. 33(1), 2–

13 (2007b)

[2] Lessmann, S., Baesens, B., Mues, C., Pietsch, S. “Benchmarking
classification models for software defect prediction: a proposed

framework and novel findings” IEEE Trans. Softw. Eng. 34(4), 485–496

(2008)
[3] C. Andersson, “A Replicated Empirical Study of a Selection Method for

Software Reliability Growth Models,” Empirical Software Eng., vol. 12,

no. 2, pp. 161-182, 2007.
[4] N. E. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and

Failures in a Complex Software System,” IEEE Trans. Software Eng.,
vol. 26, no. 8, pp. 797-814, Aug. 2000.

[5] Tosun, A., Turhan, B., Bener, “A.: Practical considerations in deploying

AI for defect prediction: a case study within the Turkish
telecommunication industry.” In: Proceedings of the 5th International

Conference on Predictor Models in Software Engineering, pp. 1–9

(2009).
[6] Weyuker, E. J., Ostrand, T. J., Bell, R. M. “Comparing the effectiveness

of several modeling methods for fault prediction”. Empir. Softw. Eng.

15(3), 277–295 (2009)
[7] Zimmermann, T., Nagappan, N., Gall, H.: “Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process,” In:

Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, pp. 91–100 (2009)

[8] Turhan, B., Menzies, T., Bener, A. “On the relative value of cross-
company and within_company data for defect prediction,” Empir. Softw.

Eng. 14(5), 540–578 (2009)

[9] Watanabe, S., Kaiya, H., Kaijiri, K. “Adapting a fault prediction model
to allow inter language reuse,” In: Proceedings of the International

Workshop on Predictive Models in Software Engineering, pp. 19–24

(2008).
[10] http://promisedata.org/repository.

[11] Ostrand, T.J., Weyuker, E.J., Bell, R.M. “Predicting the location and

number of faults in large software systems,” IEEE Trans. Softw. Eng.
31(4), 340–355 (2005)

[12] D’Ambros, M., Lanza, M., Robbes, R. “An extensive comparison of bug

prediction approaches,” In: Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories, pp. 31–41 (2010)

[13] Tosun, A., Bener, A., Kale, R. “ AI-based software fault predictors:

applications and benefits in a case study” In: Proceedings of the 22th
Innovative Applications of Artificial Intelligence Conference, pp. 1748–

1755 (2010)

[14] Nagappan, N., Ball, T “Use of relative code churn measures to predict
system fault density,” In: Proceedings of the 27th International

Conference on Software Engineering, pp. 284–292 (2005)

[15] Catal, C., Diri, B.: “A systematic review of software fault prediction
studies,” Expert Syst. Appl. 36(4), 7346–7354 (2009)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

805

[16] Turhan, B., Bener, A., Menzies, T. “Regularities in learning defect

predictor,” In: The 11th International Conference on Product Focused
Software Development and Process Improvement, pp. 116–130 (2010)

[17] Jureczko, M., Madeyski, L. “Towards identifying software project

clusters with regard to defect prediction,” In: Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,

pp. 1–10 (2010)

[18] Nagappan, N., Ball, T., Zeller, A. “Mining metrics to predict component
failure” In: Proceedings of the 28th International Conference on

Software Engineering, pp. 452–461 (2006).

[19] http://www.cse.lehigh.edu/~gtan/bug/localCopies/nistReport.pdf
[20] Do-178b and mccabe iq. Available in http://www.

mccabe.com/iq_research_whitepapers.htm.

[21] N. Ohlsson and H. Alberg “Predicting fault-prone software modules in
telephone switches,” IEEE Transactions on Software Engineering,

22(12):886–894, 1996.

[22] K. El-Emam, S. Benlarbi, N. Goel, and S.N. Rai, “Comparing Case-
Based Reasoning Classifiers for Predicting High-Risk Software

Components,” J. Systems and Software, vol. 55, no. 3, pp. 301-320,

2001.
[23] T. M. Khoshgoftaar and N. Seliya, “Analogy-Based Practical

Classification Rules for Software Quality Estimation,” Empirical

Software Eng., vol. 8, no. 4, pp. 325-350, 2003.
[24] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861-874, 2006.

[25] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: An Introduction.

Kluwer Academic Publishers, 2000.
[26] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust Prediction of Fault-

Proneness by Random Forests,” Proc. 15th Int’l Symp Software

Reliability Eng., 2004.
[27] M.J. Harrold, Testing: a roadmap, in: Proceedings of the Conference on

the Future of Software Engineering, ACM Press, New York, NY, 2000.

