
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

446

Abstract—In this paper we analyze the core issues affecting

software architecture in enterprise projects where a large number of
people at different backgrounds are involved and complex business,
management and technical problems exist. We first give general
features of typical enterprise projects and then present foundations of
software architectures. The detailed analysis of core issues affecting
software architecture in software development phases is given. We
focus on three main areas in each development phase: people,
process, and management related issues, structural (product) issues,
and technology related issues. After we point out core issues and
problems in these main areas, we give recommendations for
designing good architecture. We observed these core issues and the
importance of following the best software development practices and
also developed some novel practices in many big enterprise
commercial and military projects in about 10 years of experience.

Keywords—Software architecture, enterprise projects.

I. INTRODUCTION
NE of the major issues in software systems development
today is quality. A quality attribute is a nonfunctional

characteristic of a component or a system. ISO/IEC 9126-1 [1]
defines a software quality model. According to this definition,
there are six categories of characteristics (functionality,
reliability, usability, efficiency, maintainability, and
portability), which are divided into subcharacteristics. The
idea of predicting the quality of a software product from a
higher-level design description is not a new one. In 1972,
Parnas [2] described the use of modularization and
information hiding as a means of high level system
decomposition to improve flexibility and comprehensibility.
In 1974, Stevens et al. [3] introduced the notions of module
cohesion and coupling to evaluate alternatives for program
decomposition. A software module is stable if cohesion (intra-
module communication) is strong and coupling (inter-module
interaction) is low. Good software architecture tries to
maximize cohesion and minimize coupling.

One of the major design tasks in building enterprise
applications is to design good software architecture. During
recent years, the notion of software architecture has emerged
as the appropriate level for dealing with software quality. The
software architecture of a system is defined as “the structure

Manuscript received October 14, 2005.
Halûk Gümüşkaya is with the Department of Computer Engineering at

Fatih University, Istanbul, Turkey. (phone: +90-212-8890810; fax: +90-212-
8890906; e-mail: haluk@fatih.edu.tr).

or structures of the system, which comprise software
components, the externally visible properties of those
components, and the relationships among them” [4]. This
definition focuses only on the internal aspects of a system and
most of the software analysis methods and tools are based on
it. Another definition establishes software architecture as “the
structure of components in a program or system, their
interrelationships, and the principles and design guidelines
that control the design and evolution in time”. This process-
centered definition takes into account the presence of
principles and guidelines in the architecture description. We
take this second definition as a our base definition and add
other factors to this in section 3 and find a more
comprehensive definition for software architecture especially
in enterprise projects.

Although project management techniques, software
development methodologies, design patterns, development,
testing and architectural modeling techniques and tools have
developed in the last decade; many software projects still fail
and the percentage of successful projects completed on-time
and on-budget is still very low. The Standish Group’s “Chaos
Report” in 1994 [5] reported that only 16.2% of software
projects were completed on-time and on-budget. In 2004, 29%
of projects completed on-time and on-budget, with required
features and functions. Although the improvement is
significant, it is dismal when compared with traditional
engineering disciplines, such as architecture or electrical
engineering. In the literature there are many excellent
resources, surveys, and research papers showing the critical
success and failure factors of software projects [6]–[11].
McConnell in his book [6] lists 36 classical software mistakes
and divides these into four groups: People, process, product,
and technology related mistakes. These and other classical
mistakes in software development have small and large affects
on software architecture. Bad software architecture is one of
the reasons for software failures.

In this paper we analyze core issues affecting software
architecture in enterprise projects where a large number of
people at different backgrounds are involved and complex
business, management and technical problems exist. We look
at all social, organizational, managerial, and business
implications and core aspects of development activities
affecting software architecture.

This paper is structured as follows. In Section 2, we first
give general features of typical enterprise projects. In Section
3, we present foundations of architectures. In Section 4, the

Core Issues Affecting Software Architecture
in Enterprise Projects

Halûk Gümüşkaya

O

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

447

detailed analysis of core issues affecting software architecture
in software development phases is given. We focus on three
main areas in each development phase: people, process, and
management related issues, structural (product) issues, and
technology related issues. After we point out core issues and
problems in these main areas, we give recommendations for
designing good architecture.

