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Abstract—Covering-based rough sets is an extension of rougibugh sets have been done by many researchers. For examples,

sets and it is based on a covering instead of a partition of thge equivalence relations of rough sets were extended to such

universe. Therefore it is more powerful in describ_ing some practicgbneralized binary relations as compatibility relations [11]
problems than rough sets. However, by extending the rough s ’

covering-based rough sets can increase the roughness of each { .similar' relations [13], [14]. Correspondingly,' a partition
in recognizing objects. How to obtain better approximations froff Universe in rough sets was extended to a covering [15]-[17].
the models of a covering-based rough sets is an important issueCovering-based rough sets is an extensive study of Pawlak’s

In this paper, two concepts, determinate elements and indeterminggagh sets. It extends a partition in rough sets to a covering of a
elements in a universe, are proposed and given precise def'”'t}!r?ﬁverse. Becauseunlike a parititiona covering does not results
e

respectively. This research makes a reasonable refinement of iqid ival lati it istent with
covering-element from a new viewpoint. And the refinement m )gom argid equivaience relation, so It 1s more consistent wi

generate better approximations of covering-based rough sets mod@&lity than partition is when a judgement and a description
To prove the theory above, it is applied to eight major coverings given to an object. But it also enlarges the boundary set
based rough sets models which are adapted from other literatusetween lower and upper approximations at the same time. In

The result is, in all these models, the lower approximation increasgadition the problem of the redundancy of covering-element

effectively. Correspondingly, in all models, the upper approximation .

decreases with exceptions of two models in some special situatiofi§SeS: In order to narrow the boundary set, some new models

Therefore, the roughness of recognizing objects is reduced. THisCovering-based rough sets have been proposed [15], [16],
research provides a new approach to the study and application[b8]-[27] by many scholars after they have made lots of
covering-based rough sets. studies about this field . Moreover, Moreover, a very important
Keywords—Determinate element, indeterminate element, refingvork in solving the redundancy of covering-element has been
ment of covering-element, refinement of covering, covering-basddne by Zhu [28]. This work stimulates the development
rough sets. and application of covering-based rough sets. Nowadays, the
covering-based rough sets models are usually studied through
. INTRODUCTION L .
) defining a new one by many scholars. Actually, different
ROUG_H sets theory proposed by Pawlak [1] is @ mathnodels may be applicable to different situations. And in
1"\ ematical tool which is used to deal with the uncertaifyifferent coverings, the results of comparisons between the
maccyrate aqd vague data. It approxmately.des_crlbes a taﬁ%@\;er and upper approximation generated from these models
set via a pair of lower and upper approximations. In thigay be different, so it is difficult to judge which model is
\éVayé'tlg'Ves aT?]ood descr'p:'o?] of the fUZZBf/ :det?' prfpf’s?t%tter than others. Hence, different from the research done
y . Frege. 1he rough sets has a powerful objectivity Wyeviously, this paper, from a new point of view, studies how
recognizing the target set through a partition that is gotten frq% get a p))lair of gr:ferame lower anEI upper approximations in
the equivalence relation between elements of universe ang.i&n model. By refining the covering-elements in a covering-
independent of any priori knowledge. Therefore, since it_W%%lsed rough sets, the lower approximation can be increased
proposed, the rough sets theory has drawn much attentiony@fj the upper approximation can be decreased. In this way, the
many scholars and has been widely applied into many fielggject recognition capability of each model is fundamentally
in both academia and industry such as data mining, machig,roved. Basing on the refinement of covering-element, we
learning, pattern recognition, and so on [2]-{10]. Howevepaye studied and analyzed eight main models of covering-
due to the rigid binary relation of the equivalence relation igageq rough sets. We found that the size of the lower ap-
rough sets, it limits the development of the rough sets itself aBPoximation of each model after the refinement of covering-
its application. So, plenty of extensive studies on generalizghment is not smaller than the one which covering-element
Jianguo Tang is with the School of Computer Science and Engineerifd@S Not been refined. As for the upper approximation, every
Universit_y of Elect(on!c Science and Technology of China, Chengdu, 61173h0odel except the first and the third ones can get a smaller
2 J?én%ﬁlga‘i';ngqil.vyi?#?lf%légf:c:] of Computer Science and Engineerinug[,)pe_r approximation after the refmemen_t of coverln_g-element.
XinJiang University of Finance and Economics, Urumgj, 830012, P. R. Chind) this paper, we also present an algorithm of refinement of
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are analyzed; some basic concepts of refinement oY%l(:JS\}e’\rllcr)ng%%wlple 2.1:Let U = {a,b,c,d}, K1 = {a,b}, Ky =
element are defined; After a study of the relation betwedn,c}, K3 = {b,¢,d}, and C = {K;, Ky, K3} be the
refinement and reduction has been conducted, some significaatering of U. The minimal description ob is Md(b) =
conclusions are drawn; And an algorithm of refinement df{a, b}, {b,c}} = {K1, K2}.

covering-element is also presented in this section. In sectiorDefinition 2.3: (Covering lower approximation set family,
4, several major models of covering-based rough sets amvering lower approximation and so on) [15] L€t be a
introduced and a comparative study on each model's lowssvering of universd/ and X C U, then:

and upper approximations which arise from a covering andSet family C.(z) = {K € C|K C X} is called the
refinement of the covering is made. Finally, the study isovering lower approximation set family of;

concluded in section 5 with remarks for future works. SetX, = |JC.(x) is called the covering lower approxima-
tion of X;
II. BACKGROUND Set X = X — X, is called the covering boundary

To better understand the content of the following sectioﬁpprOXima'_fion ofX; _
we will introduce some fundamental concepts of rough sets. Set family Bn(X) = {Md(z)lz € X} is called the
covering boundary approximation set family &f;
A. The basic concepts of rough sets Set familyC* (X) = C.(z) J Bn(X) is called the covering

Let U be a nonempty finite set which is called universgpgetr;EpLOX'%i“g? S}et falrlnlljytcﬁX'; verin ; roxi-
U. R is a cluster of equivalence relation of univer§e A € = UC*(X} is called the covering upper appro

. . L . ation of X;
zal{l? [29(]U,If)P|sCcal;{eda:dpF;O);mgtlotrt:esnpifzeisofst:fln|;/ﬁrsén Definition 2.4: (Reducible element, irreducible element)

equivalence relation of univerdé and is called indiscernible .[28] Let ¢' be a covering of a univers®, K € C. It K

relation, which denoted by ND(P) [30]. U/IND(P) is a 's & union of some sets iff — {K.}’ we sayK Is a reducible
partition of equivalence relatioAN D(P) to universeU and element qu, othng|seK IS an |rredu0|blg element df

is a basic knowledge of univerééin the approximation space Propo_smon 2.L . [28] Let C be a covering of a unierse
S = (U, R). Each element of partition is called a equivalencg' If Kis a reducible element af', thenC' — {K} is still a

. overing ofU.
class abou’ ND(P). The elements of the same equwalenc(é Proposition 2.2: [28] Let C be a covering of a universs,

class are indiscernible. We dendt& D(P) as P simply. K €C, K is a reducible element f, and k; € C — {K}

An equivalence relationP can produce a partition of . . . L
universeU and is considered as knowledge we master. Fg}en Kl is a reducible element of if and only if it is a
reducible element of’ — {K}.

all X C U, itis hard to precisely describ& according to L ] .
the knowledge. Then, for any target Sét we can employ a . Definition 2.5: (Reduct of covering) [28] Lef’ be a cover-

pair of approximation sets to approach to it and to describe' ¥ of a universd’, the new covering come from the reducing

roughly. The pair of approximation sets is defined as follow8' 0C€sS of proposition 2.1 and proposition 2.2 is called the
apr(X) = U{K|K € U/PAK C X} reduct on, _a_nd denoted _byeduct(C). _
apr(X) = U{K|K € U/P A (KN X # 0)} The definition of reducible element solves effectively the
problem of redundant covering-element in covering rough sets.
Q] the next section, we will explore the problem of refinement
of covering-element by the concept of reduct of covering.

