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Crank-Nicolson difference scheme for the
generalized Rosenau-Burgers equation

Kelong Zheng and Jinsong Hu,

Abstract—In this paper, numerical solution for the generalized
Rosenau-Burgers equation is considered and Crank-Nicolson finite
difference scheme is proposed. Existence of the solutions for the
difference scheme has been shown. Stability, convergence and priori
error estimate of the scheme are proved. Numerical results demon-
strate that the scheme is efficient and reliable.

Keywords—Generalized Rosenau-Burgers equation, Difference
scheme, Stability, Convergence.

I. INTRODUCTION

CONSIDER the following initial-boundary value problem
for the generalized Rosenau-Burgers equation,

ut+uxxxxt−αuxx+βux+(
up+1

p + 1
)x = 0, x ∈ [0, L], t ∈ [0, T ],

(1)
with an initial condition

u(x, 0) = u0(x), x ∈ [0, L], (2)

and boundary conditions

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0, t ∈ [0, T ].
(3)

where α > 0, β ∈ R and p ≥ 1 is a integer.
When p = 1, equation (1) is called as usual Rosenau-

Burgers equation arises in some natural phenomena, for
example, in bore propagation and in water waves. The
asymptotic behavior of the solution for the Cauchy problem
to the Rosenau-Burgers equation, in particular, the stability of
traveling waves and diffusion waves have been well studied
in [7], [8], [9], [10]. Numerical scheme has been proposed
such as finite difference method by Hu [6]. In this paper, an
attempt has been here to discuss finite difference method for
the generalized Rosenau-Burgers equation.

The problem (1)-(3) has the following results,

Lemma 1 Suppose u0 ∈ H2
0 [0, L], then the solution of (1)-

(3) satisfies:

||u||L2 ≤ C, ||ux||L2 ≤ C, ||u||∞ ≤ C. (4)

where C denotes a general positive constant, which may have
different values in different occurrences.
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Proof. Let

E(t) = ||u||2L2
+ ||uxx||2L2

=
∫ L

0

|u(x, t)|2dx +
∫ L

0

|uxx(x, t)|2dx, t ∈ [0, T ].

Considering (3) and ut + uxxxxt = αuxx − βux − (
up+1

p + 1
)x,

we have

dE(t)
dt

= 2
∫ L

0

uutdx + 2
∫ L

0

uxxuxxtdx

= 2
∫ L

0

uutdx + 2uxuxxt|L0 − 2
∫ L

0

uxuxxxtdx

= 2
∫ L

0

uutdx − 2
∫ L

0

uxxxtdx

= 2
∫ L

0

uutdx − 2uuxxxt|L0 + 2
∫ L

0

uuxxxxtdx

= 2
∫ L

0

u(ut + uxxxxt)dx

= 2
∫ L

0

u[αuxx − βux − (
up+1

p + 1
)x]dx

= 2α

∫ L

0

uuxxdx −
∫ L

0

(βuux + up+1ux)dx

= −2α

∫ L

0

(ux)2dx ≤ 0

So E(t) decreases, that is

E(t) = ||u||2L2
+ ||uxx||2L2

≤ E(0), t ∈ [0, T ],

i.e.,

||u||L2 ≤ C, ||uxx||L2 ≤ C.

Using Hölder inequality and Cauchy-Schwartz inequality, we
have

||ux||2L2
=

∫ L

0

(ux)2dx = −
∫ L

0

uuxxdx

≤ ||u||L2 · ||uxx||L2 ≤ 1
2
(||u||2L2

+ ||uxx||2L2
),

that is,

||ux||L2 ≤ C.

Using Sobolev inequality, we get

||ux||∞ ≤ C.

In this paper, a two-level Crank-Nicolson difference scheme
is proposed. The outline of the paper is as follows. In section
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2, difference scheme is presented and the estimate for the
difference solution is derived. In section 3, we prove the
existence and uniqueness of the scheme. In section 4, we
prove the convergence and stability for the difference scheme.
Finally some numerical experiments are given in Section 5 to
verify our theoretical analysis.