II. GENERAL FEATURES OF TYPICAL ENTERPRISE PROJECTS
The typical enterprise applications are internet and intranet

sites, enterprise resource planning applications, inventory
management systems, payroll applications, management
information systems. Many enterprise projects use different
agile development models (extreme programming, feature
driven development, and so on) and evolutionary prototyping.
In planning and management, project planning is done
incrementally, test and quality assurance planning are
performed as needed, mostly they have informal change
control. Many typical projects have informal requirements
specification, and design and coding are combined. In
construction, many project have individual coding, some have
pair programming. Most of them have informal check-in
procedure or no check-in procedure. In testing and quality
assurance, developers test their own code, some projects use
test-first development. Generally there is little or no testing by
a separate test group. They have informal deployment
procedure. Enterprise projects tend to benefit from highly
iterative approaches, in which planning, requirements, and
architecture are interleaved with construction, system testing
and quality assurance activities. These general features have
very important affects on the definition, design, construction,
testing, and deployment of an enterprise architecture.

III. FOUNDATIONS OF SOFTWARE ARCHITECTURES AND
GENERAL ISSUES

Software architecture is more than just a technical blueprint
of a complex enterprise project. In addition to its technical
functions, software architecture has important social,
organizational, managerial, and business implications [4]. We
can’t simply regard it as a result of technical work and ignore
other implications. There are many people affecting the
construction of a software system. Customer, end users,
analysts, product managers, architects, developers, project
manager, business architects, sales people are few examples.
These are called stakeholders. Stakeholders have different
concerns and goals, some of which may be contradictory.
Architectures are also influenced by the structure and the
nature of the development organization. There are three
classes of influence that come from the developing
organization: immediate business, long-term business, and
organizational structure. The other important influence is the
background, experience and the education of the architects.
The technical environment will also influence the architecture.

Influences on architecture come from a wide variety of
sources, and some of are only implied, while others are

explicitly in conflict. Architects must understand the business
and technical requirements, effectively communicate with all
stakeholders, and resolve conflicting problems. For an
effective architect, communication, diplomacy and negotiation
skills are very important.

IV. ISSUES IN SOFTWARE DEVELOPMENT PHASES
Software projects are divided into 3 conceptual stages, as

shown in Fig 1 [12]. At the beginning of the project, the focus
is on “discovery”— especially discovery of the user’s main
requirements. This first phase is characterized by some
technical investigation work such as interviewing users,
building user interface prototypes and developing and
working on a requirements document. The project manager
prepares a management document like a software project
management plan [13] in this phase. In the middle of the
project, the focus shifts to invention. At the macro level,
architects invent a software architecture and design. At the
micro level, each package or class may require small
inventions. During the final part of the project, the focus shifts
again, this time to implementation. As Fig 1 illustrates, these
three phases occur to some degree throughout a software
project.

Fig. 1 Conceptual phases of a software project

A simplified diagram of software development phases of a

typical process based software project is shown in Fig 2. The
project is first carefully defined and designed and then
functionality is delivered in successive iterations.

Fig. 2 Development phases and iterative delivery plan

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

448

The detailed phases of a well defined software development
in many current popular development processes are shown in
Fig 3. Many classical software engineering sources and
processes divide requirements and architecture design phases
into two sub phases [7], [14], [15] and there are totally eight
phases [14] in a software lifecycle.

Fig. 3 Detailed software development phases and iterative delivery
plan

In the following subsections, the detailed analysis of the

core issues affecting software architecture in these software
development phases is given. We focus on three main areas in
each development phase: people, process, and management
related issues; structural (product) issues; and technology
related issues.

Many projects have generally a fuzzy front end which is the
time before project officially starts—in approval, budgeting,
and feasibility-investigation phases. Projects often spend
weeks or months in the fuzzy front end, and then try to finish
rapidly. People must be put in charge as early as possible,
goals and objectives for front-end activities must be set and
actively managed by a risk management plan.

A. Creating the Business Case for the Product
This is the first important step in creating and constraining

any future requirements. The questions such as cost, business
goals, target market, the product’s targeted time to market,
should be defined at this phase. Business people, product
managers, system architects must be in charge in defining
business case for the product.

B. Requirements Elicitation and Analysis Phases
The requirements process consists of two activities:

Requirements elicitation and requirements analysis [15].
Requirements elicitation is the definition of the system in
terms understood by the customer (“Problem Description”).
Requirements analysis is the technical specification of the
system in terms understood by the developer (“Problem
Specification”).

