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Abstract—Streamtube is used to visualize expansion, contraction 

and various properties of the fluid flow. These are useful in fluid 
mechanics, engineering and geophysics. The streamtube constructed 
in this paper only reveals the flow expansion rate along streamline. 
Based on the mass conservative streamline, we will show how to 
construct the streamtube. 
 

Keywords—Flow visualization, mass conservative, streamline, 
streamtube. 

I. INTRODUCTION 
TREAMLINES, streamtube and streamribbon are three of 
the most fundamental techniques for visualizing steady 

flow fields. Streamlines are paths of massless particles that are 
released in a steady flow.  Streamtube and streamribbons 
show the expansion and rotation of the flow.   

Formally a streamtube is defined as the surface formed by 
all streamlines passing through a given closed curve in the 
flow [1]. Such a streamtube can show expansion, contraction 
and deformation of flow fields. These are useful in fluid 
mechanics, engineering and geophysics. This paper follows 
the streamtube construction in [2, 3] where a streamtube is 
created by connecting the circular cross flow sections along a 
streamline. The radius of a cross flow section is determined by 
the local cross flow expansion rate. The process of creating a 
streamtube is: (1) generating a streamline; (2) connecting the 
circular cross flow sections along the streamline.   

The accuracy of created streamtube is dependent on both 
the accuracies of the streamline and the circular cross flow 
sections. Li [4] introduced an adaptive streamline tracking 
method for three-dimensional CFD velocity fields based on 
the law of mass conservation. This method suits to the CFD 
velocity fields that more data is available. The advantages of 
the method introduced in [4] include that the accuracy of the 
tracked streamlines for a given mesh can be controlled by the 
threshold number T, i.e., the larger the threshold number T, 
the more accurate the tracked streamlines are, and the tracking 
process is stopped when not enough data is provided. The 
overall accuracy of tracked streamline depends on the initial 
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mesh and the threshold number T. When CFD velocity fields 
are given as numerical solutions of mathematical models, 
more data of the velocity fields are possible to calculate. 

The streamtube construction method in this paper is based 
on the adaptive streamline tracking method in [4] and is for 
incompressible flows but the method can also be used to 
compressible steady flows by replacing the CFD velocity 
fields with CFD momentum fields.   

II. STREAMLINE CONSTRUCTION 
Assume that a CFD velocity field is given in a hexahedral 

mesh and the further data of the velocity field is available. In 
this paper, we subdivide a hexahedron into five tetrahedra 
(refer Fig. 2 in [4]) when we apply the conditions given in [4] 
to the hexahedron. 

Assume that V AX Bl = +  is the linear interpolation of a 
given CFD velocity field at the four vertices in a tetrahedron, 
where   
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are constant matrix and vertical vector respectively. Vl  is 
unique if  the four vertices of the tetrahedron are not on a 
plane [5]. Assume that f  is a scalar function and Vlf  
satisfies the law of mass conservation on the tetrahedron. We 
will find the expressions of f  for different Jacobean forms of 
matrix A  and then describe the conditions about when more 
data of velocity fields is needed in a hexahedron. The 
expressions of f  for all possible cases of a non-conservative 
3D linear field are listed in Table I in [4].   

A.  Conditions for Seeking More Data in a Hexahedron 
The conditions (CSFD) for seeking more data of the 

velocity fields in a hexahedron are: for a hexahedron, 
subdividing it into five tetrahedra, and then calculating the 
Jacobean forms of A  in the linear interpolation of values of 
the velocity field and the coordinates at the vertices of each of 
the five tetrahedra respectively, if there exist at least one of 
the five expressions of f  corresponding to the particular 
Jacobean of A  in Table I in [4] equaling zero or infinity, after 
taking C  as non-zero constant, at some points on the 
corresponding tetrahedra, further data are needed to be found 
inside the hexahedron. The locations of the more data are the 
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vertices of the eight smaller hexahedra by connecting the mid 
points of opposite sides on each of the six faces (refer Fig. 3 
in [4]). 

