
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:6, 2007

278

 

 

  
Abstract—The purpose of this paper is to investigate the 

influence of a number of variables on the conditional mean and 
conditional variance of credit spread changes. The empirical analysis 
in this paper is conducted within the context of bivariate GARCH-in-
Mean models, using the so-called BEKK parameterization. We show 
that credit spread changes are determined by interest-rate and equity-
return variables, which is in line with theory as provided by the 
structural models of default. We also identify the credit spread 
change volatility as an important determinant of credit spread 
changes, and provide evidence on the transmission of volatility 
between the variables under study. 

 
Keywords—Credit spread changes, GARCH-in-Mean models, 

structural framework, volatility transmission. 

I. INTRODUCTION 
HE number of empirical studies on the determinants of 
corporate credit spreads, which are commonly viewed as a 

proxy for credit risk, has increased significantly over the last 
years (see, among others, [2], [9], [11], [14] and [20]). [11] 
and [14] show that taxes, risk premia and liquidity premia, 
among other factors, are important in explaining corporate 
credit spreads. [9] find that variables such as the interest rate 
level, the yield curve slope, and proxies for firm leverage, 
volatility, business climate, and jump magnitudes and 
probabilities, have low explanatory power. [20] show that a 
number of variables, including the Russell 2000 index 
historical return volatility, the Conference Board composite 
leading and coincident economic indicators, the interest rate 
level, the historical interest rate volatility, the yield curve 
slope, the Russell 2000 index return, and the Fama-French 
high-minus-low factor, have significant explanatory power. 
Finally, [2] find that the lagged Russell 2000 index returns 
and changes in the yield curve slope are important 
determinants of credit spread changes.  
 The purpose of the present paper is twofold. First, within 
the theoretical framework provided by the so-called structural 
models of default, we re-examine the impact of a number of 
variables on the conditional mean of credit spread changes. 
The structural framework postulates that credit spread 
determinants are basically decomposed into two core factors, 
which are related to the risk-free interest rate and the firm 
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asset value.  
Second, we extend existing literature by investigating the 

impact of the proposed variables on the conditional variance 
of credit spread changes, following the intuition by [17]. In 
this way, we aim to shed light and enhance our understanding 
on the volatility structure of credit spread changes. 

In order to explore the influence of the variables on the 
conditional mean and conditional variance of credit spread 
changes, bivariate GARCH-in-Mean models are employed. 
Specifically, the analysis implements the full (unrestricted) 
BEKK representation, introduced by [15], which enables us to 
study the existence of volatility spillover effects among the 
variables.  

The remainder of the paper is organized as follows. The 
second section discusses the theoretical background. The third 
section presents the dataset and describes the empirical 
models. The fourth section reports the empirical results, and 
the final section summarizes the main findings and concludes 
the paper. 

II. THEORETICAL BACKGROUND 
Existing literature on credit risk modeling comprises two 

fundamental approaches: the structural or firm-value 
approach, pioneered by [3] and [27], and the reduced-form 
approach, including, inter alia, [21] and [22].  

The structural approach postulates that corporate debt and 
equity are options on the value of the firm. Within this 
framework, default is basically determined by the firm asset 
value relative to a default threshold. The Merton model 
implies that an increase in the risk-free interest rate increases 
the risk-neutral drift of the firm value process, and thus 
reduces the probability of default; as a result, the credit spread 
narrows. In accordance with theory, [12] and [26] find a 
negative relation between credit spreads and interest rates. In 
lieu of associating default with the firm value, reduced-form 
models assume that default is determined exogenously, 
typically through a jump process.  
 There are a number of empirical studies, including, inter 
alia,  [16] and [19], that question structural models of default 
on the basis of their generated credit spreads compared to the 
empirically observed ones. Nevertheless, we follow the 
theoretical implications provided by this class of models, 
which decompose the determinants of corporate credit spreads 
into an interest-rate and an asset-value factor. In this paper, we 
use both changes in the 10-year U.S. Treasury bond yield and 
changes in the slope of the Treasury yield curve, as proxies 
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for the interest-rate factor. [8] and [25] have shown that the 
interest rate level and slope mostly explain the term structure 
of interest rates (see also [9]). Furthermore, as a proxy for the 
asset-value factor, we use the return on the Standard and 
Poor’s 500 equity index. 