In the requirements elicitation and analysis phases, system
analysts, business and product managers, system architects
start to define an enterprise architecture in an enterprise

project. There are many different approaches to describing the
elements of an enterprise architecture. The most popular
approach to describing an enterprise architecture that has
grown in popularity in the past few years is based on a
framework developed by John Zachman. Zachman originally
proposed his framework in 1987 by his paper [16]. Zachman
puts an emphasis on describing what exists on each level of an
enterprise. In the simplest version of the framework, Zachman
proposes to describe within each level: what things are
involved (data); how things are done (function), where things
are done (network). This framework is used by IT managers,
developers, and business managers to define an enterprise
architecture for a large organization.

The classical mistakes which many projects do at this
requirements elicitation and analysis phase: insufficient senior
staff on the requirements team, developing incomplete,
unstable written requirements and design documents,
insufficient user input, and setting an optimistic (or frequently
changing) schedule. Incomplete and changing requirements
are the first cause of software project failures [5].
Comprehensive, 100% stable requirements are usually not
possible, but most requirements changes arise from
requirements that were incompletely defined in the first place,
not “changing markets” or other similar reasons. Involving
users throughout the project is a critical software project skill.

Some of the best practices and techniques for defining
stable, complete, written requirements: requirements
workshop, user interface prototyping, user interviews, use
cases, preparing user manual as specification at the beginning
of the project, usability studies, incremental delivery,
requirements reviews/inspections [7].

We believe the importance of breaking software project
funding into two major stages as shown in Fig 2 and Fig 3.
The project manager first requests funding for the exploratory
phase during which the first 10 to 20 percent of the project is
completed. This gives the organization an opportunity to look
at canceling a project as a positive decision. Deferring the
bulk of the funding request until after the project is 10 to 20
percent complete provides for much more reliable and realistic
funding requests for the bulk of the project. Requiring a
project manager to complete 10 to 20 percent of a project
before requesting funding for the rest of it forces the manager
(and the team) to focus on the upstream activities that are
critical to the project’s success [7].

At the end of this phase, the project team holds a
Requirements and Planning Checkpoint Review. In
conjunction with that review, senior management or the
customer makes a go/no go decision, and then the project
manager requests funding for the remainder of the project.
The following items can be checked in this review: Name of
project’s key decision maker(s), team, roles, vision statement,
business case for the software, preliminary effort and schedule
goals and estimates, top 10 risks list, user interface style
guide, user interface prototype, user manual, requirements
specification, software quality assurance plan.

Software industry data from the 1970s to the present day

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

449

clearly indicates that projects will run best if appropriate
preparation activities are done before construction begins in
earnest. If software quality is emphasized at the beginning of
the project, the development team plans for, requires, and
designs a high-quality architecture, and at the end a product.
In general, the principle is to find an error as close as possible
to the time at which it was introduced. The longer the defect
stays in the software development phases, the more damage it
causes further down the phase. Since requirements are done
first, requirements defects have the potential to be in the
system longer and to be more expensive. Defects inserted into
the software upstream also tend to have broader effects than
those inserted further downstream. That also makes early
defects more expensive. Fig 4 shows the relative expense of
fixing defects depending on when they’re introduced and
when they’re found [17].

Fig. 4 Average cost of fixing defects based on when they’re

introduced and detected

C. Architecture Design Phase
The software architecture design process generally consists

of two activities: High level design and low level design. High
level design is also known as “preliminary design” or “system
design”, and low level design is known as “detailed design” or
“object design” [14], [15].

The typical system design (“high level” or “top level”
design) activities are as follows [15]: Determining design
goals, subsystem decomposition, handling concurrency,
hardware/software mapping, persistent data management,
global resource handling and access control, software control,
boundary conditions.

These are the typical object design (“low level design”)
activities [15]:

1. Reuse: Identification of existing solutions, use of
inheritance, off-the-shelf components and additional solution
objects, and design patterns [18]–[20]

2. Interface specification (describe precisely each class
interface)

3. Object model restructuring (transform the object design
model to improve its understandability and extensibility)

4. Object model optimization (transform the object design
model to address performance criteria such as response time
or memory utilization).