II. FINITE DIFFERENCE SCHEME

Let h and τ be the uniform step size in the spatial and
temporal direction respectively. Denote xj = jh (0 ≤ j ≤
J), tn = nτ (0 ≤ n ≤ N, N = [

T

τ
]), un

j ≈ u(xj , tn) and
Z0

h = {u = (uj)|u0 = uJ = 0, j = 0, 1, 2, · · · , J}. Define

(un
j )x =

un
j+1 − un

j

h
, (un

j )x̄ =
un

j − un
j−1

h
,

(un
j )x̂ =

un
j+1 − un

j−1

2h
, (un

j )t =
un+1

j − un
j

τ
,

(un
j )xx̄ =

un
j+1 − 2un

j + un
j−1

h2
, u

n+ 1
2

j =
un+1

j + un
j

2
,

(un, vn) = h

J−1∑
j=0

un
j vn

j , ||un||2 = (un, un),

||un||∞ = max
0≤j≤J−1

|un
j |.

Since (
up+1

p + 1
)x=

1
p + 2

[upux + (up+1)x], then the follow-

ing finite difference scheme is considered,

(un
j )t + (un

j )xxx̄x̄t − α(un+ 1
2

j )xx̄ + β(un+ 1
2

j )x̂

+
1

p + 2
{(un+ 1

2
j )p(un+ 1

2
j )x̂ + [(un+ 1

2
j )p+1]x̂} = 0, (5)

u0
j = u0(xj), 0 ≤ j ≤ J − 1, (6)

un
0 = un

J = 0, (un
0 )xx̄ = (un

J)xx̄ = 0.1 ≤ n ≤ N. (7)

Lemma 2 [6]. For any two mesh functions: u, v ∈ Z0
h, we

have

((uj)x, vj) = −(uj , (vj)x̄), (vj , (uj)xx̄) = −((vj)x, (uj)x),

and
(uj , (uj)xx̄) = −((uj)x, (uj)x) = −||ux||2.

Furthermore, if (un
0 )xx̄ = (un

J)xx̄ = 0, then

(uj , (uj)xxx̄x̄) = ||uxx||2.
Lemma 3(Discrete Sobolev’s inequality[14]) There exist

two constant C1 and C2 such that

||un||∞ ≤ C1||un|| + C2||un
x ||.

Theorem 1 Suppose u0 ∈ H2
0 [0, L], then the solution un

of (5)-(7) satisfies:

||un|| ≤ C, ||un
x || ≤ C

which yield ||un||∞ ≤ C (n = 1, 2, · · · , N).

Proof. Computing the inner product of (5) with 2un+ 1
2 ,

according to boundary condition (7) and Lemma 2, we have

1
τ

(||un+1||2 − ||un||2) +
1
τ

(||un+1
xx ||2 − ||un

xx||2)
−α((un+ 1

2
j )xx̄, 2u

n+ 1
2

j ) + β((un+ 1
2

j )x̂, 2u
n+ 1

2
j )

+(P, 2u
n+ 1

2
j ) = 0, (8)

where

P =
1

p + 2
{(un+ 1

2
j )p(un+ 1

2
j )x̂ + [(un+ 1

2
j )p+1]x̂}.

According to

((un+ 1
2 )xx̄, 2un+ 1

2 ) = −2||un+ 1
2

x ||2, (9)

((un+ 1
2

j )x̂, 2u
n+ 1

2
j ) = 0, (10)

and

(P, 2u
n+ 1

2
j )

=
2h

p + 2

J−1∑
j=0

{(un+ 1
2

j )p(un+ 1
2

j )x̂ + [(un+ 1
2

j )p+1]x̂}un+ 1
2

j

=
1

p + 2

J−1∑
j=0

{(un+ 1
2

j )p+1(un+ 1
2

j+1 − u
n+ 1

2
j−1 )

+[(un+ 1
2

j+1 )p+1 − (un+ 1
2

j−1 )p+1]un+ 1
2

j }

=
1

p + 2

J−1∑
j=0

[(un+ 1
2

j+1 )pu
n+ 1

2
j + (un+ 1

2
j )p+1]un+ 1

2
j+1

− 1
p + 2

J−1∑
j=0

[(un+ 1
2

j )pu
n+ 1

2
j−1 + (un+ 1

2
j−1 )p+1]un+ 1

2
j

= 0, (11)

we obtain

(||un+1||2 − ||un||2) + (||un+1
xx ||2 − ||un

xx||2)
= −2τα||un+ 1

2
x ||2 ≤ 0,

that is,

(||un||2 + ||un
xx||2) ≤ (||un−1||2 + ||un−1

xx ||2)
≤ · · · ≤ (||u0||2 + ||u0

xx||2) = C.

Obviously,

||un|| ≤ C, ||un
xx|| ≤ C.

