
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4158

Abstract—Testable software has two inherent properties –

observability and controllability. Observability facilitates observation
of internal behavior of software to required degree of detail.
Controllability allows creation of difficult-to-achieve states prior to
execution of various tests. In this paper, we describe COTT, a
Controllability and Observability Testing Tool, to create testable
object-oriented software. COTT provides a framework that helps the
user to instrument object-oriented software to build the required
controllability and observability. During testing, the tool facilitates
creation of difficult-to-achieve states required for testing of difficult-
to-test conditions and observation of internal details of execution at
unit, integration and system levels. The execution observations are
logged in a test log file, which are used for post analysis and to
generate test coverage reports.

Keywords—Controllability, Observability, Test Coverage and
Testing Tool.

I. INTRODUCTION
ESTABLE software is one that can be tested easily,
systematically and without following any ad-hoc
measures [22][24]. Testable software need to possess two

characteristics i.e. observability and controllability. During
testing, there is a need to observe internal details of execution
to ensure the correctness of processing and to diagnose errors.
Provisions have to be made in software so that the internal
behavior of software can be observed during testing.
Observable software makes it feasible for tester to observe the
internal behavior of software, to the required degree of detail.
Also, during testing, some of the tests are difficult to conduct
as state of software required to be created before these tests
can be executed are difficult to create using the commands
available at user interface. Some provisions have to be made
in software so that the difficult-to-create states can be created
easily during testing, without using any ad-hoc mechanism.
Controllable software makes it possible to initialize software
to desired states, prior to execution of various tests.

In this paper, we present COTT (Controllability and
Observability Testing Tool), which is a set of Java classes that
uses our probe-based observability mechanism [1] and
controllability mechanism [2], for creation of testable

A.Goel is with Department of Computer Science, University of Delhi, Dyal

Singh College, New Delhi-110003, India (phone: +91-120-4245356; e-mail:
agoel@ dsc.du.ac.in).

S. C Gupta is Senior Technical Director in National Informatics Centre
(NIC), New Delhi, India (e-mail: scgupta@nic.in).

S. K. Wasan is with Department of Mathematics, Jamia Millia Islamia,
New Delhi, India (e-mail: skwasan@gmail.com).

software. Our tool provides an environment for testing, which
helps to create testable object-oriented software by providing
(1) interactive interface for instrumentation of source-code
with probes and control commands, (2) interface to control the
inserted probes and control commands, externally, to display
internal execution details at unit, integration and system
levels, and, to create difficult-to-achieve states required for
testing of difficult-to-test conditions, respectively, (3) test
coverage report of probes at probe, method, class, inheritance
and dynamic binding levels and coverage of control
command, and (4) test log file for post analysis.

COTT is composed of two subsystems – instrumentation
and testing. The instrumentation subsystem provides an
interactive interface for instrumentation and preprocessing, to
produce a preprocessed program for the testing subsystem.
The testing subsystem displays test output. Additionally, the
testing subsystem provides test coverage reports and allows
analysis of the generated test log file.

COTT consists of several components –
• an instrumentation program that helps in insertion of

probes and control commands,
• a test preprocessor that collects details of instrumented

user program,
• a testability interface to make settings for probe and

control commands,
• a test display output interface that displays test output in

a hierarchical and tabular form,
• test coverage reporter which provides coverage

information at different levels based on probes and
control commands, and

• test file analyzer that supports post analysis of the
generated test log file.

The major contribution of this work is to provide a
systematic framework for testability viz. observability and
controllability. The observability framework focuses on
handling the perennial problem of large log output data.
Unlike previous work, the mechanism addresses observing the
internal execution details at unit, integration and system
levels. During unit testing, input/output of methods and
impact of method execution on state of object are observed.
The sequence of execution of classes and input/output of class
is observed during integration testing. The input/output of
integrated units is observed during system testing.

The controllability framework is based on a testing
mechanism that focuses on creation of difficult-to-create states
required for testing of difficult-to-test conditions. Unlike
previous work that requires fault-injection tools, each for

COTT – A Testability Framework for Object-
Oriented Software Testing

A. Goel, S.C. Gupta and S.K.Wasan

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4159

specific kind of faults, dynamically during runtime, our
mechanism is generic and systematic that requires provisions
to be made during software development phases.

In this paper, section II discusses testability of object-
oriented software. An overview of COTT is given in Section
III. Section IV and V describe the details of COTT subsystem.
In section VI we present implementation and test results of
our tool. Section VII describes related work. Finally, we state
the conclusion.

