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Abstract—In this paper, the modified Gauss-Seidel method with
the new preconditioner for solving the linear system Az = b, where
A is a nonsingular M-matrix with unit diagonal, is considered.
The convergence property and the comparison theorems of the
proposed method are established. Two examples are given to show
the efficiency and effectiveness of the modified Gauss-Seidel method
with the presented new preconditioner.
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I. INTRODUCTION

N this paper, we consider the Gauss-Seidel method for
solving preconditioned linear system

P Az = Pb, M

where P, called the left preconditioner [2], is nonsingular,
A = (a;,;) is an n x n nonsingular M-matrix, = and b are
n-dimensional vectors. Throughout this paper, without loss
of generality, we always assume that A has unit diagonal
elements, i.e., it has the foom A = I — L — U, where [ is
the identity matrix, —L and —U are strictly lower-triangular
and strictly upper-triangular parts of A, respectively.

A variety of left preconditioners P were proposed, see
[31, [4], [5], [6], [12] and references therein. In 1991 A.D.
Gunawardena et al. [3] proposed the preconditioner Ps =
I+ S5, where S is given by

@5 341,
S:(S’h]):{ O'+1

In 2004, M. Morimoto et al. [6] have further extended the
preconditioner P as Ps,, = I + S + S,,, where

—Q4 K,y 27 />Z+1,
S = (o) = { o I

with k; = min {j : max; |a;;|,i <n—1, j >i+1}.

Note that the preconditioners P, and Pk, are constructed
only by the elements from the upper triangular part of the
matrix A, the preconditioning effect is not observed on the
last row. To provide the preconditioning effect on the last row,
many preconditioners are proposed, see for example [12] and
references cited therein. Motivated by the same ideals, in this
paper we propose the following preconditioner:

Psmax:I+S+Sm+Rm7 (2)

1= 1,27"'7TL—1;
otherwise.

i=1,--,n—
otherwise,

where

70,'7'7 l:nv.]:k“’
Rm = ((T’ﬂl/)’i,j) = { Oi ! otherwise7 "
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with k, = min{j| |a, ;| = max{|a,|,l =1,---,n—1}}.

In the following, we will discuss the convergence property
of modified Gauss-Seidel (MGS) method with preconditioner
(2), and then compare such MGS method with the classical
Gauss-Seidel method and MGS method with preconditioners
Ps,,, respectively.

The remainder of the paper is organized as follows. Next
section is the preliminaries. The convergence property of the
proposed method and some comparison theorems are studied

in Section III. Finally, in Section IV an example is given to

confirm the theoretical analysis.

II. PRELIMINARIES

For the convenience of readers, in this section we give some
of the notations, definitions and lemmas, which will be used
in the sequel.

For A = (a;;), B = (b;;) € R"™", we writt A > B
if a; ; > b;; holds for all 4,5 =1,2,---,n. A > O, called
non-negative, if a; ; > 0 for all 4,5 = 1,2,---,n, here and in
the sequel, O is used to denote an n x n zero matrix. For the
vectors a, b € R™, a > b and a > 0 can be defined in the
similar manner.

Definition 1. [11] An n X n matrix A is a L-matrix if
aj; >0,i=1,---,nanda;; <Oforalli,j=1,---,n, i #
j. A nonsingular L-matrix A is a nonsingular M-matrix if
A1 > 0.

Lemma 1. [9] Let A be a non-negative m X n nonzero
matrix. Then

(a). p(A), the spectral radius of A, is an eigenvalue of A;

(b). There exists a positive eigenvector corresponding to
p(A);

(©). p(A) is a simple eigenvalue of A;

(d). p(A) does not decrease when any entry of A is
increased.

Definition 2. Let A be a real matrix. Then

A=M-N

is called a splitting of A if M is a nonsingular matrix. The
splitting is called

(a). regular if M~ > O and N > O [9];

(b). weak regular if M~! > O and M~'N > O [1];

(c). nonnegative if M~'N > O [8];

(d). M-splitting if M is a nonsingular M -matrix and N >
O [71].

Definition 3. We call A = M — N the Gauss-Seidel splitting
of A, if M = I — L is nonsingular and N = U. In addition,
the splitting is called
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(a). Gauss-Seidel convergent if p(M~'N) < 1;

(b). Gauss-Seidel regular if M~1 = (I — L)™' > O and
N=U2>O0.

Lemma 2. [4] Let A = M — N be an M-splitting of A.
Then p(M~'N) < 1 if and only if A is a nonsingular M
matrix.

Lemma 3. [1] Let A be a nonnegative matrix. Then

(a). If ax < Ax for some nonnegative vector x, x # 0, then
a < p(A).

(b). If Az < Bz for some positive vector z, then p(A) < S.
Moreover, if A is irreducible and if 0 # ax < Ax < Bz for
some nonnegative vector x, then

a<p(4)<pB

and x is a positive vector.

Lemma 4. [10] Let A be a nonsingular M matrix, and let
A = M;—N; = My— N> be two convergent splittings, the first
one weak regular and the second one regular. If M~ > My L
then

p(M{*Ny) < p(My " No) < L.