III. DATA & METHODOLOGY 

A. Dataset 
 The analysis consists of monthly data of the Baa-rated 
corporate credit spread, the slope of the U.S. Treasury yield 
curve, the S&P 500 equity price index, and the 10-year 
constant maturity U.S. Treasury bond. The dataset covers the 
period over January 1985 through December 2004, and was 
sourced from the U.S. Federal Reserve Board (Federal 
Reserve Statistical Release H.15-Selected Interest Rates) and 
Datastream. The Baa credit spread is calculated as the yield 
difference between the Moody’s Baa seasoned bond index and 
the 10-year constant maturity U.S. Treasury bond. The slope 
of the Treasury yield curve is calculated as the yield 
difference between the 10-year and 1-year constant maturity 
U.S. Treasury bonds. The return on the S&P 500 index is 
calculated as the log difference of the equity index levels. 

Unit-root tests are computed for each series, including the 
Augmented Dickey-Fuller and Phillips-Perron unit-root tests, 
the test developed by [13], the test by [24], as well as the test 
proposed by [28]. The unit-root test results, presented in I, 
show that the first differences of the series, as well as the S&P 
500 return series, are all stationary processes.  

B. Empirical models 
In this paper, we estimate a series of bivariate GARCH-in-

Mean models using the BEKK parameterization, introduced 
by [15]. The estimated bivariate GARCH-M(1,1) models are 
of the following form: 

 

1 1 1 11, 1,

2 2 1 2 22, 2,

1 1 1

t t t t

t t t t

t t t t

x a b y c h u

y a b y c h u

H C C A H A B u u B
−

− − −

= + + +

= + + +

′ ′ ′ ′= + +

         (1) 

where xt denotes the Baa credit spread changes, yt is the vector 
of the explanatory variables, i.e. y=(ΔTcm10yt, ΔSlopet, 
S&P500t-1)', h11 denotes the conditional variance of credit 
spread changes, and h22 denotes the conditional variance of 
the explanatory variable. Thus, the conditional mean of credit 
spread changes is parameterized to depend on 
contemporaneous changes in the 10-year Treasury yield 
(hereafter model 1), contemporaneous changes in the slope of 
the Treasury yield curve (hereafter model 2), and the lagged 
S&P 500 index return (hereafter model 3), as well as on its 
own volatility, given by the square root of its conditional 
variance, h11. 

 The full (unrestricted) BEKK representation can also be 
written in the following form: 
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As shown by the first equation in (3), the conditional variance 
of credit spread changes, h11,t, is parameterized to depend on 
its own lagged squared errors and lagged conditional variance, 
as well as the lagged squared errors and lagged conditional 
variance of the other variable. The Broyden, Fletcher, 
Goldfarb and Shanno (BFGS) algorithm is implemented (see 
[5], [6] and [18]). To address the issue of non-normality, the 
so-called quasi-maximum likelihood (QML) estimator is 
employed (see [4]). 

IV. EMPIRICAL RESULTS 

A. Estimation results for model 1 
According to the estimation results for model 1, presented 

in II, the influence of interest rate changes on the conditional 
mean of credit spread changes, as measured by the coefficient 
b1, is statistically significant with estimated coefficient of -
0.3339, and corresponding t-value of -4.4033. Thus, this 
suggests that changes in the Baa credit spread are negatively 
related to changes in the level of the interest rate, which is in 
line with theory. The impact of the credit spread change 
volatility on the conditional mean of credit spread changes, as 
measured by the coefficient c1, is also found to be statistically 
significant, with estimated coefficient of 0.8788, and 
corresponding t-value of 2.1197. The estimation results also 
show that the conditional variance of credit spread changes is 
affected by its own lagged volatility and lagged squared 
shocks, as well as by the lagged squared shocks of ΔTcm10y. 
Specifically, we identify a statistically significant influence of 
the lagged squared shocks of ΔTcm10y on the volatility of 
ΔBaaspread, with corresponding t-value of 3.3552. All 
eigenvalues of model 1 are less than one in modulus; 
therefore, the model is covariance stationary (see [15]). 

B. Estimation results for model 2 
The estimation results for model 2, presented in III, show 

that the influence of changes in the slope of the Treasury yield 
curve on the conditional mean of credit spread changes, as 
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measured by the coefficient b1, is statistically significant with 
estimated coefficient of -0.6058, and corresponding t-value of  
-4.9028. Thus, this implies that credit spread changes are 
negatively related to changes in the yield curve slope, which is 
in accordance with theory. The impact of the credit spread 
change volatility on the conditional mean of credit spread 
changes, as measured by the coefficient c1, is found to be 
statistically significant, with estimated coefficient of 1.2548, 
and corresponding t-value of 2.6033. The estimation results 
also show that the conditional variance of credit spread 
changes is affected by its own lagged squared shocks, and the 
lagged squared shocks of ΔSlope. Specifically, we document a 
statistically significant influence of the lagged squared shocks 
of ΔSlope on the volatility of ΔBaaspread, with corresponding 
t-value of -2.5159. The conditional variance of changes in the 
yield curve slope is affected by its own lagged volatility, and 
by the lagged volatility and lagged squared shocks of 
ΔBaaspread. All eigenvalues of model 2 are less than one in 
modulus, suggesting that the model is covariance stationary. 