II. TESTABILITY OF OBJECT-ORIENTED SOFTWARE

The unique architecture and features like inheritance and
dynamic binding, has resulted in some issues involved in
testing of object-oriented software to be different from the
testing issues of conventional software [3][9]. In order to
handle the testing issues of object-oriented software,
conventional software testing tools have to be adapted or new
tools need to be developed.

Binder [1][23], Freedman [22] and Pettichord [5] stress the
need to design object-oriented software for testability.
According to Binder [23], “To test a component you must be
able to control its input and observe its output”. According to
Freedman [22], “observability refers to ease of determining if
specified inputs affect the outputs; controllability refers to the
ease of producing a specified output from a specified input”.

Observability: Our research has developed a probe-based
observability mechanism [1] that adapts probe for object-
oriented software testing. Probe is a method invocation [24]
having the syntax

 probe(probe_id, probe_message)
where, probe is a method name, probe_id is a unique

structured identifier identifying location of probe_message,
and, probe_message contains state-related attributes or
message, relevant at probe’s location.

The idea behind our mechanism is quite simple. Our
mechanism defines the structure of probe_id and
probe_message of probe as follows -

probe_id - “level_number/probe_number”
probe_message-“variable1:val1..variableN:valn msg:string”
where, level_number is L1, L2 and L3 for system level,

integration level and unit level testing respectively. The
probe_number is a unique integer in a class. val1, valn is
values of variables and string is a message.

Probes are inserted in source-code as Log.penter, Log.pexit
and Log.pmsg at method entry, exit and anywhere in between,
respectively. For example, Log.penter("L1/1", "msg:start
main");. The class “Log” defined in our tool based on probe-
based observability mechanism interacts with software
embedded with probes during testing.

During testing, probes are controlled externally–
activate/deactivate, to display internal execution details at
unit, integration and system levels.

Controllability: We define control condition as the
condition that is difficult-to-test, as state of software required
for its execution is difficult-to-create from user interface of
software. The state that is difficult-to-create from user
interface of software is defined as control state. Our research
has proposed and developed a controllability mechanism [2]
that facilitates creating control states, required for testing of

control conditions in object-oriented software. We identify
and classify control conditions [2] in two categories as-
(1) Special conditions, exception conditions and error

conditions that arise from software environment or
from within the software. The errors from software
environment may be due to resource exhaustion or
failure like disk-full, out of memory, disk sector bad,
network failure, frame lost etc. The errors from within
software may be due to internal resource limit
conditions, initial state setting and inter-module failure
like table full, timeout, read empty file, initialization,
assignment etc., and

(2) Specialized tests that require setting up of test
environment or additional code to perform the testing
activity, like, full-scale test, stress test, create large
input data, initialize software etc.

The controllability mechanism requires identification of
control state, creation of control environment for each
identified control state, and insertion of control commands in
source-code. To create control environment, the action to be
taken to create a control state is decided. For example, table
full condition may require - filling table with dummy data,
resource exhaustion/failure - throw exception, communication
software - block frame, create large input - generate data.
Next, the decided action is implemented and inserted as a
control method in user program. This may require assignment,
insertion of additional method in an existing class or a new
class (a class is defined that acts as a control pipe between
receiver and sender, facilitating testing of frame drop, frame
out of sequence etc.). In some cases, an exception is thrown;
for example, signaling disk full results in execution of code
handling disk full condition.

Our mechanism defines control command as a method
invocation having a structured control_id, as -
C.c(control_id). The control_id is “control_number/
control_name” where, control_number is a unique integer and
control_name is a string representing the condition to be
tested. ‘C’ and ‘c’ are class name and method name
respectively. Control command invokes the control method.
The control command is inserted in two formats-

Format 1. if (control command)
 {Control Method}
Format 2. if (Control State || control command)
 {Control Method}
The first format is used when an additional if-statement is

required to be inserted. The second format is used when the
control state to be achieved is already being detected by an if-
condition in user program. For example,

Format 1. if (C.c(“1/Initialize”)) sr.initialize()
Format 2. if (!(siteCommit_T=1)||(C.c(“1/abortCase”))) {};
The class ‘C’ defined in our tool interacts with user

program embedded with control command during testing.
During testing, control commands are externally activate/
deactivate and control breakpoint set. An active control
command activates control environment, resulting in creation
of Control State.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4160

III. COTT ARCHITECTURE

COTT provides an environment for testing based on probe-
based observability mechanism and controllability
mechanism. COTT helps tester in instrumentation of user
program with probes and control commands. The tool
provides tester with a testability interface, for accessing and
controlling control commands and probes externally during
testing, for the desired controllability and observability,
respectively. Additionally, the tool provides test coverage of
probes and control commands for a single, set and all test
cases combined. COTT also provides information about
probes that have not got executed, so that test cases can be
designed accordingly. The tool also stores internal execution
details in test log file which can be viewed offline using
testability interface.