B.  Algorithm 
The algorithm for the adaptive streamline tracking method 

is as follows. 
1. Set 0=i . 
2. Find the hexahedron that contains the seed point and 

divide the hexahedron into five tetrahedra. If the CSFD 
conditions are not satisfied in all five tetrahedra, draw the 
streamline segment that goes through the seed point in the 
hexahedron; otherwise go to Step 3. Take the intersection 
of the streamline segment with the boundary of the 
hexahedron as seed point or end point and go to Step 2. 
(for a new hexahedron).  

3. Subdivide hexahedron into eight equal smaller hexahedra 
and calculate the values of the velocity field at the 
vertices of the smaller hexahedra and then let 1+= ii  
and go to step 4.  

4. Take the elements (smaller hexahedra) in the subdivided 
hexahedron as new elements of the mesh by replacing the 
initial element and go to step 2 if Ti ≤ ; Otherwise go to 
Step 1. 

T is the threshold number. The bigger the threshold number 
T  (or the more times of subdivisions), the more accurate the 
tracked streamlines are. 

The streamlines constructed by the method reviewed above 
are very accurate as shown by the examples in [4]. The 
examples in [4] include closed streamlines and streamlines 
with asymptotic plane. The accuracy is shown by comparing 
the tracked streamlines with the exact streamlines.   

III. RADIUS OF STREAMTUBE 
We will create a streamtube by generating a mass 

conservative streamline and by connecting the circular cross 
flow sections along the streamline [3]. We are able to track 
accurate streamlines followed the review in last section. This 
section derives the formulae for the radius of streamtube. The 
radius of a streamtube, r, is governed by the following 
ordinary differential equation 

1 1
2

uT
dr

r dt
= ∇ ⋅                                    (1) 

where uT∇ ⋅  is the local cross flow divergence and is defined 
as  

*u uT
du
dξ
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 represents the change of the velocity 

magnitude along the streamline. 
For the velocity field given in Section 2,  
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The magnitude of the velocity field 

2 2 2um u v w= = + +  
The change of velocity magnitude along the streamline 
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= + +  

where ( ) ( )Y X u , ,Ts x su y sv z sw= + = + + + . Further 
calculation for the change of velocity magnitude gives 
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Because the streamtube we will create is based on the mass 
conservative streamline constructed in [4], the streamline has 
been viewed as the lines generated by a piecewise linear 
vector field that satisfy the law of mass conservation subject 
to the preset tolerance, i.e., even though the linear vector field 
u does not satisfy the law of mass conservation at some points 
in the domain, ∇⋅u is small enough to be considered as zero.  
Thus Eq. (1) can be written as 

1 1 1
2 2 u

*dr du D m
r dt dξ

= − = − .                  (2) 

Take integral on both sides of (2) with respect to t gives 
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IV. STREAMTUBE CONSTRUCTION 
Theoretically the streamtube can be created by drawing 

circles with radius in (3) and centre at the points on the 
streamline constructed by the method in [4]. A physical 
construction is introduced in [3] by drawing cylinders with the 
two ends of circles at two instants with the radiuses in [3] and 
centres at the points on streamlines. These hexahedra may be 
the original mesh elements or smaller hexahedra that obtained 
by subdividing the larger ones. The figure shows not only the 
expansion of the flow at the points but also the process of 
subdivision of the original mesh.  

V. EXAMPLES 
The following two examples show the adaptively tracked 

streamline by the method in [4] and the streamtube 
constructed based on the streamlines. Some of the figures are 
not high quality due to the current facilitates available. The 
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tracked streamline in red shown in Fig. 1 is for the threshold 
numbers T=6.   
  Example 1 Saddle-spiral flow 
  ( )2, , V xz y yz x z= − + −   

with seed point (-0.8, 0.8, 1). 
Fig. 1 shows the streamtube in three dimensions. Fig. 2 

shows the projection of the streamtube in Fig. 1 on yz-plane. 
Fig. 3 shows the projection of the streamtube in Fig. 1 on xy-
plane. The variation of the expansion rate for the saddle-spiral 
flow in Example 1 is very small in the time period shown in 
the figures. 