We call them the lower and upper approximationsof
respectively. And the subtraction of upper and lower appro
imations is called the boundary region &f [1], and it is
denoted asBnp(X), that is, Bnp(X)=apr(X) — apr(X).

For any subsek of universeU, if apr(X) = apr(X), then I1l. THE REFINEMENT OF COVERINGELEMENT
the partition ofU generated byP can describeX accurately. A. The origin and analysis of the refinement of covering-

On the contrary, the partition &f generated by’ can describe element

X roughly, and the ordered pair gipr(X), apr(X)) is called  aAccording to the definition of partition and covering in the

the rough set with respect . same universe, we know that the similarity between partition
and covering is that the union of all equivalent classes in

B. The fundamental concepts of covering-based rough setgartition is the same as the union of all covering-elements in

Definition 2.1: (Covering, covering approximation spaceyovering, that is, the two union is equal to the univayseAnd

[15] Let U be a universe( is a family of subsets of/. the difference between partition and covering is that join of

If all subsets inC are non-empty andUC = U, thenC' any two equivalence classes in partition is empty, but, the join

is a covering. We call the ordered pair U,C > covering of any two covering-elements in covering maybe not empty. A

approximation space. covering is a partition when the join of all covering-elements is
Definition 2.2: (Minimal description) [15] Let< P,C > null set. In covering-based rough sets, an elemasftuniverse

be a covering approximation spasé: € U, could be from several covering-elements, thataisbelongs
Md(z)={KeClze KAN(NSeCAxzeSASCK = toseveral covering-elements. And this increases the difficulty

K=25)} of distinguishingz exactly. Certainly, there are also some

is called the minimal description af. elements of universe only appear in one covering-element, but

In the following example, we can better understand the
conception of minimal description.
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some other elements of this covering-element may\//k%Saé\lp%gng%r%teresting results after refining covering-element. Paper

in another covering-elements, so it also increases the difficul8l] studies a special covering which is called the fined
of distinguishing these elements which only appear in omevering. In a fined covering, the join of any two covering-
covering-element. These will cause a too small lower approglements is equal to the union of some covering-elements.
imation and a too large upper approximation when recognizimg paper [31], the author defines a concept named neighbor
target set. And the recognition capability of covering-basddmily. We will borrow the concept in this paper. But, in order
rough sets is reduced. to vividly describe the idea of the refinement of covering-

For these reasons, we introduce a new method to refielement, we will call this concept family of membership and
covering-element. The main idea of the method is as followtie definition as follows:

According to the definition of lower and upper approx- Definition 3.1: (Family of membership) Lek U,C > be
imations in rough sets, we know that the less number af covering approximation space, € U, we call {K|z €
elements of equivalence class to a partition of universe, then K € C'} the family of membership of to coveringC, and
larger lower approximation and the larger upper approximatialenote as’M (z), namely, FM (z) = {K|z € K AN K € C}.
may be generated. That is, this partition has more strongExample 3.1:Let U = {a,b,c,d,e} be a universe( =
recognition capability to target set. This idea is also applfa,b,c}, {b,c},{b,d},{e}} is a covering ofU, then:
to covering-based rough sets. It is that the smaller the sizeFM (a) = {{a,b,c}}, FM(b) = {{a,b,c},{b,c}, {b,d}},
of covering-element, the more strong recognition capability &M (c) = {{a, b, c}, {b,c}}, FM(d) = {{b,d}}, FM(e) =
the covering-based rough sets. So, if we can reduce the sizg ff}}.
covering-element effectively, the recognition capability of the Proposition 3.1:Let U be a universeC' is a covering of
covering-based rough sets would be improved. How to reduariverselU. For anyz € U, we haveMd(z) C FM(z).
the size of covering-element? Proof: Let C = {Ki,Ks,...,K,}, FM(z) =

Let universeU = a,b,c,d, C = {K;,Ks, K3,K,} = {Ki,Ko,...,K,}, wherel <p <m. ForanyK,; € FM(z),
{{a,b,c},{b,c},{b,d}, {e}} is a covering ofU. It is easy if there is not exist; € F'M(z)— {K,} such thatk; C Kj,
to see that elememtappears in covering-elemeht;, K> and then Md(z) = FM(z). On the contrary, if there exists
K3, elementc appears in covering-elemeff; and K». And  K; € FM(z)—{K;} such thatk; C K;, thenK; ¢ Md(x),
a,d and e appear inKi, K3 and K, respectively. Thus, we that is,Md(z) C FM (x). According to the above results, we
can consideb and ¢ as indeterminate element andd, e as get thatM d(z) C FM (x). |
determinate element. Then take out the determinate elemerDefinition 3.2: (Determinate element, indeterminate ele-
from each covering-element to form a new covering-elememtent) LetU be a universeC is a covering ofU. For any
respectively, and combine every indeterminate element withe U, x is a determinate element if and only ff M (z)| = 1.
determinate element of each covering-element to form nétherwise,z is indeterminate element.
covering-element. If all elements of a covering-element areln example 2,a,d, e are determinate elements abd are
determinate element or indeterminate element, then we leavdeterminate elements.
it as it is. By doing this, a covering-element is refined. In Definition 3.3: (Determinate element set, indeterminate ele-
the coveringC' given above, for instance, is a determinate ment set) LeU be a universeC' = K1, K, ..., K,, iS a cov-
element andb, ¢ are indeterminate element t&;. So, we ering of U. We call DS(K;) = {z|z € K; A(|JFM(x)] = 1)}
take outa as a new covering-elemeriz}, and combine the determinate element set &f;, andIDS(K;) = {z|z €
respectively withh andc to form two covering-elemerfla, b}, K; A (|[FM(z)| > 1)} the indeterminate element set Af;.
{a,c}. Similarly, K3 can be refined a$b, c},{c}. And leave We suppose thabS(K;) = @, |DS(K;)| = 0.

K, and K4 as them are because all the element of them areExample 3.2:Let U = {a,b,c,d,e} be a universe(C' =
determinate or indeterminate. Finally, we get a new covef{a,b,c},{b,c}, {b,d},{e}} is a covering ofU, then,
ing {{a},{a,b},{a,c}, {b,c}, {b,d},{d},{e}}. As shown in  DS(K;) = {a}, DS(K3) = O, DS(K3) = {d},
Fig.1, the upper level are the covering-elements of the primaBS(K,4) = {e};
covering and the lower level are the refinement of covering-IDS(K;) = {b,c}, IDS(K3) = {b,c}, IDS(K3) = {b},
elements of the primary covering-elements. The bold italieDS(K,) = ©.
letters of each covering-element are determinate elements. Definition 3.4: (Combination of covering-element) Let
U = {x1,x2,...,2n} be a universeC = {K1, Ka,..., K}
is a covering, wheré = 1,2,....mandj = 1,2,...,n. If
Refinement of the u‘r\-é‘l'lng:r__ ” -~ Zj € Kil then!
B cemy ={  DSU) UL}, DS >0
"= IDS(K;),  |DS(K;)| =0
is called the combination of covering-element about
covering-elemenfs;.
. . In example 3, for covering-elemert;, we can get that
B. The concepts of the refinement of covering-element CCE(a) = {a}Ula} = {a}, CCE®) = {a} b} =

In this subsection, we will define some new concept$a, b}, and CCE(c) = {a}U{c} = {a,c}. For covering-
Through these concepts, we will propose the definition of tidementK,, becausé andc are both indeterminate elements,
refinement of covering-element. Meanwhile, we will discusen|DS(K3)| =0, CCE(b) = CCE(c) = {b,c}.