The tool architecture is composed of two main
subcomponents, namely, instrumentation subsystem and
testing subsystem, as shown in Fig. 1. The purpose of
instrumentation subsystem is to insert probes and control
commands, and to create control environment in user
program. The subsystem also preprocesses user program to
store information about inserted probes and control
commands, required by testing subsystem.

Fig. 1 COTT overall architecture

The re-compiled preprocessed user program is input to

testing system. The testing subcomponent offers an
environment to execute, monitor and analyze the test. It
supports four features - (1) testability interface that allows
settings to be made for probes and control commands, (2)
output display in a tabular form, (3) visualization of test
coverage reports, and (4) analysis of test log file. The primary
purpose of settings made via testability interface is to facilitate
display of internal execution details at unit, integration and
system level, and creation of difficult-to-create states.

IV. INSTRUMENTATION SUBSYSTEM

Fig. 2 shows subcomponents of instrumentation subsystem.
A Java user program is input to instrumentation program. The
instrumentation program inserts probes and control commands
in source code of user program. The instrumented user
program produced as a result of instrumentation is
preprocessed using test preprocessor, to store information
about probes, control commands, inheritance hierarchy and

dynamic binding relationship. The final output of
instrumentation subsystem is the preprocessed user program
and files storing information gathered during preprocessing.

Fig. 2 Instrumentation Subsystem

Instrumentation Program provides an interactive

interface to tester, for instrumentation. The insertion of probes
by instrumentation program combines the information about
integrated units, which tester provides from this interface,
with the information of classes in user program, for creating
an instrumented code.

For identifying integrated units in user program, the
instrumentation program allows tester to interactively select
classes that represent the integrated units. Once identified,
probes are inserted by instrumentation program at beginning
and end of each method. The level_number of probe is L1 in
public methods of classes that interact with other integrated
units, level_number is L2 in public methods of rest of classes
and level_number is L3 in private and protected methods of
class. For inheritance coverage, instrumentation program
inserts ‘getClass()’ in probe_message of probes of inherited
methods, to find class invoking the inherited method.
Additionally, instrumentation program also provides an
interface to selectively insert probes having level_number L3,
anywhere in between beginning and end of a method.

To insert control commands in user program,
instrumentation program provides interface to tester (1) to
write control command and to identify the location where
control command is to be inserted, and, (2) to write control
method and to identify the location where control method is to
be inserted. The instrumentation program uses this
information to insert control commands and control method in
user program.

The user program embedded with probes and control
program is the instrumented user program, ready for
preprocessing by Test Preprocessor. Table I shows probes at
statement (3) and (4), control method largeInput() at statement
(2), and control command at statement (1) which invokes
control method largeInput() to create large input for B+ tree
software.

Test Preprocessor takes compiled instrumented user
program as input and collects information about classes,
methods, probes, inheritance hierarchy and dynamic binding
relationship, and, control commands and stores them in a file.

 Preprocessed
 User Program

Instrumen-

tation
Subsystem

User
Program

Tester

Testing

Subsystem

Instrumen-

tation
Program

User
Program

Tester

Instrument
ed User
Program

Preproces
sed User
Program

Test
Preprocessor

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4161

TABLE I
PROBE, CONTROL COMMAND AND CONTROL METHOD IN B+ TREE SOFTWARE

TO CREATE LARGE INPUT
class UserInterface {
 public static void main(String args[]) throws IOException
{ :
 if (C.c("1/LargeInput")) largeInput(); ----(1)
 : }
 public static void largeInput() throws IOException { -(2)
 int noOfKeys = 0;
 int key;
 Log.penter(“L2/9”, “enter large input”) -----(3)
 System.out.println("Enter number of keys(int)");
 noOfKeys = acceptKey();
 for (int i =0; i < noOfKeys; i++) {
 key=(int)java.lang.Math.round
 (java.lang.Math.random()*100);
 insert(key);}
 Log.pexit(“L2/11”, “exit largeinput”); } ----(4)

V. TESTING SUBSYSTEM

The testing subsystem works during execution of
preprocessed user program for testing, as shown in Fig. 3. The
following subsections describe the components of testing
subsystem, namely, Testability Interface, Test Display Output,
Test Coverage Reporter, and Log File Analyzer.