From Lemma 2 and using Cauchy-Schwartz inequality, we
have

||un
x ||2 = −(un, un

xx̄) ≤ ||un|| · ||un
xx||

≤ 1
2
(||un||2 + ||un

xx||2) ≤ C. (12)

By Lemma 3, we get ||un||∞ ≤ C.
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III. EXISTENCE AND UNIQUENESS

To prove the existence of solution for scheme (5)-(7), the
following Browder fixed point Theorem should be introduced.
For the proof, see[1].

Lemma 4(Browder fixed point Theorem) Let H be a finite
dimensional inner product space. Suppose that g : H → H is
continuous and there exist an α > 0 such that (g(x), x) > 0
for all x ∈ H with ||x|| = α. Then there exists x∗ ∈ H such
that g(x∗) = 0 and ||x∗|| ≤ α.

Theorem 2 There exists un ∈ Z0
h satisfies the difference

scheme (5)-(7).
Proof. By the mathematical induction, for n ≤ N − 1,

assume that u0, u1, · · · , un satisfy (5)-(7). Next we prove that
there exists un+1 satisfied (5).

Define a operator g on Z0
h as follows,

g(v) = 2v − 2un + 2vxxx̄x̄ − 2un
xxx̄x̄ − ατvxx̄ + βτvx̂

+
τ

p + 2
{(vj)p(vj)x̂ + [(vj)p+1]x̂}. (13)

Taking the inner product of (13) with v, we get

(vx̂, v) = 0, ((vj)p(vj)x̂ + [(vj)p+1]x̂, v) = 0,

and

(g(v), v)
= 2||v||2 − 2(un, v) + 2||vxx||2 − 2(un

xx, vxx)
−ατ(vxx̄, v)

≥ 2||v||2 − 2||un|| · ||v|| + 2||vxx||2 − 2||un
xx|| · ||vxx||

+ατ ||vx||2
≥ 2||v||2 − (||u||2 + ||v||2) + 2||vxx||2

−(||uxx||2 + ||vxx||2) + ατ ||vx||2
≥ ||v||2 − (||un||2 + ||uxx||2) + ||vxx||2 + ατ ||vx||2
≥ ||v||2 − (||un||2 + ||un

xx||2).
Obviously, for ∀v ∈ Z0

h, (g(v), v) ≥ 0 with ||v||2 = ||un||2 +
||un

xx||2+1. It follows from Lemma 4 that there exists v∗ ∈ Z0
h

which satisfies g(v∗) = 0. Let un+1 = 2v∗ − un, it can be
proved that un+1 is the solution of the scheme (5)-(7).

IV. CONVERGENCE AND STABILITY

Next, we discuss the convergence and stability of the
scheme (5)-(7). Let v(x, t) be the solution of problem (1)-
(3), vn

j = v(xj , tn), then the truncation of the scheme (5)-(7)
is

rn
j = (vn

j )t + (vn
j )xxx̄x̄t − α(vn+ 1

2
j )xx̄ + β(vn+ 1

2
j )x̂

+
1

p + 2
{(vn+ 1

2
j )p(vn+ 1

2
j )x̂ + [(vn+ 1

2
j )p+1]x̂}. (14)

Using Taylor expansion, we know that rn
j = O(τ2+h2) holds

if τ, h → 0.
Lemma 5(Discrete Gronwall inequality[14]) Suppose

w(k), ρ(k) are nonnegative mesh functions and ρ(k) is non-
decreasing. If C > 0 and

w(k) ≤ ρ(k) + Cτ

k−1∑
l=0

w(l), ∀k,

then

w(k) ≤ ρ(k)eCτk, ∀k.

Theorem 3 Suppose u0 ∈ H2
0 [0, L], then the solution un

of the scheme (5)-(7) converges to the solution of problem
(1)-(3) in the sense of || · ||∞ and the rate of convergence is
O(τ2 + h2).

Proof. Subtracting (14) from (5) and letting en
j = vn

j − un
j

, we have

rn
j = (en

j )t + (en
j )xxx̄x̄t − α(en+ 1

2
j )xx̄ + β(en+ 1

2
j )x̂

+
1

p + 2
{(vn+ 1

2
j )p(vn+ 1

2
j )x̂ + [(vn+ 1

2
j )p+1]x̂}

− 1
p + 2

{(un+ 1
2

j )p(un+ 1
2

j )x̂ + [(un+ 1
2

j )p+1]x̂}, (15)

Computing the inner product of (15) with 2en+ 1
2 , and using

((en+ 1
2

j )x̂, 2e
n+ 1

2
j ) = 0, we get

(rn
j , 2en+ 1

2 )

=
1
τ

(||en+1||2 − ||en||2) +
1
τ

(||en+1
xx ||2 − ||en

xx||2)
−α((en+ 1

2
j )xx̄, 2en+ 1

2 ) + (Q1 + Q2, 2en+ 1
2 ), (16)

where

Q1 =
1

p + 2
[(vn+ 1

2
j )p(vn+ 1

2
j )x̂ − (un+ 1

2
j )p(un+ 1

2
j )x̂],

and

Q2 =
1

p + 2
{[(vn+ 1

2
j )p+1]x̂ − [(un+ 1

2
j )p+1]x̂}.