The original covering: |

Fig. 1. The refinement of covering-element
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Definition 3.5: (Refinement of covering-element) Iiﬁlgé NOd?’UZ.OIE(l)r anyz € U, if |FM(z)| > 1, then, the refinement

a universe,C = {K;,K,,..., K,,} is a covering ofU. of coveringC is itself.

For any K; € C(i = 1,2,...,m), we call RCE(K;) = Proof: If Vo € U, |[FM(z)| > 1. Then, according to

{CCE(z)| z € K;} the refinement of covering-elemeht;,.  definition 3.1 and 3.2, we can know that all element of universe
Example 3.3:Let U = {a,b,c,d,e}. C = U are indeterminate element. From definition 3.3, we get

{{a,b,c},{b,c},{b,d},{e}} is a covering of universe that the indeterminate element set of each covering-element
U, where Ki={a,b,c}, Ky={b,c}, Ks={b,d}, Ky={e}. in covering is itself and determinate element set is empty.

Then, According to definition 3.4 and 3.5, we get that the refinement
RCE(Ky1)= {{a},{a,b},{a,c}}, RCE(K:)={{b,c}}, of each covering-element is itself. Lastly, according to 11, we

RCE(K3)={{b,d},{d}}, RCE(K4)={{e}}. can know that the refinement of coveriggis itself. |
Proposition 3.2:Let U be a universe, C = For convenience, LefMd(x) and RMd(z) represent the

{Ki,Ks,...,K,} is a covering ofU. For any K; € C, minimal description oft on reduct(C) and RC(reduct(C))

K; =URCE(K,). respectively. The proposition 3.7 can be obtained as follows:

Proof: According to definition 3.4 and 3.5, we can Proposition 3.7:Let U is a universe and’ is a covering
easily get thatU{CCE(z)|z € K,} = K,, that is, K; = of U. For anyz € U, |RMd(z)| > |Md(z)|.
URCE(Kj). [ ] Proof: Let ¢ = {Ki,Ks,...,Kn,}, Md(z) =
Definition 3.6: (Refinement of covering). Lel/ be a uni- {K3i, K»,...,K,}, wherel < p <m. For anyK; € Md(z),
verse,C = {K1, K»,..., K} is a covering ofU. RC(C) = we suppose thaRCE(K;) = {Tiu,Ti,...,Tiq}, Where
U{RCE(K;)|K; € C} is called the refinement of coveringg > 1. According to definition 3.3and 3.4, we can get that
C. For anyz € U, we call RMd(z) = {K € RC(C)|x € there at least exist$;; € RCE(K;)(1 < j < q) such that
KAMSeRC(C)Ne SANSC K = K =S5)} the minimal z € T;;. So,|[RMD(z)| > |Md(z)|. [ |
description ofz to RC(C). Let U be a universe, and’ = {K;,K»,...,K,,} is a
In example 4, according to definition 3.6, we can get thatovering of U. I is an index set and,j,p,q,7,s € 1.
RC(C) = {{a},{a,b},{a,c}} U{{b,c}}U{{b,d},{d}} U Let the reduction ofX is reduct(C) = {K;,Ko,...,K,},

{{e}} = {{a},{a,b}, {a,c}, {b,c}, {b,d},{d},{e}}; Md(x) and RMd(x) are respectively the minimal description
RMd(a) = {{a,b},{a,c}}, RMd(b) = of z in reduct(C) and RC(reduct(C). Then, we can get

{{a,b},{b,c},{b,d}}, RMd(c) = {{a,c}, {b,c}}, proposition 3.8, 3.9 and corollary 3.1.

RMd(d) = {{b,d}}, RMd(e) = {{e}}. Proposition 3.8:Let U be a universe(' is a covering of
Proposition 3.3:Let U be a universe and’ be a covering U, K; € reduct(C), z € K;, K; € Md(z), if there exists

of U. ThenRC(C) is a covering of universé. K; € reduct(C) such thatK; C K, then there existg € K

Proof: Let U be a universe and’ = {K;, K>, ..., K,,} suchthatF'M(y)| = 1lifandonlyif|y RMd(z) C |J Md(z).
be a covering olJ. According to proposition 3.2, we get that Proof: Sufficiency. Becausel; C K, according to
RCE(K;) = K;. MeanwhileUK; UK, U...UK,, =U. So, definition 2.2, we can know thaf(; ¢ Md(x). While
(URCE(K1)) U (URCE(K3))U...U(URCE(K,,)) = U, there existsy € Kj;, and |[FM(z)| = 1, according to
that is ,URC(C) =U. B definition 3.2 we can know thaj is a determinate element

Proposition 3.4:Let U be a universe andC = in reduct(C). So,y ¢ UMd(xz), We can get thatk; ¢
{Ki,K,,...,K,} be a covering of U. RC(C) RC(reduct(C)) according to definition 3.3, 3.4, 3.5. Let
{T\,T5,...,Ty} is a refinement of. For anyT; € RC(C), RCE(K;) = Tj1,Tj2,...,Tjq(q > 2). Then, there at least
there existsk; € C such thatl; C Kj. exists an elemenf, in RCE(K;)(1 < r < ¢) such that

Proof: According to definition 3.3 and 3.4, we get thaty € Tj, andy € Tj,. According to definition 3.6, we can know
for any T; € RC(C), there existsK; € C such thatT; € thatT;, € RMd(z). So,y € URMd(z), thatis,y ¢ UMd(x)
RCE(Kj). From proposition 3.2, we get thatRCE(K;) = andy € URMd(z). Therefore URMd(x)

K;. So,T; C K;. [ | Necessity. BecauseRM d(x)and there existg € RMd(x)

Proposition 3.5:Let U be a universe and’ be a covering andy ¢ Md(z). Lety ¢ K, — K;, foranyK,, € C, if z,y €
of U. If C is a partition, then the refinement of coveri@gis K, then these surely exist&; € C such thatK, C K,

itself. x € K, andy ¢ K,. Then,y ¢ URMd(z). This is contract to
Proof: When(' is a partition ofU, namely,x € U, z only y € RMd(z). The hypothesis is not hold. Thuge K; — K;,
appears in one covering-element. According to definition 3.that is,y is only in K;. Then|FM(y)| = 1. [ |

we can know thatF'M(z) has only one element. Then Proposition 3.9:Let U be a universe(”' is a covering of

|FM(x)] = 1. According to definition 3.2, we know thatU, K; € reduct(C), x € K;, K; € Md(x), if there exists

every element of covering-element is determinate elemefi,; € reduct(X) such thatk; C K;, then there existg € K

From definition 3.3, we get that the determinate elemestich thatj "M (y)| > 1 if and only if RMd(z) C Md(z).

set of every covering-element in covering is itself and the Proof: Sufficiency. For anyy € K;,|FM(y)| > 1,

indeterminate element set is empty. From the definition 3atcording to definition 3.2 we can know that all elements of

and 3.5, we can know that the refinement of every coverings; are indeterminate elements. We get thgt= RCE(K;)

element in covering is itself. Finally, we get that the refinemefrom definition 3.3, 3.4 and 3.5. Thu&}; € RC(reduct(C)).

of coveringC is itself according to definition 3.6. m For K; C K;, if K; € Md(z), thenK; ¢ Md(x), that is,
Proposition 3.6:Let U is a universe and”' is a covering K; € RMd(z) and K; ¢ RMd(x). For anyK, € Md(z),
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we suppose thaRCE(K,) = {Tp1,Tp2, .. Tpqts \\//vﬂléSreN%gmzpoolsled by all indeterminate elements of coverihgrhen,

g > L If 2 € Tp,Tp,...,Tps(1 < s < q), then Vze Hj, |[FM(z)| > 1. K, (1 <r < n)is composed by such