Fig. 3 Testing Subsystem

A. Testability Interface
Probes and control commands that have been inserted in

user program are externally controlled using probe setting and
control setting made via testability interface, during testing.
The testability interface displays current probe setting i.e.
probe activation/deactivation and probe breakpoint setting,
and, current control setting, i.e., control activation and control
breakpoint setting.

To activate and deactivate probes, tester uses the following
commands:

A: class_name/method_name/level_number/probe_number
D:class_name/method_name/level_number/probe_number
respectively. Output of only active probes is displayed on

screen and stored in test log file. Probes can also be referred to
in a generic style using a “*”. For unit testing, probes at
level_number L3 are activated. It results in activation of
probes at level_number L1, L2 and L3. Probes at
level_number L2 are activated during integration testing. It

results in activation of probes at level_number L1 and L2.
During system testing, probes at level_number L1 are
activated. For example, “A:Node/*/L2/*” activates all probes
at level number L1 and L2 in all methods of class Node.

The tester makes probe breakpoint setting as follows:
class_name/method_name/level_number/probe_number
A String
Probe breakpoint allows breakpoints to be set on selected

probes. On occurrence of break, execution of user program
pauses. The tester can observe already displayed probes and
change probe settings to observe rest of execution details.

For control setting, the control commands in user program
are displayed to tester. Tester selects a single or a group of
control commands to be activated. The tester also selects
control command to set control breakpoint.

B. Test Display Output
Test Display Output consists of two parts – Check Setting

and Test Output. Test settings made from Testability
Interface, and probe and control command are input to Test
Display Output. Fig. 4 shows interaction between Testability
Interface and Test Display Output.

Fig. 4 Interaction between Testability Interface and Test Display

Output

Check Setting checks activation and breakpoint status of
probe and control commands. For this, it performs two steps -
(1) it gets all probes and control commands from Test
Preprocessor and stores them in a buffer. It gets test settings
and marks probes and control commands in buffer as
active/deactive. (2) On receiving a probe or control command
that is being executed, it checks status of the received
command with marked settings in buffer and returns status of
activation and breakpoint setting (0-false, 1-true).

Test Output checks status of breakpoint setting for the
received command. If the received command is a probe, and
breakpoint is true, it allows tester to make new probe setting

User
Interface

User
Data

Testability
Interface Preprocessed

User Program

User Program
Output

Test
Display
Output
Test

Coverage
Reporter

Test
Log File
Analyzer

Tester

 Probe Test
 Control Setting
 Command Testability Interface

Breakpoint setting

 Probe Test
 Control Setting
 Command Status

 Screen Display
 Test Display Output

Test
Interface

Test
log file

Check
Setting

Test
Output

Probe
Setting

Executed
Probe, control

commands

Tester

Control
Setting

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4162

from Testability Interface. If false, it (1) stores all executed
and active probes and control commands in Test log file, (2)
displays probes on screen, and (3) stores all executed probes
and control commands (active and deactive).

Execution details displayed during testing consist of -
• Class being executed
• Method of the class being executed
• Value of parameters or messages at method entry/exit or

within method
• Hierarchy of execution of classes
• Probe identification to locate probe displaying

parameter/message, in the code
These execution details are displayed at unit, integration

and system levels. The internal execution detail of deleting a
node from link list, at unit level and integration level is shown
in Table II and Table III respectively. At unit level, code-level
behavior of user program is displayed. At integration level,
sequence of execution of classes and their input/output is
displayed. It does not display internal execution details of
class as shown during unit testing.

TABLE II

INTERNAL EXECUTION DETAILS AT UNIT LEVEL (DELETE NODE FROM LINKLIST)
(FROM [1]) (->ENTER, <-EXIT, --BETWEEN)

Class
Name

Method Name LevelNo./Probe No.

| List deleteNode(Node) L2/9->delete node
=Node@f133f325

| Node equals(Object) L2/13-> compare
=Node@2debf324

|--Node equals(Object) L3/16 msg: data equal

| Node

 L2/18<-comparison =true

| Node

| Node

getNext() L3/3->msg: get next node
L3/4-> next =Node@e96ff324

|--List deleteNode(Node) L3/11 msg: node deleted at
head

| List L2/13<-msg: end delete node

TABLE III
INTERNAL EXECUTION DETAILS AT INTEGRATION LEVEL (DELETE NODE FROM

LINKLIST) (FROM [1])
Class
Name

Method Name LevelNo./Probe No.

| List deleteNode(Node) L2/9->delete
node=Node@f133f325

| Node

| Node

equals(Object) L2/13->compare
=Node@2debf324
L2/18<-comparison =true

| List deleteNode(Node) L2/13<-msg: end delete
node

If the received command is a control command, and is true,

the if-condition enclosing the control command becomes true.
A true if-condition, results in execution of the control method
defined in if-condition, facilitating creation of a control state,
required for the testing of a control condition. For example, if
activation status of control command, (C.c("1/LargeInput"))
largeInput(), is returned true, it results in execution of method

largeInput(), that creates large input for B+ tree software, as
shown in Table I.