 
 

 
 

Fig. 1 Streamtube for Example 1 in 3D 
 
 

 
 

Fig. 2 Projection of the streamtube in Fig. 1 on yz-plane 
 
 

 
 

Fig. 3 Projection of the streamtube in Fig. 1 on xy-plane 
 

 
 

Fig. 4 Projection of the streamtube in Fig. 1 on xz-plane 
 
Example 2 Toroidal flow velocity field 
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with seed point (6.0006, 6.7076, 1), where 2 2r x y= + .  
 
Fig. 5 shows the exact streamline in blue and tracked 

streamline in red used the method in [4]. This figure indicates 
that the tracked streamline is very accurate comparing with the 
exact streamline. When we drew the streamtube for this 
example, we were not allowed to draw circles like Example 1 
due to the limit of the facilities available. We drew two dots 
instead of one circle. 

Fig. 6 shows the streamtube in three-dimensions or more 
precisely, cross-section of the streamtube. The expansion rate 
for this example varies significantly from Fig. 6, and the 
projections of Fig. 6 on yz-plane in Fig. 7, on xy-plane in Fig. 
8, and on xz-plane in Fig. 9. 
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Fig. 5 Exact streamline in blue and tracked streamline in red for 
Example 2 in 3D. 

 
 

 
Fig. 6 Stream tube for Example 2 in 3D 

 
 

 
 

Fig. 7 Projection of the streamtube in Fig. 6 on yz-plane 

 
 

Fig. 8 Projection of the streamtube in Fig. 6 on xy-plane 
 

 

 
 

Fig. 9 Projection of the streamtube in Fig. 6 on xz-plane 

VI. DISCUSSION 
This paper has introduced a streamtube construction by 

connecting the circular cross flow sections along a streamline. 
The streamtube created can show the local cross flow 
expansion rate. We still have some of following issues relating 
to the appearance of the streamtubes. 

 
1. We used MATLAB in drawing the streamtubes. The 

streamtubes are not really tubes. We may need to write 
a function that draws a tube when the circles at the 
two ends are given.  

2. The colors in the streamtubes may indicate the 
expansion rate. 

3. Reduce the usage of the visual memory. For the 
computer we are using, the information of "low visual 
memory" was shown when we drew the figures.   

These issues will be our future research topics. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:11, 2007

569

 

 

REFERENCES   
[1] J.K. Kennard, and R.L. Street, Elementary Fluid Mechanics. John Wiley 

& Sons, 1975. 
[2] D. Darmofal, and R. Haimes, "Visualization of 3-D Vector Fields: 

Variations on a Stream," in Proceedings AIAA 30th Aerospace Science 
Meeting and Exibit, Reno, Nev., Jan. 1992. 

[3] S.K. Ueng, C. Sikorski, and K.L. Ma, "Efficient Streamline, 
Streamribbon, and Streamtube Constructions on Unstructed Grids,"  
IEEE Transaction on Visualization and Computer Graphics, vol. 2, No., 
2, pp. 100-109, 1996. 

[4] Z. Li, "An Adaptive Streamline Tracking Method for Three-Dimensional 
CFD Velocity Fields Based on the Law of Mass Conservation," Journal 
of Flow Visualization and Image Processing, Vol. 13, No., 4, pp. 359-
376, 2006. 

[5] Z. Li, "A Mass Conservative Streamline Tracking Method for Three 
Dimensional CFD Velocity Fields", in Proceedings of FEDSM’03, 
Hawaii, 2003, FEDSM2003-45526, pp. 1-6.  
 

 
 
 