Tp1, Tp2, ..., Tps € RMd(z). Let Ay = {Tp1,Tpo, ..., Tps}, elements of covering that there at least one determinate
thenuA, C K,,. Thus, if Md(z) = {K1,K>,...,K,}, then element and indeterminate element in the same covering
there correspondingly exist8Md(z) = {A;UA2U...UA,.} element, that is, there existsy € K, such that FM (z)| > 1
such thatuA; C Kj, UAy C Ky, ..., UA, C K,. and|FM(y)|=1. We suppose thab = {D;, Ds,..., Dy},
Accordingly, URM d(z) C UM d(z). H = {H:\,H,,...,Hy}, K = {Ky,K»,...,K,}. For own

Necessity. ForURMd(z) C UMd(z), if Yy € RMd(z), convenience, we regafdF M (z) as the family of membership
theny € UMd(z). Lety € K; — K;, if y € UMd(z), then =z corresponding to coverin@C(C).
K; ¢ Md(x), for K; C K;. There surely exist&, € C'such  According to definition 3.4 and 3.6, we can know that
thatz,y € K, and K, € Md(z) , that is,y € K; andy € DRC(C), HRC(C). From definition 3.5 we geRCE(K;),
K,. So,|FM(z)| > 1. Of course, ify ¢ Md(x), assume that RCF(K,), ..., RCE(K,). So, RC(C) = DU H U
y is a determinate element, according to definition 3.4, we gRUF(K;) URCE(K,)U...URCE(K,). For any element
thaty U RMd(z). This is contract taJRMd(z) C UMd(z). of K., if |FM(z)| = 1, then, according to definition 3.5,
So, y is an indeterminate element. Th¢éfA M (x)] > 1. If we get thatlRFM(x) > 1|. If |[FM(z)| > 1. Similarly,
y ¢ K, — K,; andy € K;, theny € K;, thatis,|FM(z)| > 1. we get that|REFM(x) > 1|. That is, for anyz € UK
Of course, ify € K;, theny € K;. Therefore, the abovein RC(C), |RFM(z)| > 1. From definition 3.4 and 3.5
results hold. B again, we get thaD C RC(RC(C)), H C RC(RC(C)),
Corollary 3.1: Let U be a universe(' is a covering o/, RCE(K,) C RC(RC(C)). Therefore, RC(RC(C)) =
K; € reduct(C), x € K; and K; € Md(x), if there is not DU H U RCE(K;)U...U RCE(K,), namely,RC(C) =
exist K; € reduct(X) such thatk; C K, thenURMd(z) € RC(RC(C)).
UMd(x). [ |
Proof: Because there is not exisf; € reduct(C’) such  Accordingly, it will not produce a new covering to refine a
that K; C Kj. Then, for anyK,, € reduct(C), if € K,, refined covering. Hence, it is not necessary to refine a refined
then K, € Md(z). Let RC’E(KP) = {Tpl,Tpg,..., qu}, covering.
wherep > 1. If z € Tp1,Tpo,...,Tps(1 < s < q), then
Tpl,Tpg,...,Tps € RMd(.T) Let Ap = {Tpl,Tpg,Tps}, .
then, UA, C K,. So, if Md(x) — (K1, Ko ..., K}, C Reduton ,
then RMd(z) = {A; U Ay U... U A,}, correspondingly. Thr_ough reducing _of a covering, we can reduce redundant
S0, UA; C Ki,UAy C Ko,...,UA, C K,. We get that coyerlng-element. It' is necessary tp reduce before or after.the
URMd(z) C UMd(z). m refinement of covering-element. Sine we get a new covering

We maybe consider that two different coverings of the sar@éier the refinement of covering-element, then this new cover-

universe whether produce the same refinement. Let us seelfigesatisfies all the properties of covering and reduction [28].
following example. Now, the problem is that whether the new covering reduce

Example 3.4:Let U={a, b, ¢,d}, C; andC, are two cover- before refine is the same as it is reduced after refined. Or, .u.nder
ing of U, andCy={{a, b, c}, {b}, {b,c}, {b,d},{c,d}}, C, = Whatconditions does they are the same under what conditions.
{{a},{a,b,¢,d},{a,c},{c,d}}, please computer the refine- Please read an example first.
ment of C; and Cs. Example 3.5:Let U = {a,b,c,d}, be a universe(C =

Solve: ACCOfding to the definition 36?0(01) = {{a}, {KlaKZa K3, Ky, KB} = {{CLJ), C}a {aab}a {ba 6}7 {b7 Cy d}a
{a,b}, {a,c}, {b}, {b,c}, {b,d}, {c,d}}, RC(C2) = {{a}, {a,b,c,d}} is a covering olU. Please computer the refinement
{a,b}, {a,c}, {b},{b,c}, {b,d},{c,d}}. of C in a different order of reduct and refinement.

Accordingly, RC(C,) = RC(Cs).Therefore, two different ~ Solve: (1) Reduct before refinement.
coverings of the same univeréé maybe produce the same BecauseK; = Ky|J K3, K5 = K1 UKs UKz UKy,
refinement. according to the definition 2.4, we know thaf; and K

Whether we can continue to refine the covering after tiage two reducible element. With definition 2.5 shows that
refinement of covering? Or, what we do is meaning? Throudku and K5 can be reduct, seeduct(C) = {Ka, K3, K4}.
studying and analyzing, we discover that it will not produc&hen according to definition 3.5, we know thRC E(K>) =
a covering when refine a covering has been refined. Namelya}, {a,b}}, RCE(K3) = {{b,c}}, RCE(K,) = {{b,d},
RC(C) = RC(RC(C)). Therefore, we can get the following{c,d}, {d}}. At last, according to definition 3.6, we can

theorem. work out RC(reduct(C)), that is, RC(reduct(C)) = {{a},
Theorem 3.2:Let U be a universe and’ be a covering of {a,b}, {b,c}, {b,d}, {c,d},{d}}.
universeU, then RC(C) = RC(RC(C)). (2) Refinement before reduct.

Proof: Let U be a universe and’ is a covering of  According to definition 3.1, we can know that, for any
U. I is an index set andm,p, n,i, j, r € I. Let z €U |FM(z)| > 1,thatisto say, all elements 6f are inde-
C = {Dy,Dy,...,Dp,,Hy,Hy,...,Hy, K1, K>,...K,}, terminate elements. From definition 3.3 we get that the refine-
wherem > 0,p > 0,n > 0 andm+n+p > 1. D;(1 <i <m) mentofC is itself. That is,RC(C) = {K1, K2, K3, K4, K5 }.
is composed by all determinate elements of covetihghat After reducing of RC(C), we get thatreduct(RC(C)) =
is, Vo € D;i(1 <i <m), |[FM(z)| = 1. H;(1 < j <p)is {Kz, K3, K}. Thus, RC(reduct(C)) # reduct(RC(C)).
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Here, we can see that if the order of reduction a\{%'?efi\lr?' vg%é would be reduced in the order of refinement before
ment is different, then the new covering is different. reduct. Then, what result would be in the order of reduct before
The result in the above is different, for the reason is thetfinement?
we produce new determinate elementsind d after reduce  Proposition 3.11:Let U be a universe an@ be a covering
C, which bring about the changing of refinement. If the cowf U. The refinement after reduction of coveridgwill not
ering isC = {{a, b, c}, {a,b},{a,c}, {b,c}, {b,c,d}} and the produce new reducible element, that is to 9a;(reduct(C))
order is refinement after reduction, theRC (reduct(C)) = has not reducible element.
{{a,b},{b,c},{b,d},{c,d},{d}}. If the order is reduction af- Proof: Let reduct(C) = Ki,Ko,...,K,,. For any
ter refinement, themeduct(RC(C)) = {{a, b}, {b,c},{b,d}, K; € reduct(C), assumeRCE(K;) = {T;1,Ti2,...,Tip},
{c,d},{d}}. Hence RC (reduct(C)) = reduct(RC(C)). The where p > 1. ThenT;; € RCE(K;),1 < j < p.
appearance of this result is that the number of determina&ecording to definition 3.3, 3.4, 3.5, we get that there is
element after reduce(; is not change in the process ofot existT;,, € RCE(K;) — {T;;} such thatT;,, C T;,.
refinement after reduction. Accordingly, we can get prop&o, T;; is irreducible inRCE(K;). Let RC(reduct(C)) =
Sition 3.10. {T11; T12, ceey Tlaa 1—'21,1—‘227 ey TQb, e 7T7nla TmQ, ey Tmc}(a 2
Proposition 3.10:Let U be a universe and' be a covering 1,5 > 1,¢ > 1). If there at least exists a determinate element
of U. C; is the new covering of refinement after reductiony in K;, according to definition 3.1 and 3.2, we get that
C, is the new covering of reduction after refinementCland  y ¢  U(reduct(C) — {K;}). So, T;; is irreducible in
reduce(C) has the same number of determinate element, th®T (reduct(C)). If there exists indeterminate element in