C. Test Coverage Reporter
The test coverage reporter provides test coverage of probes

at probe, method, class, inheritance and dynamic binding
levels, and, coverage of control commands. Coverage reports
are provided as percentage coverage, or, list of covered or
uncovered probes.

During testing of inheritance hierarchy, there is a need to
retest the inherited methods of superclass because inheritance
provides new context for inherited methods. The inherited
methods, thus, must be executed from class in which they are
declared and from class inheriting it. COTT displays
inheritance coverage as (class_name/method_name/class
invoking inherited method), where class_name is class in
which inherited method is declared and class invoking
inherited method is the inheriting class. As shown in Table IV,
methods getNext(), setNext() in class Node are invoked from
class Node, at statement (1), (3) and from inheriting class
IntNode, statement at (2), (4).

In a dynamic binding relationship, there is a need to test all
possible methods that can get bound at runtime for a single
method invocation. COTT displays coverage at dynamic level
as (class_name/method_name/ method_name from where
invoked), where method_name is dynamically bound method
and method_name from where invoked is method enclosing
call to dynamically bound method. As shown in Table V,
printData() defined in Node and IntNode, is invoked from
method printList().

TABLE IV

COVERAGE AT INHERITANCE LEVEL (OF INHERITED METHODS) (FROM [1])

3/Node/getNext() (1)
3/Node/getNext()/IntNode (2)
5/Node/setNext() (3)
5/Node/setNext()/IntNode (4)

TABLE V
COVERAGE AT DYNAMIC BINDING LEVEL (FROM [1])

11/Node/printData()/printList()
8/IntNode/printData()/printList()

D. Log File Analyzer
Log file analyzer accepts Test log file generated during

testing as an input and allows the tester to analyze this file,
offline. The tool allows the tester to use testability interface to
make probe activation and probe breakpoint settings to view
Test log file.

COTT Interfaces: The interfaces of COTT are: (1)

testability interface that allows tester to set probe activation
setting and probe breakpoint setting, (2) probe output display,
(3) testability interface which allows tester to set control
activation and control breakpoint settings, and (4) test
coverage report.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4163

VI. IMPLEMENTATION AND TEST RESULTS

COTT is implemented in Java 1.2. COTT consists of 33
Java classes. All user interfaces have been created using Java
Swing. The code size of tool is 5k lines which takes 130KB of
disk space.

COTT has been applied during the testing of some large
and complex object-oriented software systems - (1) UIServer
– It translates UIML document to WML/CHTML document.
UIServer is developed using Java and XML. (2) SMS Java is
developed in Java, for sending SMS from web or any
application using any SMS server. (3) Netram is a software
product, to be used as a service. The users of service can
view/watch any local site (physical location) remotely as
snapshots of images. (4) CIC-Drishya is client-server software
and has been installed at NIC, Delhi, to monitor the 500
Community Information Centers (CIC) connected via satellite.
The CIC are located in northeastern part of India. The
operators at different CIC’s send their attendance, image and a
message, if necessary, everyday.

Our concern in developing this tool is the overhead in
terms of instrumentation program size and execution time,
which we found is within reasonable limits.

TABLE VI

CODE SIZE OF INSTRUMENTED USER PROGRAM
User

Program
Un-

instrumented
(# lines)

Instrumented
(# lines)

% increase
over un-

instrumented

UIServer 8994 9699 8%

SMS Java 4000 4256 7%

Netram 6494 7258 12%

CIC-Drishya 6007 6727 12%

Instrumentation using COTT resulted in increase in the size
of code of user program, where the increase ranged from 7%
to 12% as shown in Table VI. This increase is due to
instrumentation of source code of user program with probes
and control commands. The number of lines of
instrumentation code varies with number of methods in user
program. The instrumented code increases with the increase in
number of methods in user program. UIServer and SMS Java
user programs had less number of long methods. However,
Netram and CIC-Drishya had more number of small methods
that resulted in more overhead.