The quality of the architecture determines the conceptual
integrity of the system. That in turn determines the ultimate
quality of the system. A well thought-out architecture
provides the structure needed to maintain a system’s
conceptual integrity from the top levels down the bottom. It

provides guidance to programmers—at a level of detail
appropriate to the skills of the programmers and to the job at
hand. It partitions the work so that multiple developers or
multiple development teams can work independently. Good
architecture makes construction easy. Bad architecture makes
construction almost impossible.

The architecture should define the major building blocks in
a program. Depending on the size of the program, each
building block might be a single class, or it might be a
subsystem consisting of many classes. The architecture
doesn’t need to specify every class in the system; aim for the
80/20 rule: specify the 20 percent of the classes that make up
80 percent of the systems’ behavior [21], [22].

We have observed the importance of that the architecture
should be the product of a single or a small group of architects
with an identified leader in a large enterprise project [4]. In
this our project experience we saw that the company manager
tried to please most of the developers by letting them to be in
the architectural meetings. In these meetings there were a lot
of useless technical discussions and long wasted hours.

Creating, Buying or Selecting the Components and the
Software Platform of the Architecture: The most radical
solution to building software is not to build it at all—to buy it
instead. You can buy GUI controls, database managers, image
processors, graphics and charting components, Internet
communications components, security and encryption
components, spreadsheet tools, text processing tools—the list
is nearly endless. One of the greatest advantages of
programming in modern GUI environments is the amount of
functionality you get automatically: graphics classes, dialog
box managers, keyboard and mouse handlers, code that works
automatically with any printer or monitor, and so on. If the
architecture isn’t using off-the-shelf components, it should
explain the ways in which it expects custom-built components
to surpass ready-made libraries and components.

Selecting a reference platform, say the J2EE or .NET, as the
starting point for a product or product line has strategic
implications. The selection of one community over another
has major cost implications and future development
investments.

If the plan calls for using pre-existing software, the
architecture should explain how the reused software will be
made to conform to the other architectural goals—if it will be
made to conform. The architecture should clearly describe a
strategy for handling changes. The architecture should show
that possible enhancements have been considered and that the
enhancements most likely are also the easiest to implement.

Architecture design is sloppy because it’s hard to know
when your design is “good enough.” How much detail is
enough? How much design should be done with a formal
design notation, and how much should be left to be done at the
keyboard? When are you done? Since design is open-ended,
the most common answer to that question is “When you’re out
of time.”

Communicating the Architecture: The architecture
should be well documented with static and dynamic views,

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

450

using an agreed-on notation like UML (Unified Modeling
Language) and design patterns that all stakeholders can
understand. It should be reviewed by the project’s
stakeholders [23].

Analyzing and Evaluating the Architecture: The
architecture should be analyzed for applicable quantitative
measures and formally evaluated for quality attributes [24].

D. Iterative Implementation Phase
The architecture should lend itself to incremental

implementation via the creation of a “skeletal” system in
which the communication paths are exercised but which at
first has minimal functionality.

Ensuring Conformance to the Architecture: The
implementation may or may not conform to the desired
architectural design. The purpose is to show in numbers how
much the implemented system is worse than a desired
architecture or another dependency-minimizing architecture.
Refactoring techniques [25] are applied to improve the
existing code after the conformance analysis and testing
activities.

E. Testing Phase
The well architected system can be used to “grow” the

system incrementally, easing the integration and testing
efforts. There are generally four different testing activities in
an enterprise project [15]: Unit testing, integration testing,
system testing, and acceptance testing. Unit testing is carried
out by developers, and it confirms that subsystems are
correctly coded and carry out the intended functionality.
Groups of subsystems (collection of classes) and eventually
the entire system are tested by developers in integration
testing. The main goal is to test the interfaces among the
subsystems. In system testing the entire system is tested by
developers to determine if the system meets the global
functional and nonfunctional requirements. The client carries
out the acceptance tests to evaluate the system delivered by
developers. The main goal is to demonstrate that the system
meets customer requirements and is ready to use. The
different components and views of the architecture are tested
during these different activities. Testing process and testers
have also a very important affect on software architecture.