Cy = Cs. Otherwise,C; # Cs. K;, according to definition 3.3, 3.4, 3.5 and 3.6, we get
Proof: Let U = =z1,22,,2n be a universe.C = that K; € RC(reduct(C)). Let there existTy., Ty, €

K1,K2,,Km is a covering ofU. I is an index set and RC(reduct(C))(1 <d <m,1 < f <m,e>1,g > 1) such

i,J,p,q,7 € L. that K; = Ty U Ty, thenTy. and Ty, are composed by

(1) C andreduce(C) have the same number of determinathdeterminate elements. According to definition 3.3, 3.4, 3.5
elements. Firstly, we analyze the condition of refinement aftend proposition 3.2, we get thafu., Ty, € reduct(C).
reduction. For anyK; € C, if K; is a reducible element , This is contract tok; € reduct(C). So, there are not exist
then there at least exists more than two covering-elememts 7;, € RC(reduct(C)) such thatK; = Ty U Ty,.
Ki,Kj,...,K.(r > 2) in C — {K;} such thatK; = K; U Accordingly, the refinement after reduction of coverift
K> U K,. K; will be deleted after reductiod’. If there still will not produce new reducible element,. [ ]
exists reducible elemerit, in C, we will delete it according  Proposition 3.12:Let U be a universe and' is a covering
to definition 2.5 until there is not reducible elementdh of U. If each covering-element af at least has one determi-
Here, we get the reductioreduct(C) of C. After refining of nate element, the@' is irreducible.
reduct(C), we get a new covering’y = RC(reduct(C)). Proof: Let C' = {K;,K>,...,K,}. For anyK; € C,
On the contrary, if we reduce after refin@, according if ; ¢ K; and |FM(x)| = 1, according to definition 3.1
to some related definition, we can g&CE(K;) = K; and 3.2, we get that ¢ (C — {K;}). So, there are not
for K; is a reducible element. Similarly, if there still ex-exist two or more covering-element @ — { K;} such that the
ists other reducible elemenk,, then RCE(K,) = K,. union of them equal td{;. That is to sayK; is a irreducible
From definition 3.6, we can know thak;, K, € RC(C). element. Similarly, we get that each covering-element'a$
In the following, we can getRCE(K:), RCE(K>),..., irreducible. Then( is irreducible. [
RCE(K,) after refining K, K», ..., K,. And ROE(K,;) C Proposition 3.13:Let U be a universe and' be a covering
RC(C),RCE(K2) € RC(C),...,RCE(K,) € RC(C). ofU.K € C,if K is areducible element, then for anye K,
So, K; = RCE(K;) = RCE(K:) URCE(K>)U...U |FM(x)| > 1.
RCE(K,). Then, according to the definition of reducible ele-  proof: Let C = K, Ko, ..., K,,. For anyK; € C, if K;

ment and reduction , we delet¢; from RC(C). Similarly, K;,  is an irreducible element, then there exigt, Ko, ..., K, €
can also be deleted froRC(C). Here, reduct(RC(C)) = C—{K;}(P > 2) such thatk; = K, UK,U...UK,. Accord-
Cs. ing to definition 3.1, we get that, for anyii, |FM (x)| > 1.

BecauseC and reduct(C) have the dame determinate m

element, that is to say, foK; € C,K; € reduct(C), if
From definition 3.4, we get that; = Cs. -

(2) The number of determinate elements @& and According to proposition 3.10, we get that the result that
reduce(C) are different. reduce a covering which has been refined is different from the

When the number of determinate elements Gh and refined covering of reduction. When the two results are differ-

reduce(C) are different, that is to say, there at least exis&@nt, according to the process of proofing in proposition 3.10,
K; € C and K; € reduct(C) such thatk; = K; and We can know that the number of covering elements of the

DS(K;) # DS(K;). ThenREC(K;) # REC(K;). Accord- former result is not greater than the later. This means that
ing to definition 3.6, we get thaf; # Cs. m the judgment of later is stronger than former. When the two

Now, let we think about a problem. For a covering we knovigsults are the same, according to definition 3.6 we can know
that the redundant covering-element of the refinement of tHat the number of covering elements is not greater than the

D. The algorithm of the refinement of covering-element
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point we can say that reducing a covering is convenient than MODEL
a reduction of refined covering. For this reason, we will give | this section, we will compare some mainly covering-

the algorithm of refinement after reducing a covering. based rough sets based on the refinement of covering-element.
The algorithm we give includes two parts: reduction anBy comparing, we discover that the lower approximation of

refinement. Zhu [32], [33] give a algorithm of reduction. Afteall models in original covering are not greater than the lower
we analyze the properties of reduction: (1) for alty € C, approximation in the refinement of covering-element. And the
if K; is a reducible element, then there at least exists tw@per approximation of all models in original covering are

or more covering-element&’;, K>, ..., K, such thatK; = not less than the upper approximation in the refinement of
KiUK,U...UK,; 2) if K; = KUK, U...UK,, then covering-element. This means that the judgment of each model
|KG| > |Kq|, | K| > |Ksl,...,|K;| > |K,| that is to say, to object is stronger on the basis of refinement of covering-

the number of element of reducible elementAo is surely element.

greater than the number of any proper subset. We improve the

algorlthm of redu'ctlon about Zhu [32], [33], on which we 9Ver The model of covering-based rough sets
the refined algorithm.

Part I: reduction In this section, we will mainly introduce eight main models

Input: universel/ and coveringC = {K1, K, ..., Kn). of covering-based rough sets. In order to better understand
Output: reduct(C) S some model, we introduce some new concepts.

S1 initialization: reduct(C) = C, i = 3; Definition 4.1: (Neighbor [25], [34], friend [27], enemy
S2temp = 0, j = 1: [18]) Let < U,C > be a covering approximation space, for

gnyz € U, Neighbor(z) = ({K|r € K AK € C} is called

S3 we sort the number of element in covering C int -
the neighbor ofr and denote a¥v(z); U{K|r € K ANK €

nondecreasing order and gét= {Py, P, ..., Py };

; ; . C} is called the friend ofz and denote ad'riends(z);

S4 if m < 3, then jump to S14; h

S5if P, C P, , thentemp — temp U P U—Friends(z) is called the enemy of and denote as. f ().