TABLE VII
EXECUTION TIME OF INSTRUMENTED USER PROGRAM

User
Program

Execution
time of un-
instrumented
programs

Execution
time of
instrumented
programs

% increase in
execution time
over un-
instrumented

UIServer 5.60s 5.85s 4%

SMS Java 3.07s 3.24s 6%

Netram 2.84s 3.15s 11%

CIC-Drishya 2.65s 3.10s 17%

Table VII shows execution time of instrumented user
programs, using our tool. The increase in execution time
ranges from 4% to 17%. This execution time does not include
the time taken to make settings for probe and control
commands. We found that the increase in execution time of
user programs is proportional to the increase in size of
instrumented user program. Fig. 6 represents % increase in
execution time and size of user programs, graphically, for the
four user programs.

0

0.05

0.1

0.15

0.2

1 2 3 4 5

User Program

%
in

cr
ea

se

% increase in execution time

% increase in size

Fig. 5 Percentage increase in execution time and size of user
program

Table VIII shows test coverage report based on

information collected from probes inserted in user program.
The coverage at probe, method and class level is displayed as
percentage coverage. Test coverage report also generates the
list of uncovered probes at these levels, which helps to locate
untested code.

TABLE VIII

TEST COVERAGE REPORT
User

Program
Coverage at
probe level

Coverage at
method level

Coverage at
class level

UIServer 84% 88% 100%

SMS Java 69% 72% 100%

Netram 82% 55% 90%

CIC-Drishya 85% 75% 100%

We cite some specific instances of control conditions that

required used of controllability mechanism – (1) In Netram
software, a circular queue was required to be maintained to
store the snapshots. Our mechanism was used to test the
circular queue when it is full, (2) In CIC_Drishya, for testing,
the mechanism was used to create 500 CIC centre that could
send their messages, (3) in SMS-Java, Netram and CIC-
Drishya software, to test for frame lost, frame out of sequence,
timeout, duplicate frame, and (4) in SMS-Java, Netram and
CIC-Drishya software to send large number of frames in a
specific time.

Due to interactive nature of our tool, it is best fitted to be
used for testing for errors, understanding the execution of
software, and for generating test coverage report at inheritance
and dynamic binding level. The testability interface allows
user to “play” with internal execution details.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4164

VII. RELATED WORK

This section reviews the work done in observability, test
coverage and controllability in object-oriented software.

Observability: Traditionally, print statements and
debuggers are used, to get access to internal information.
However, print statements require frequent commenting and
uncommenting each time changes are made. Debugging tools
like gdb, give access to all information at a point in execution,
but what is important to observe, becomes harder to decide as
size of software increases.

There are several tools that use probes to instrument
software for testing. Probes are used in tools to trace
execution details or observe values of specific variables
during testing. Tools like Compaq’s JTREK [8], JOIE [10]
and BIT [13] use probes for byte-code instrumentation in Java
applications. They require insertion of watch points in
software, to observe value of selected parameters, return
values etc. These tools require selective instrumentation of
code, based on what needs to be observed. However, selective
instrumentation requires understanding of internal behavior of
software, which is a limitation for testing.

Tools like JIE [17], Aprobe [4] and instr [12] use probes
for source-code instrumentation of Java programs, for
method-level tracing, test coverage, execution logs, debugging
etc. But, the trace needed to understand the behavior of
software itself needs to be understood owing to its large size.

There are tools that verify the state of object. Payne et al.
[15], Turner et al. [6] inject assertions in source code and
monitor the state-space. But, true assertion only verifies the
state of object. It does not display internal execution details.
False assertion evaluation triggers an exception. McGregor et
al.[14], Tse et al. [26] emphasize state-based testing and
provide observer methods to check externally observable
states. Murphy et al. [11] provide state-reporting methods with
every class. But, the tools for state verification do not provide
internal execution details of source code.

There are limitations of these tools since they either allow
selective instrumentation or provide large internal execution
details that are difficult to handle. COTT handles large probe
output using the simple technique of selective activation and
deactivation of probes. COTT addresses the issue of observing
internal execution details at unit, integration and system
levels, required during testing of object-oriented software.

Test coverage: Tools like Panorama JavaTest [20],
CodeWork JCover [7] and TestWorks’ TCAT [27] instrument
the code to generate test coverage report at class, method,
statement and branch levels. Lingampally et al. [21] describe a
Java-based tool JavaCodeCoverage for test coverage
reporting. It records test coverage for various code-elements
and updates coverage information when the code being tested
is modified.

These tools provide coverage at different levels like class,
method, statement, branch level, but do not address coverage
at inheritance and dynamic level for object-oriented software.
COTT generates coverage of probes at inheritance and
dynamic binding levels, in addition to coverage of probes at
class and method levels.