According to Lemma 2, Theorem 1 and Cauchy-Schwartz
inequality, we have

(Q1, 2en+ 1
2 )

=
2

p + 2
h

J−1∑
j=0

[(vn+ 1
2

j )p(vn+ 1
2

j )x̂ − (un+ 1
2

j )p(un+ 1
2

j )x̂]en+ 1
2

j

=
2

p + 2
h

J−1∑
j=0

(vn+ 1
2

j )p(en+ 1
2

j )x̂e
n+ 1

2
j

+
2

p + 2
h

J−1∑
j=0

[(vn+ 1
2

j )p − (un+ 1
2

j )p](un+ 1
2

j )x̂e
n+ 1

2
j

=
2

p + 2
h

J−1∑
j=0

(vn+ 1
2

j )p(en+ 1
2

j )x̂e
n+ 1

2
j

+
2

p + 2
h

J−1∑
j=0

[en+ 1
2

j

p−1∑
k=0

(vn+ 1
2

j )p−1−k(un+ 1
2

j )k](un+ 1
2

j )x̂e
n+ 1

2
j

≤ Ch
J−1∑
j=0

|(en+ 1
2

j )x̂||en+ 1
2

j | + Ch
J−1∑
j=0

|(en+ 1
2

j )2|

≤ C[||en+ 1
2

x ||2 + ||en+ 1
2 ||2]

≤ C[||en+1
x ||2 + ||en

x ||2 + ||en+1||2 + ||en||2], (17)
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and

(Q2, 2en+ 1
2 )

=
2

p + 2
h

J−1∑
j=0

{[(vn+ 1
2

j )p+1]x̂ − [(un+ 1
2

j )p+1]x̂}en+ 1
2

j

= − 2
p + 2

h
J−1∑
j=0

[(vn+ 1
2

j )p+1 − (un+ 1
2

j )p+1](en+ 1
2

j )x̂

= − 2
p + 2

h
J−1∑
j=0

e
n+ 1

2
j [

p∑
k=0

(vn+ 1
2

j )p−k(un+ 1
2

j )k](en+ 1
2

j )x̂

≤ C[||en+ 1
2

x ||2 + ||en+ 1
2 ||2]

≤ C[||en+1
x ||2 + ||en

x ||2 + ||en+1||2 + ||en||2]. (18)

Furthermore,

((en+ 1
2

j )xx̄, 2en+ 1
2 ) = −2||en+ 1

2
x ||2, (19)

(rn
j , 2en+ 1

2 ) = (rn
j , en+1 + en)

≤ ||rn||2 +
1
2
[||en+1||2 + ||en||2]. (20)

Substituting (17)-(20) into (16), we get

(||en+1||2 − ||en||2) + (||en+1
xx ||2 − ||en

xx||2)
≤ Cτ [||en+1||2 + ||en||2 + ||en+1

x ||2 + ||en
x ||2]

+τ ||rn||2. (21)

Similarly to the proof of (12), we have

||en+1
x ||2 ≤ 1

2
(||en+1||2 + ||en+1

xx ||2),

||en
x ||2 ≤ 1

2
(||en||2 + ||en

xx||2). (22)

and (21) can be rewritten as

(||en+1||2 − ||en||2) + (||en+1
xx ||2 − ||en

xx||2)
≤ Cτ [||en+1||2 + ||en||2 + ||en+1

xx ||2 + ||en
xx||2]

+τ ||rn||2. (23)

Let Bn = ||en||2 + ||en
xx||2, then (23) is written as follows,

(1 − Cτ)[Bn+1 − Bn] ≤ 2CτBn + τ ||rn||2.
If τ is sufficiently small which satisfies 1 − Cτ > 0, then

[Bn+1 − Bn] ≤ CτBn + Cτ ||rn||2. (24)

Summing up (24) from 0 to n − 1, we have

Bn ≤ B0 + Cτ
n−1∑
l=0

||rl||2 + Cτ
n−1∑
l=0

Bl.