S6j :Jj + 1? ’ ’ Definition 4.2: (Eight models of covering-based rough sets)

S7if j < I, then jump to S5: [15], [16], [18]—[25]. Le.tC be a covering of a univergg, for

S8 if temp # P;, then jump to S12 any setX C U, define:

S9 reduct(C) = reduct(C) — {P;} The lower approximation ofX in eight models of

S10 we rearrange the number framP; = Py, 1, Pipr = covering-based rough sets from the first to the eighth are
Pi+27 ceisPp_1 =Py X, X, X#7X@,X+,X$,X%,X&. And X, = X = X# =

Slljzl,JUmptOSS X@:X+:X%:X&:U{K‘KEC/\KQX},

S12i— it 1 Xs = {z|N(x) C X}. The upper approximation of in eight

S13ifi < m,'jump to S11 models of.covering-based rough sets are defined respectively

S14 the end. as follows:

The first is [15]: X* = X, J(U{U Md(z)|z € X — X..});

Part 1l refinement - _—
The second is [19]X={K|K € CAK (X # @};

Input: a reductionreduct(C) of universeU;

Output: the refinemenRC (reduct(C)) of reduct(C); The third '3.[20]1X#@: HUMd(z)|z € X};
S1 initialization: RC (reduct(C)) = @,i = 1,h = 1; The fourth is [27]: X = Xo U{K|K € C AKX —
S2 if i > r, then jump to S13; Xa) # OF;
S3DS(T}) = 0, IDS(T) = 0, = 1; The fifth is [26]: X* = X4 U{N(z)le € X — X )
S4m = |Ty; The sixth is [21], [23]’(7[25]:)( = {z|N(z) OX £ 0},
S5 computeF’ M (;); The seventh is [22]X 7" = Xy, J(~ U{Friends(y)|z €
S6 if [FM(z;)| = 1, thenDS(T}) = xj, j = j + 1, jump X — X%,y € e.f(x)});
to S8: The eighthisX® = X UU{ N Kz € X —Xg});
STIDS(Ti) = wj,j =j+1; (remark: symbol 2" means oéigikr{iﬁs)complementary set.)
S8 if j < m, then jump to S5; According to the above definitionwe find that the eight
S9 if [DS(Ty)] = 0, then RC(Ted“Ct(C)) = models’s lower approximation are the same except the sixth.
RC(reduct(C)) U IDS(T;),i =i+ 1, jump to S2; While the upper approximation of the eight models are
S10  RC(reduct(C)) = RC(reduct(C)) U (ifferent. To these models, we can't estimate which one is
{IDS(Ti){xn}}, b =h+1; better or worse than others because different models may
S11lifh <m, jump to S10; be applicable to different places. Zhu [25], [27], [35] study
Sl2h =1,i=i+1; the upper approximation of them from the point of view of
S13 the end. containable relation.

(x; is the jth element off})
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B. The comparison of covering-based rough sets VoS, Norégduzc(:)tj(ﬁ() is not less than it is tRC (reduct(C)).

In this section, we will propose position 16, 17 and 18, and
give the proofs of them in detail. Some concepts of this section

such asMd(x), N(z), Friend(x) are defined omeduct(C).
Proposition 4.1:Let U be a universe, and' is a covering
of U. X C U is an arbitrary subset @f. In the eight models of

approximation ofX produced inreduct(C) is not greater than
it produced inRC (reduct(C)).

Proof: Let redct(C) = {K1, Ko, ..., K, }. I is an index
set andi, j,p,q,7,s,h € I. For convenience, leX, is the

lower approximation of other seven models of covering-bas%
n

rough sets that except the 6th type of model and it bases
reduct(C'). CorrespondinglyRX. is the lower approximation
of the seven models of covering-based rough and it bases
RC(reduct(C)).

For any K; € reduct(C), RCE(K;) is the refinement of
K; and we suppose thaRCE(K) = {Ti1,Tio,...,Tir}. If
K; C X, according to definition 4.2, we get thaf; C X..
SinceURCE(K;) = K;, thenT;; C K, wherel < j <
r. Accordingly, for eachT;; € RCE(K;),T;; C RX..
Similarly, if X, = K; U K, U...U K, then the union
of RCE(K;),RCE(K3),...,RCE(K,) that correspond to
K, K, ..., K, equals toRX,, that is,RX, = RCE(K;)U
RCE(K3) U ...U RCE(K,). Here, if there at least exists
K, € reduct(C) — {K1, Ka,..., Ky} and Ty, € RCE(K,)
such thatly;, C X, thenRX, C X,. Of course, ifK, or Tg;

are not exist, themlRX, = X,. Accordingly, the result holds.

In the following, we prove that the 6th type of model of

covering-based rough sets also satisfies proposition.

Let reduct(C) = {K1, Ks,..., K, }. I is an index set and
i,3,p,q,7, h,s,e, f € I. RN(z) is the neighbor of produced
in RC (reduct(C)). RXg is the 6th type of model of the lower
approximation ofX produced inRC (reduct(C)).

In reduct(C), if = € K; K;, then N(z) = K, N
Kj. Let RCE(Kl) = {E17T1‘2,.. .7Tip}, RCE(KJ) =
{Tj1, Tja, - .., Tjq}. If there existss(1 < s < p) elements in
RCE(K;) andh(1 < h < ¢) elements inRCE(K) contain
Then A C K;, B C Kj. Accordingly, RN(z) = ANB C
K, N K; = N(z), that is, RN(z) € N(z). Similarly, in
RC(reduct(C)), if x € K1,Ks,...,K,, then RN(z)N(z)
still holds. So, ifN(z) C X, thenRN(z) C X. That is, for
anyz € U, if z € Xg , thenxz € RXg. Here, if there at least
existsy € U — Xg such thatRN (y) C X, thenXg C RXg. If
there is not exist such or RN (y), thenXs = RXg. Thus, in

the 6th type of model of covering-based rough sets, the lowe,

approximation ofX produced inreduct(C) is not greater than
it produce iINRC (reduct(C)).
In conclusion, we get that, in the eight models of coverin

based rough sets defined in definition 4.2, the lower approx: "y

imation of X produced inreduct(C) is not greater than it
produce inRC(reduct(C)). [ |
Proposition 4.2:Let U be a universe, and’ is a covering
of U. X C U is an arbitrary subset df. In the eight models
of covering-based rough sets defined in definition 4.2, besi
the 1th and the 3th types, the upper approximationXofo

covering-based rough sets defined in definition 4.2, the Iovvt e

T, Tia, - ..
@7"'ansz ?é @. Let A’I = {1—’1'171-11',27“

Proof: Let reduct(C) = {Ki,Ko,...
Index set and, j,p, gr, h,s € 1.
(1)The upper approximatioX = U{K|K € CAKNX #

K}y Iis an

@} of the 2th type of covering-based rough sets.

Let RX = U{K|K € RC(reduct(C)) N KN X # @} is
upper approximation ok in RC(reduct(X)).

For any K; € reduct(C), assume RCE(Kj;)
{T%hTiQa--wTip}v if K; - X and
,Tis(l <s< p) suchthatl;yNX # @, T;oNX #

., Tis}, then
= K;. If X = K; UK, U...U Kj, correspondingly,
= {A/l¢ = 1,2,...,5} and RX C X. That is, the

upper approximation ofX in the 2th type of model of

covering-based rough sets teduct(C) is not less than it is

tg%C(reduct(C)).

(2) The upper approximatioX ® = XqU{K|K € CAKN

(X — Xa) # @} of the 4th type of model of covering-based

rough sets.

Let RXe is the lower approximation of¢ and RX® =
RXe U{K|K € RC(reduct(C)) N KN (X — RXa) # O}
is the upper ofX in RC(reduct(X)), respectively.