Controllability: There are fault injection tools that create
or fake faults during testing of object-oriented software, to
create difficult-to-test conditions. The FIG tool [18] focuses
on testing of software against failures in underlying system
environment. Manaseer et al. [25] [25]propose a special fault
injection technique for memory faults. Houlihan [19]
describes a targeted software fault insertion subsystem, to
target common failures and errors during testing of distributed
file system software. Bieman et al. [16] extend C-Patrol
assertion insertion system for injecting application-level faults
like initialization, assignment and function fault to increase
coverage.

There are limitations to these tools and techniques as they
are designed to address specific kinds of faults. A single tool
is not capable of handling creation of different difficult-to-
achieve states required for testing of difficult-to-test
conditions. COTT allows tester to create different difficult-to-
achieve states required during testing of object-oriented
software.

VIII. CONCLUSION

Testability of software is defined as ease of performing
testing. Observability and Controllability are the two key
facets of testability. COTT is a framework that helps to design
testable software. COTT is an interactive tool and is well-
suited for observing internal execution details at unit,
integration and system levels for errors, understanding design
of software and for generating test coverage reports at
inheritance and dynamic binding levels.

In the future, we plan on extending this tool. We plan to
create library of control methods to help during
instrumentation with control commands. We also plan to
design generic software dashboard with standard controls, to
observe internal execution details of user program.

ACKNOWLEDGMENT
We are thankful to Dr Mukul Sinha, Director, Expert

Software Consultants Limited, to allow application of the
testing tool to different software projects – UIServer, SMS
Java, Netram and CIC-Drishya. All the four software are
operational. UIServer and SMS-Java were projects done for
other companies. UIServer software was developed for US-
based client. Netram and CIC-Drishya are products developed
by the company. CIC-Drishya is installed in NIC, Delhi. We
wish to thank Tanmoy, Lily, Pawan and Ramakant for their
help in implementation of testing tool.

REFERENCES
[1] A. Goel, S. C. Gupta, S. K. Wasan: “Probe Mechanism for Object-

Oriented Software Testing”, In Mauro Pezze, editor, Proceedings of
Fundamental Approaches to Software Engineering (FASE 2003),
Lecture Notes in Computer Science, LNCS 2621, Springer, Warsaw,
Poland, April 2003, pp. 310-324

[2] A. Goel, S. C. Gupta, S. K. Wasan: “Controllability Mechanism for
Object-Oriented Software Testing”, In Proceedings of Asia-Pacific
Software Engineering Conference (APSEC), IEEE Computer Society
Press, Chiang Mai, Thailand, Dec. 2003, pp. 98-107

[3] A. Orso, S. Silva, “Open Issues and Research Directions in Object-
Oriented Testing”, Proceedings of 4th International Conference on

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:12, 2008

4165

Achieving Quality in Software, Software Quality in the Communication
Society (AQUIS), Venice, Italy, February1998

[4] Aprobe Available:http://www.ocsystems.com
[5] B. Pettichord: “Design for Testability”, In Proceedings of STARWEST

Anaheim, California, Nov 2002
[6] C. D. Turner, D. J. Robson: “A State-Based Approach To The Testing

Of Class-Based Programs”, Software Concepts and Tools, vol. 16, no. 3,
1995, pp. 106-112

[7] Codework JCover. Available: http://www.codework.com/JCover/
[8] Compaq Jtrek. Available: http://www.compaq.com/java/download/jtrk
[9] D. E. Perry, G. E. Kaiser, “Adequate Testing and Object-Oriented

Programming” Journal of Object-Oriented Programming, Vol 2, No. 1,
1990, pp. 13-19

[10] G. A. Cohen, J. S. Chase, D. L. Kaminsky: “Automatic Program
Transformation with JOIE”, In USENIX Annual Technical Symposium,
1998, pp. 167-178

[11] G. C. Murphy, P. Townsend, P. S. Wong: “Experiences with Cluster and
Class Testing”, Communication of ACM, Sept 1994, pp. 39-47

[12] Glen Mc Clunskey & Associates LLC: Java source code
instrumentation. Available: http://www.glenmccl.com/instr

[13] H. B. Lee, B. G. Zorn: “BIT: A Tool For Instrumenting Java
Bytecodes”, In Proceedings of USENIX Symposium on Internet
Technologies and Systems, Monterey, California, Dec 1997, pp. 73-82

[14] J. D. McGregor, T. D. Korson: “Integrated Object oriented Testing and
Development Processes”, Communication of ACM, Sept 1994, pp. 59-77