V. CONCLUSION
The author of this paper has observed these core issues

affecting software architecture and the importance of
following the best software development practices and also
developed some novel practices in many big enterprise
commercial and military projects in his about 10 years of
project experience. He worked 5 years as Senior and Chief
Researcher (in his last year) at the Scientific and Technical
Research Council of Turkey-National Research Institute of
Electronics and Cryptology (TÜBİTAK–UEAKE) between
5/1997 and 7/2002. During this period, he contributed to two
large enterprise military projects. He worked in various
institute project management process improvement teams as

project manager.
He was a member of the project team in his first project at

TÜBİTAK–UEAKE between 1997 and 1999. That project
was the first large project in the institute, and we were using
some new technologies, like Java, at that time. We had many
problems related with people, development processes,
management related issues, structural (product) issues, and
technology. This first project lasted about 7 years, and
produced a large software system of questionable quality,
stress, burnt out developers, higher turnover, reduced esteem
and loyalty, weakened capacity for the next project, strained
relations among project stakeholders, more experience with an
unrepeatable process.

The author left that project and started to form a new
enterprise project team as project manager in 1999. He applied
some new project management techniques and the level 2
project management processes of CMM (Capability Maturity
Model) to his development team. We started to use UML and
Design Patterns. These techniques assist the project team in
visualizing a system as it is or as it is intended to be, help in
specifying the system’s structure and behavior, provide a
template that guides in constructing the system, document the
decisions that the project development team has made. This
second enterprise project was completed on-time and on-
budget, so in one respect it was a big success. But heavy
processes of CMM caused some people related problems.
During at about this time, light weight processes like XP
(Extreme Programming) started affecting other heavy
development processes.

In 8/2002 the author joined the Fatih University as an
Associate Professor of the Computer Engineering Department.
He continues to work on the problems of enterprise projects as
a consultant and a researcher on software engineering.

REFERENCES
[1] ISO/IEC 9126-1, Software Engineering - Product Quality - Part 1:

Quality Model, 2001.
[2] D. Parnas, “On the Criteria to be Used in Decomposing Systems into

Modules”, Communications of ACM, vol. 15, no. 12, pp. 1053-1058,
1972.

[3] W.P. Stevens, G.J. Myers, L.L. Constantine, “Structured Design,” IBM
Systems Journal, vol. 13, no. 2, pp. 115-139, 1974.

[4] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd
Edition, Addison-Wesley, 2003.

[5] The CHAOS Reports, http://www.standishgroup.com .
[6] S. McConnell, Rapid Development, Microsoft Press, 1996.
[7] S. McConnell, Software Project Survival Guide, Microsoft Press, 1997.
[8] J. S. Reel, “Critical Success Factors In Software Projects”, IEEE

Software, May/ June 1999, pp. 18-23.
[9] A. Senyard, M. Michlmayr, “How to Have a Successful Free Software

Project”, Proceedings of the IEEE 11th Asia-Pacific Software
Engineering Conference (APSEC’04), November 2004, pp. 84-91.

[10] J. M. Verner, N. Cerpa, “Australian Software Development: What
Software Project Management Practices Lead to Success?”, IEEE
Australian Software Engineering Conference (ASWEC’05), March 2005,
pp. 70-77.

[11] J. M. Verner, W. M. Evanco, “In-House Software Development: What
Project Management Practices Lead to Success?”, IEEE Software,
January 2005, pp. 86-93.

[12] G. Booch, Object Solutions: Managing the Object-Oriented Project,
Addison Wesley, 1996.

[13] IEEE Standard 1058.1-1987, Software Project Management Plan.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:9, 2007

451

[14] Recommended Approach to Software Development, NASA-Software
Software Engineering Laboratory Series, Revision 3, June 1992.

[15] B. Bruegge, A. H. Dutoit, Object-Oriented Software Engineering:
Conquering Complex and Changing Systems, Using UML, Patterns, and
Java, Prentice-Hall, 2004.

[16] J. A. Zachman, “A Framework Systems Architecture”, IBM System
Journal, Vol. 26, No. 3, See also www.zifa.com.

[17] S. McConnel, Code Complete: A Practical Handbook of Software
Construction, 2nd Edition, Microsoft Press, 2004.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[19] M. Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2003.

[20] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns, 2nd Edition, Prentice
Hall, 2003.

[21] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development
Process, Addison Wesley, 1999.

[22] P. Kruchten, The Rational Unified Process: An Introduction, 2d Ed.,
Addison Wesley, 2000.

[23] P. Clements, ed., Documenting Software Architectures: Views and
Beyond, Addison Wesley, 2003.

[24] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison Wesley, 2002.

[25] M. Fowler, Refactoring, Improving the Design of Existing Code,
Addison-Wesley, 1999.