According to proposition 4.1, we géfa C RXqa. Because

X — Xeo = (X — RXa) + (RXa — Xa), then{K|K €

CAKN(X —XQ)# @) ={K|K € CAKN(X — RXa) #
O KIK € CANKN(RXa — Xa) # O}. For anyK; €
T@dUCt(C), aSSUmeRCE(KZ‘) = {Tih Tz'27 ceey sz} If K’z n
(X — RXa) # O, then there exist§}1, T}, ..., Tis(1 < s <
) such thatE-m(X@—RX@) 7& O, Tigﬁ(X@—RX@) 7& Q,
. Tisﬁ(X@—RX@) 7'é D.0f A; = {’TihTig, L ,Tis}, then
UA,L CK;. Slm”arly, if K17K27 R ,Kj eC andKlﬂ(X@—
RX@) # 0, Kzﬂ(X@*RX@) £0,..., Kjﬂ(X@*RX@) #*
0, then there existsd;, As, ..., K; such thatU{UA,|lq =
1,2,...,7} € U{K,lqg = 1,2,...,j}. Accordingly, we can
get that:{ K|K € RC(reduct(C))AKN(X —RXa) # D} C
{K|K € reduct(C) N K N (X — RXa) # @} On the other
hand,RXq—Xa C {K|K € Teduct(C)/\Kﬂ(RX@—X@) #*
?}. So,(RXa — Xa)HK|K € RC(reduct(C))NKN (X —
RXa) # O}C{K|K € reduct(C) NK N (X — RXa) # O}
+H{K|K € reduct(C)NKN(RXao—Xa) # O}. Consequently,
RXa+{K|K € RC(reduct(C)) N K N (X — RXa) # 0}C
Xa +{K|K € reduct(C) NKN (X — RXq) # O}, namely,
RX® C X, So, the result holds.

(3)The upper approximatioX ¥ = X, U {N(z)|z € X —
X} of the 5th type of model of covering;

In RC(reduct(C)), we suppose thaRX, is the lower
approximation ofX, RN (z) is the neighborhood of, and
X+t = RX, U{RN(z)lr € X — RX,} is the upper
approximation.

_According to proposition 4.1, we get thaf, C RX,.
or anyz € U, we have thatRN(z) C N(x). Since
+ = (X — RX+)+(RX+ — X+), then {N(ZE)‘ZE
X — Xi} = {N(x)|]x € X — RX }+{N(z)|]x € RX4
X}. BecauseX, C RX,, then {RN(z)lx € X
§/1e§7(3:)|r € RX, — X, }, then(RX, — X )+{RN(z)|z

— RX }C{N(z)lzx € X — RX }+{N(z)|lx € RXy

X+ }. ConsequentlyRX +{RN(z)lx € X — RX;}CX, +

m

- miN |

there exists
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{N(z)|lr € X — X}, thatis ,RX; C X.. Therefore, We
get the result.

(4) The upper approximatioX® = {z|N(z) N X # @} of
the 6th type of model of covering;

Let RN (z) = N{K|z € K A K € RC(reduct(C))} is the
neighbor ofz in RC(reduct(C)). RX® = {z|RN(z) N X #
@} is the upper approximation of in RC(reduct(C)). For
anyz € U, we get thatRN(z) C N(z). If RN(z)NX # O,
thenN(z)NX # @. So,{z|RN(x)NX # O} C {z|N(z)N
X # @}, that is, RX® C X®. Thereby, the result holds.

(5) The upper approximationX % Xy U {~
U{Friends(y)|r € X — Xy,y € Re.f(x)}} of the 7th type
of model of covering;R Xy, is the lower approximation ok
in RC(reduct(C)). RFriend(x) and Re. f(x) are the friend
and enemy ofz in RC(reduct(C)). RX” = RXy U {~
U{Friends(y)|x € X — RX¢,y € Re.f(z)}} is the upper
approximation ofX in RC(reduct(C)).

From proposition 4.1, we get thaXy, C RXy. Then,

X—-—RXy C X—Xg,thatis,Vo € X —RXq. There surely be {b,d}, {c,d}, {d}}
thatz € X — Xy. On the contrary, we could not hold that. WeRj\/[dix) r '

suppose thaRCE(K;) = {T;1,Ti2,...,Tip}. For anyz €
X—-RXy andK; C Friends(x), if x € Tj1, Tio, ..., Tis(1 <
s < p), then Ty, Tis, ..., Tis C RFriends(x). Assume

%8, 2011

ecaise of RXe — Xe S Ul Ngemaw
K|J‘ S RXg — X&}, then (RX& — X&)
U Nkerma@ Klz € X = RXe}CU{Nxenax) Kl €
X - RX&}*‘U{ﬂKeMd(I)K‘HJ € RXg — Xg}. So,
RXg +U{mRMd(:c)K‘x S X — RX&}Q Xg +
U{Nkemaw Klz € X — X}, that is, RX® C X%
Thereby, the above result holds. Accordingly, we prove the
proposition 4.2. [ ]

For the first and third models of covering-based rough sets,
proposition does not hold. We can get it from the following
example.

Example 4.1:Let U = {a,b,c,d} be a universe(C =
{{a},{a,b,c},{a,b,c,d}} is a covering ofU, X = {a,b,d}
is a subset olJ. In the first and the third model of covering-
based rough sets, Please computer the upper approximation of
X onreduct(C) and RC(reduct(C')) respectively.

According to known conditions,
reduct(C)=CRC(reduct(C)) = {{a}, {a,b,c} {a,d},
for any « € U, Md(z) and
represent the minimal description ok on
reduct(C) and RC(reduct(C)) respectively. Then,
Md(a) = {{a}}, Md(b) = {{a.b,c}}, Md(c) = {{a.b,c}},
Md(d) {{a,b,c,d}},  RMd(a) {{a}},

A; = {Th,Tia, ..., Tis}, thenUA; C K;. Con.sequently, i.f RMd(b) = {{a,b,c}, {b,d}}, RMd(c) = {{a,b,c},{c,d}},
Friends(z) = U{K1, K>, ..., K,}, correspondingly, there is RMd(d) = {{d}}.

RFriends(z) = U{A1UAyU...UA;} and RFriends(z) C
Friends(x). According to definition 4.1, we get thatf(x) C
Re.f(z). So,U{Friends(y)|lx € X — RXy,y € e.f(z)}C
U{RFriends(y)lr € X — RXy,y € Re.f(z)}. In the
following, we get that~ U{RFriends(y)lx € X —
RXq.,y € Re.f(z)}C~ U{Friends(y)|lz € X — RXy,y €

(2) In the first model:

The upper approximation ok on reduct(C) is:

X+ X UUUMd(@)|z e X — X.})
{a,b} U{a,b,c} = {a,b,c};

The upper approximation ok on RC(reduct(C)) is:

X" = X, UUH{U RMd(z)|z € X = X..}) = {a,0} U (U

e.f(x)}. For anyx € RX¢ — Xy, there surely be that {{a,b,c} U{c,d}}) = {a, b, c,d};

x ¢ e.f(x). Thereby,z ¢ U{Friends(y)lx € RXy —
Xo,y € ef(z)}. Thenz € (~ U{Friends(y)|lz €
RXoy — Xo,y € e.f(z)}). Further more,RX¢, — Xo, C{~
U{Friends(y)|z € RXy — Xo,y € e.f(z)}}. Therefore,
(RXy, — Xop) + (~ U{RFriends(z)|lz € X — RXy,y €
Re.f(x)})C(~ U{Friends(y)|lr € X —RXg,y € e.f(x)})+
(~ U{Friends(y)|lx € RXy — Xo,y € e.f(x)}). Accord-
ingly, RX¢, + (~ U{RFriends(z)lz € X — RXy,y €
Re.f(x)})C Xo + (~ U{Friends(y)|lr € X — Xog,y €
e.f(x)}), that is, RX” C X", So, the result holds.