[15] J. E. Payne, R. T. Alexander, C. H. Hutchinson: “Design-for-Testability
for Object Oriented Software”, Object Magazine, SIGS Publications
Inc., vol. 7, no.5, 1997, pp. 34-43

[16] J. M. Bieman, D. Dreilinger, L. Lin: “Using Fault Injection to Increase
Software Test Coverage”, In Proceedings of International Symposium
on Software Reliability (ISSRE), White Plains, New York, Oct 1996,
pp.166-174

[17] Java Instrumentation Engine. Available: http://dl.tromer.org/jie
[18] P. Broadwell, N. Sastry, J. Traupman. FIG: “A Prototype Tool for

Online Verification of Recovery Mechanisms”, In Proceedings of
Workshop on Self-Healing, Adaptive and Self-MANaged Systems
(SHAMAN), New York, June 2002

[19] P. J. Houlihan: “Targeted Software Fault Insertion”, In Proceedings of
STAREAST , Orlando, Florida, May 2001

[20] Panorama. Available: http://kb.panorama.com/JavaTest/
[21] R. Lingampally, A. Gupta, P. Jalote, “A Multipurpose Code Coverage

Tool for Java, In HICSS. 40th Annual Hawaii International Conference
on System Sciences, 2007.

[22] R. S. Freedman, “Testability of Software Components”, IEEE
Transactions on Software Engineering, vol. 17, No. 6, June 1991, pp.
553-563

[23] R. V. Binder: “Design for Testability in Object-oriented Systems”,
Communication of ACM, Sept 1994, pp. 87-101

[24] S. C. Gupta, M. K. Sinha: “Improving Software Testability by
Observability and Controllability Measures”, 13th World Computer
Congress,IFIP, vol. 1, 1994, pp. 147-154

[25] S. Manaseer, F. A. Masooud, A. A. Sharieh, “Testing Loaded Programs
Using Fault Injection Technique”, Proceedings of World Academy of
Science and Engineering and Technology (WASET), Vol. 3 Dec. 2004.

[26] T. H. Tse, Z. Xu, "A Formal framework for Improving Object oriented
Software Testing", 13th International Conference on Testing Computer
Software, Washington DC, 1996

[27] Testwork’s TCAT. Available: http://www.soft.com/TestWorks/

Dr. Anita Goel has got her Ph.D. in Computer
Science from Jamia Millia Islamia, Delhi, India
in 2005. She did her Masters in Computer
Applications from Department of Computer
Science, University of Delhi, India. Her research
interests include software testing, object-oriented
software, aspect-oriented software, distributed
systems, web services, service-oriented
architecture, software testability, web testing,
software maintenance, and operating system.
 She is reader in Department of Computer
Science, Dyal Singh College, University of

Delhi, India. She has 20 years of experience in teaching and research. She has
about 10 national and international publications, including papers in LNCS,
Springer, and IEEE Computer Society Press.
 Dr. Goel is a life member of Computer Society of India. One of her co-
authored paper received the “Best Paper Award” in conference in Delhi.

Dr. S.C. Gupta received B.Tech (Electrical
Engg.) degree from Indian Institute of
Technology, New Delhi in 1975 and PhD degree
(Software Engg) from Birla Institute of
Technology and Science, Pilani in 1993. His
research interests include software testability,
distributed databases, grid computing and
information security.
 He is currently Senior Technical Director in
National Informatics Centre (NIC), CGO
complex, New Delhi. He has over 30 years of
experience in research and development and has

guided over 100 B.Tech and M.Tech. projects. He has over 15 national and
international publications, including papers in IFIP Congress, LNCS Springer,
and IEEE Computer Society Press.
 Dr Gupta has visited Sydney University, Australia, on UNDP fellowship in
1983.

Dr..S. K. Wasan is PhD from Delhi, He did his
M.S. from Oregon. His field of interest includes
coding theory, data mining and software testing.
 He is Professor in Department of Mathematics,
Jamia Millia Islamia, Former Registrar University
of Delhi (1992-1996) and Dean Faculty of Natural
Science, Jamia Millia Islamia (1998-2000). He has
taught at Ramjas College (University of Delhi),
University of Oregon and University of Aden. He
has published research papers in international
journals on coding theory, data mining, application

of data mining to healthcare and software testing.
 Prof. Wasan is Fellow IETE, Member of Society of Mathematical Sciences
and Visitor's nominee to first Academic Council of Assam University. He
visited Thammasat University (Bangkok) and University of Philippines on a
Regional Fellowship of Third World Academy of Sciences.