Noticing

τ

n−1∑
l=0

||rl||2 ≤ nτ max
0≤l≤n−1

||rl||2 ≤ T · O(τ2 + h2)2,

and e0 = 0, we have B0 = O(τ2 + h2)2. Hence

Bn ≤ O(τ2 + h2)2 + Cτ
n−1∑
l=0

Bl.

TABLE I
THE ERRORS ESTIMATES IN THE SENSE OF || · ||∞ , WHEN p = 2, α = 0.1

AND τ = 0.1

.

h=1/4 h=1/8 h=1/16 h=1/32
t=0.2 4.330014e-7 1.012584e-7 2.469951e-8 5.961687e-9
t=0.4 8.629880e-7 2.018789e-7 4.924355e-8 1.188390e-8
t=0.6 1.289969e-6 3.018655e-7 7.363520e-8 1.776952e-8
t=0.8 1.713953e-6 4.012209e-7 9.787626e-8 2.362015e-8
t=1.0 2.134945e-6 4.999438e-7 1.219645e-7 2.943340e-8

According to Lemma 5, we get Bn ≤ O(τ2 + h2)2, that is

||en|| ≤ O(τ2 + h2), ||en
xx|| ≤ O(τ2 + h2).

It follows from (22) that

||en
x || ≤ O(τ2 + h2).

By using Lemma 3, we have

||en||∞ ≤ O(τ2 + h2).

This completes the proof of Theorem 3.
Similarly, it can be proved that

Theorem 4 Under the conditions of Theorem 3, the solution
of scheme (5)-(7) is stable by || · ||∞.

V. NUMERICAL EXPERIMENTS

Consider the generalized Rosenau-Burgers equation,

ut+uxxxxt−αuxx+ux+(
up+1

p + 1
)x = 0, (x, t) ∈ [0, 1]×[0, 1],

(25)
with an initial condition

u(x, 0) = x4(1 − x)4, x ∈ [0, 1], (26)

and boundary conditions

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0, t ∈ [0, 1].
(27)

We construct a scheme to (1)-(3) as nonlinear two-level
scheme (5). Since we do not know the exact solution of
(1)-(3), we consider the solution on mesh h = 1

160 as
reference solution and obtain the error estimates on mesh
h = 1

4 , 1
8 , 1

16 , 1
32 respectively for different choices of p and

α, where we take p = 2, 5, 8 and α = 0.1, 0.5, 1 . The
corresponding maximal errors en are listed on Table 1-3. On
the other hand, from Figure 1 and Figure 2, it is observed
that the height of the numerical approximation to u decreases
in time because of the effect of −αuxx. This observation
matches the theoretic property in Lemma 1, which states that
the continuous energy E(t) in problems (1)-(3) decreases in
time.

From the numerical results, the finite difference schemes of
this paper is efficient.
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TABLE II
THE ERRORS ESTIMATES IN THE SENSE OF || · ||∞ , WHEN p = 5, α = 0.5

AND τ = 0.1

.

h=1/4 h=1/8 h=1/16 h=1/32
t=0.2 2.155891e-6 5.039306e-7 1.229071e-7 2.965984e-8
t=0.4 4.278782e-6 1.000041e-6 2.438997e-7 5.885665e-8
t=0.6 6.369140e-6 1.488442e-6 3.630035e-7 8.759581e-8
t=0.8 8.427431e-6 1.969242e-6 4.802471e-7 1.158860e-7
t=1.0 1.045411e-5 2.442550e-6 5.956573e-7 1.437343e-7

TABLE III
THE ERRORS ESTIMATES IN THE SENSE OF || · ||∞ , WHEN p = 8, α = 1

AND τ = 0.1

.

h=1/4 h=1/8 h=1/16 h=1/32
t=0.2 4.281448e-6 1.000552e-6 2.440200e-7 5.888508e-8
t=0.4 8.437922e-6 1.971254e-6 4.807251e-7 1.160026e-7
t=0.6 1.247301e-5 2.912960e-6 7.103250e-7 1.714045e-7
t=0.8 1.639022e-5 3.826495e-6 9.330202e-7 2.251376e-7
t=1.0 2.019296e-5 4.712668e-6 1.149008e-6 2.772495e-7
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−0.5
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0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

t=0
t=0.5
t=1

Fig. 1. Numerical solution of u(x, t) with h = 1
32

, τ = 0.1, α = 1, p = 2
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−3

t=0
t=0.5
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Fig. 2. Numerical solution of u(x, t) with h = 1
32

, τ = 0.1, α = 0.5, p = 5
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