C. Estimation results for model 3 
According to the estimation results for model 3, presented 

in IV, the influence of the lagged return on the S&P 500 index 
on the conditional mean of credit spread changes, as measured 
by the coefficient b1, is statistically significant with estimated 
coefficient of -0.0043, and corresponding t-value of -2.2763. 
Thus, this suggests that changes in the credit spread are 
negatively related to the lagged S&P 500 index return (see 
also [9] and [23]). In this case, the impact of the credit spread 
change volatility on the conditional mean of credit spread 
changes, as measured by the coefficient c1, is not found to be 
statistically significant. The estimation results also provide 
ample evidence for the presence of volatility transmission 
between the S&P 500 index return and the credit spread 
changes. The conditional variance of credit spread changes is 
affected by its own lagged squared shocks, and by the lagged 
volatility and lagged squared shocks of S&P500. Specifically, 
we find a statistically significant influence of the lagged 
volatility and lagged squared shocks of S&P500 on the 
volatility of ΔBaaspread, with corresponding t-values of 
17.2612 and 2.2706, respectively. The conditional variance of 
S&P500 is affected by its own lagged squared shocks, and by 
the lagged volatility of ΔBaaspread. The eigenvalues of model 
3 are less than one in modulus, which confirms that the model 
is covariance stationary. 

D. Robustness test 
The analysis concludes with estimating a series of bivariate 

diagonal BEKK GARCH-M(1,1) models, and then testing 
them against the models presented before, using likelihood 
ratio tests. The underlying rationale is to assess the previously 
reported evidence on the presence of volatility spillover 
effects among the variables. The diagonal BEKK models do 
not allow for spillover effects, that is, the parameters α12, α21, 
b12 and b21 in (3) are set to equal zero. The corresponding 
likelihood ratio test results are presented in V. In all cases, the 

log likelihood value of the restricted (diagonal BEKK) models 
is lower than that of the unrestricted (full BEKK) models. 
With the exception of model 1, the likelihood ratio test results 
reject the null hypothesis of the restricted (diagonal) models. 
Thus, this provides evidence in support of the models that 
incorporate spillover effects.  

V. CONCLUSION 
In this paper, we have examined the influence of a number 

of variables, based on the structural models of default, on both 
the conditional mean and conditional variance of credit spread 
changes. The empirical analysis, which is implemented within 
a bivariate GARCH-in-Mean modeling framework, produces 
the following results.  

First, we find that both changes in the level of the interest 
rate, and changes in the slope of the Treasury yield curve, 
have a significant negative effect on credit spread changes, 
which is consistent with theory and empirical evidence 
documented by [12] and [26]. We also find that the S&P 500 
index return has a significant impact on credit spread changes, 
in line with empirical evidence provided by [9], among others. 

Recent empirical studies show that historical and implied 
volatility are important determinants of corporate credit 
spreads (see [7] and [10]). We find that the volatility of credit 
spread changes, defined by a GARCH model, comprises an 
important component of credit spread changes. Furthermore, 
we provide evidence on the existence of volatility 
transmission between the variables under examination. In 
particular, the empirical findings indicate that the S&P 500 
index return and the yield curve slope changes are important 
in explaining the volatility of credit spread changes.  
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APPENDIX 
 

TABLE I 
UNIT-ROOT TESTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
               PARAMETER ESTIMATES FOR MODEL 1 

 
 
 
 
 
 

Series ADF test PP test DF-GLS test 
ΔBaaspread -8.47* -10.99* -8.23* 
ΔTcm10y -8.02* -11.04* -7.10* 
ΔSlope -6.22* -11.55* -2.91* 
S&P500 -15.58* -15.64* -10.15* 
    
 KPSS test ZA test 
ΔBaaspread 0.05 -11.74* (2001:11) 
ΔTcm10y 0.09 -11.11* (1987:04) 
ΔSlope 0.10 -11.52* (1987:03) 
S&P500 0.22 -16.45* (2000:02) 
Notes: ΔBaaspread stands for the Baa credit spread 
changes. ΔTcm10y stands for the change in the 10-year 
constant maturity Treasury bond, and ΔSlope stands for 
the change in the slope of the Treasury yield curve. 
S&P500 is the return on the Standard and Poor’s 500 
equity index. Lag length is determined on the basis of the 
Schwarz Criterion. (*) denotes statistical significance at 
the 5% level.  