(6) The upper approximation X Xg U
(UNgerraq Klz € X — Xg}) of the 8th type of
model of covering.

Let RX; andRMd(x) in RC(reduct(C)) are respectively

the lower approximation and minimal descriptioX® =
Xe U (UH{Nxemaw)y Klz € X — RXg}) is the upper
approximation ofX in RC(reduct(C)).

According to proposition 4.1, we get thaf, C RXg.
During the proof of (1), we get thatudA; < K.
If  Md(x) {K1,K,,...,K;}, correspondingly,
there is RMd(x) {A;1 U A, U ... U A;} such
that ();_;(UA,) =15 S0 U{Nkernraw)
Klz € X — RXe} € UW{Nkeprae) Klz € X — RXe}-
Moreover, X — Xg=(X — RXg)+(RXg — Xg). Then,
HNkemaw Klr € X — Xe} =U{Ngenraw Klz €
X - RX&}-FU{mKeMd(x)Ku € RXg — X&}.

C
-

(2) In the third model:

The upper approximation oK on reduct(C) is: X# =
U{UMd(z)|x € X} = U{{a}, {a,b.c}} = {a,b.c}

The upper approximation of X
RC(reduct(C))is: X# UH{URMd(x)|lz €
= {a, b} U(U{{a, b, ¢} U{c,d}}) = {a,b,c,d}

From the above example we find that the upper approxima-
tion of X on reduct(C) is larger than it onRC(reduct(C)),
that is, proposition 4.2 is not hold in the first and the third
model.

Next, we will illustrate and validate proposition 4.2 by
another example.

Example 4.2:Let U {a,b,c,d,e, f,g} be a uni-
verse, ¢ {{a‘vb}7 {b,C,6}7 {Ca d7.f}7 {b,C7€7f7g},
{a,b,c,e, f,g}} is a covering ofU, X = {a,b,d,e} is a
subset ofJ. Please computer and compare the lower and upper
approximations ofX on reduct(C) and RC(reduct(C)) in
eight models.

According to definiton 2.5, we know that
reduct(C) = {{a,b}, {b,c,e}, {c,d, f}, {bcye, f g}}.
Then with definition 3.6 shows thaRC(reduct(C)) =
{{a},{a,b}, {b.c.e}{edl, {d}{d.f}, {b.g}.{c.a},
{e.g}. {f, 9}, {9}}.

(1) The lower approximation ofX on reduct(C') and
RC(reduct(C)).

on
X}
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According to definition 4.2, we know that the uppe\r/%lﬁ)Spr’(\)l%g{gJ%Jd(m)|m € X — X.}). Thus,RX* C X*. Therefore,

imation of X on reduct(C) in eight models are: we get that the upper approximation &fin reduct(C') is not
X,=X=Xy=Xa=X, =Xy, = Xg = U{K|K € less than it is iNRC(reduct(C')) to the 1th type of model of
CAK C X} ={a,b}; covering-based rough sets.
Xg = {z|N(z) € X} = {a,b}; (2) The upper approximatioX# = U{UMd(z)|z € X}
The lower approximation ok on RC/(reduct(C)) in eight 0f X is the 3th type of model of covering-based rough
models are: sets. Becaus® RMd(x) C UMd(x), then U{ URMd(x)|
X,=X=X4=2Xa=X, =Xy =Xe =|{K|K € =€ X}CU{UMd(z)|z € X}, thatis ,RX# C X#. Thus,
CANK C X} =1{a,b,d}; we prove that the upper approximation &f in reduct(C) is
Xg = {2|N(x) C X} = {a,b,d, e}. not less than it is inRC'(reduct(C)) to the third model of
Thus, the lower approximation of on RC(reduct(C)) is covering-based rough sets. ]
larger than it onreduct(C) in eight models. Proposition 4.1, 4.2 and 4.3 based on theluct(C) of
(2) The upper approximation of{ on reduct(C) and coveringC are discussed the lower and upper approximations
RC(reduct(C)). of the eight models of covering and are compared the upper
According to definition 4.2, we know that the upper approxand lower approximation before the refinement and after the
imation of X on reduct(C) in eight models are: refinement. The reason we do that is that: for one thing, by
X* =X, U{Md(z)|z € X — X.} ={a,b,c,d,e, f}; reducing the covering’, we can delete redundant information,
X=U{KIK e CANKNX # O} ={a,b,c,d,e, f,q}; and thereby get a better lower and upper approximations and
X# = {Md(x)|lz € X} = {a,b,c,d,e, f}; increase the capacity of discernment. For another, the number
X® = XaU{K|K € CAKNX - Xa) # O} = of new covering-elements to refine the reduction of covering
{a,b,c,d,e, f,g}; is more than it is directly refined this covering. The reason
XT=X,U{N@)|re X —-X,}=1{a,b,c,d,e, f}; is that the determinate elements maybe increase after delete
X% = {2|N(z)N X # O} = {a,b,c,d,e, f,g}; some reducible elements, which will bring to more covering
X% = Xy U(~ U{Friends(y)lx € X — X¢,y € elements. This means that the capacity of discernment to this
e.f(x)}) ={a,b,c,d,e, f,g}; model will enhance. If we directly discuss this problem in
XY = XeUWUU{ N Kz € X — Xg¢}) = covering, we still get the same result.
KeMd(z
{a,b,c,d,e, f}; !
The upper approximation of on RC(reduct(C)) in eight V. CONCLUSIONS AND FUTURE WORK
models are: Covering-based rough sets is an important extension of
X* = X, {RMd(z)|z € X — X,} = {a,b,¢,d,e, g}, rough sets and there are more and more applications and
X=U{KIK e CAKNX # O} ={a,b,c,d,e, f,q}; studies about it. In this paper, covering-based rough sets
X# = | {RMd(z)|z € X} = {a,b,c,d, e, g}; is studied from a new point of view of the refinement of
X® = Xo {K|K € CANKNO(X — Xa) # O} = covering-element. On the basis of refinement of covering-
{a,b,c,d, e, g}; elements, the lower approximations of the eight models of
Xt=X,U{N@=)ze X — X} ={a,b,c,d,e}; covering-based rough sets are not greater than the original
X8 = {z|N(z)N X # O} = {a,b,d, e}; lower approximations. Correspondingly, all the upper approxi-
X% = XogU(~ U{Friends(y)lx € X — X,y € mations of the eight models are not less than the original upper
e.f(x)}) ={a,b,d,e}; approximations with exceptions of two models (the first and

Thus, in the eight models, all of the upper approximatiorthe third models) in some special situations. The refinement
of X on RC(reduct(C)) are not larger than it oneduct(C) of covering-element enhances the capacity of discernment

except the first and the third model. fundamentally to each of covering-based rough sets models.
Then, on what conditions proposition 4.2 is true to the firgthis is very meaningful to the study of rough sets theory and
and the third model? application. Meanwhile, the algorithms of Zhu [32], [33] is

Proposition 4.3:Let U be a universe, and’ is a covering improved. And the algorithm of the refinement of covering-

of U. X C U, foranyz € U, if URMd(z) C UMd(z), elementis proposed. In the future work, we will continue study
then the upper approximation df in reduct(C) is not less the properties of the refinement of covering-element. And we
than it is in RC(reduct(C)) to the first and third models of will use partially ordered set and lattice to study the refinement

covering-based rough sets. of covering-element.
Proof: (1) To the 1th type of model of covering-
based rough sets, the upper approximati®i = X, U VI. ACKNOWLEDGEMENTS
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that is , RX, U (U{JURMd(z)|z € X — RX,})CX, U
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