Notes: The parameters are estimated based on 
the following specification: 

1 1 1 11, 1,

2 2 1 2 22, 2,

1 1 1

10

10 10

   

t t t t

t t t t

t t t t

Baaspread a b Tcm y c h u

Tcm y a b Tcm y c h u

H C C A H A B u u B
−

− − −

Δ = + Δ + +

Δ = + Δ + +

′ ′ ′ ′= + +

 

 Coefficients T-Stat. 
Panel A: Conditional mean equations 

α1 -0.0987 -2.3897 
b1 -0.3339 -4.4033 
c1 0.8788 2.1197 
α2 -0.0888 -0.6452 
b2 0.3380 5.5745 
c2 0.3138 0.5634 

 
Panel B: Conditional variance equations 

c11 0.0710 7.4195 
c12 -0.0030 -0.0962 
c22 0.1849 6.8853 
α11 0.3409 2.4784 
α21 0.0241 0.3254 
α12 -0.7659 -1.2067 
α22 -0.4130 -1.4061 
b11 -0.3844 -3.4672 
b21 0.1954 3.3552 
b12 0.0882 0.2996 
b22 0.4445 3.2631 

 
Panel C: Covariance stationarity 

0.4862 -0.4624 
-0.3104 0.2954 
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TABLE III 
PARAMETER ESTIMATES FOR MODEL 2 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE IV 
               PARAMETER ESTIMATES FOR MODEL 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE V 
LIKELIHOOD RATIO TEST RESULTS 

 
 

 

 

 

 

 

 

 

 Coefficients T-Stat. 
Panel A: Conditional mean equations 

α1 -0.2058 -2.6722 
b1 -0.6058 -4.9028 
c1 1.2548 2.6033 
α2 -0.1785 -2.7044 
b2 0.2324 4.5385 
c2 1.0478 2.7658 

 
Panel B: Conditional variance equations 

c11 -0.0001 -4.77907e-04 
c12 0.1206 8.2518 
c22 0.0975 4.0556 
α11 -0.1922 -1.1618 
α21 0.0669 0.4270 
α12 0.7801 4.9092 
α22 -0.8757 -5.3313 
b11 0.7935 5.2567 
b21 -0.4326 -2.5159 
b12 0.5123 4.3866 
b22 -0.2074 -1.6016 

 
Panel C: Covariance stationarity 

0.9592 0.2647 
0.1732 0.0868 

Notes: The parameters are estimated based on 
the following specification: 

1 1 1 11, 1,

2 2 1 2 22, 2,

1 1 1        

t t t t

t t t t

t t t t

Baaspread a b Slope c h u

Slope a b Slope c h u

H C C A H A B u u B
−

− − −

Δ = + Δ + +

Δ = + Δ + +

′ ′ ′ ′= + +
 
 

 Coefficients T-Stat. 
Panel A: Conditional mean equations 

α1 -0.0041 -0.1592 
b1 -0.0043 -2.2763 
c1 0.0218 0.0948 
α2 1.4338 2.4824 
b2 -0.1144 -1.9426 
c2 -0.1482 -1.0518 

 
Panel B: Conditional variance equations 

c11 0.0000 1.33669e-05 
c12 0.0152 2.6621 
c22 0.4716 2.7705 
α11 0.0462 0.3420 
α21 0.0292 17.2612 
α12 28.6886 13.9747 
α22 -0.0197 -0.1532 
b11 -0.1895 -3.1426 
b21 0.0039 2.2706 
b12 -1.6822 -0.8343 
b22 -0.5086 -7.1566 

 
Panel C: Covariance stationarity 

0.9850 0.9446 
-0.7354 -0.7061 

Notes: The parameters are estimated based on 
the following specification: 

1 1 1 1 11, 1,

2 2 1 2 22, 2,

1 1 1

& 500

& 500 & 500

         

t t t t

t t t t

t t t t

Baaspread a b S P c h u

S P a b S P c h u

H C C A H A B u u B

−

−

− − −

Δ = + + +

= + + +

′ ′ ′ ′= + +
 

Unrestricted model Lu D 
Model 1 226.7180 14.19 
Model 2 259.3446 40.26* 
Model 3 -491.1248 37.21* 

   
Restricted model Lr  

Model 1 219.6243  
Model 2 239.2146  
Model 3 -509.7307  

Notes: The likelihood ratio test is calculated as D = 
-2(Lr – Lu), where Lr represents the value of the 
likelihood function of the restricted model and Lu is 
the value of the likelihood function of the 
unrestricted model. The unrestricted model refers to 
the full BEKK-GARCH model and the restricted 
model to the diagonal BEKK-GARCH model. The 
D statistic follows a χ2 distribution with 12 degrees 
of freedom. (*) denotes statistical significance at the 
5% level.    
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