III. CONVERGENCE PROPERTY AND COMPARISON
THEOREMS

In this section, the convergence property theorem of the
MGS method with the preconditioner Psp,.x iS given, the
effectiveness of the preconditioner Ps .« for the MGS method
is confirmed by establishing some comparison theorems.

We split the preconditioned matrices A = P;A, Agp =
PsmA and As max = Ps maxA as

As = Mstsv
Asm = Msmstrru
Asmax = Msmax _Nsmaxv
where
M, = I-D-L-E
My, = I-D-D —-L—E—F, 4
Mypox = [-D—D —L—E—E
_Dl/ _ E/l +R7n
and
N, = U-S5+48U,
Ny = U—-S—-8,+SU+S,U~+F, 4)
Noymax = U—-8-8,+SU+S,U+ F'.

In (3) and (4), D, E are the diagonal and strictly lower
triangular part of SL, D', E' and F’ are the diagonal,
strictly lower and strictly upper triangular parts of S,,L,
D" and E” are the diagonal and strictly lower triangular
parts of R,,,(L + U), respectively. Moreover, if we make the
assumption (A):

0<ajip1air1;+aikar: <1, =1, n—2;
0< Qi 41054145 < 1, t=n-—1;
0< Ak, Okyy n < 1,

then M, and M,,, are nonsingular [6]. It is easy to see that the
matrix M pax 1S nonsingular, and the MGS iteration matrix
Tomax = ML Ngmax for Agmax is well defined.

S max

A. Convergence property

In what follows, we show that the splitting Agmax =
M max — Nsmax i the regular and Gauss-Seidel convergent
splitting when A is an M -matrix.

Theorem 1. Let A be a nonsingular M-matrix with unit
diagonal elements. If the assumptions (A) is satisfied, then
Asmax = Msmax — Nsmax 18 the regular and Gauss-Seidel
convergent splitting.

Proof. Note that the assumption (A) is satisfied, the diagonal
elements of A;pnax are positive and M, n}lax is well defined.
It is known that (see [1]) an L matrix A is a nonsingular M
matrix if and only if there exist a positive vector y such that
Ay > 0. By taking such y, the fact that I +S+S,, + R, > O
implies Agmaxy = (I +S5+ .Sy, + Ry,)Ay > 0. Consequently,
the L-matrix Agmax i @ nonsingular M -matrix, which means
that A7}, > 0.

From L > Ryax > O, we known that L+ E+E'+E" > O.
Under the assumption (A), we have D+ D'+ D" < I, so that
(I-D—-D"—D")> 0. Hence

M—l
= [I-D-D' -D")—(L+E+E +E")!
= [-I-D-D' -D"Y"YL+E+E +E")]™!
-(I - D— D/ o DN)71
= {I+UI-D-D -D"Y"YL+E+E +E"
+(I-D-D' =Dy Y L+E+E +E"N?*+---
+[(If D—D 7DN)71(L+E+E/ +E”)}n71}
~(I - D— D/ _ D//)—l
> 0,

here we use the fact that for the strictly lower triangular matrix
L+ E+ E' + E”, the equality (L+ E+ E' + E")" = O
holds.

On the other hand, it is easy to see that Ngpax = U —
S—8,+SU+S,U+F >0 sinceU >8—5, and
SU +8S,, U+ F’" > O. Therefore, it follows from Definition 2,
3 and Lemma 2 that A ax = Mg max — Vs max 18 the regular
and Gauss-Seidel convergent splitting.

Remark 1. Similar to the Theorem 1, under the assumption
(A), one can easily get that A, = Mg, — Ny, is the regular
and Gauss-Seidel convergent splitting when A is a nonsingular
M -matrix with unit diagonal elements.

B. Comparison theorems

In this subsection, by establishing some comparison theo-
rems, we confirm that the MGS method with the precondi-
tioner P; .« 1s superior to the classical Gauss-Seidel method
and the MGS methods with the preconditioners Pk, .

Comparing p(T') with p(Tsmax), We have the following
comparison theorem:

Theorem 2. Let A be a nonsingular M -matrix with unit
diagonal elements. Then under the assumption (A), we have

P(TS maX) < p(T) <1l

Proof. From Theorem 1, we know that Agn.c =
Py maxA = Msmax — Nsmax 1S the Gauss-Seidel convergent
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splitting, i.e., p(Tsmax) < 1. Since A is a nonsingular M-
matrix, the classic Gauss-Seidel splitting A = (I — L) — U of
A is clearly regular and convergent, that is to say p(7) < 1.
Therefore, in what follows, we only need to show the
inequality p(Tsmax) < p(T') holds.

Firstly, consider the following splitting of A

A = (I+8+8Sm+Rn) " Mymax
_(I + S + Sm + Rm)_lemax~

If welet My = (I + S+ Spm + Rin) ' Mgmax and Ny =
(I+S+S,+Rm) " Nemax, then we have Ty ax = M; ' Ny.

Secondly, note that

Mt
= I-D-D -L-E-FE -D"-E"!

I+ S+ Sm+ Rn)
(I-D-D -L-E—-E -D'"—E")™!
[-(I-D-D -D'Y"YL+E+E +E"!
(I 5 D/ _ D//)71
[-(I-D-D -D'Y"YL+E+E +E"!
(I - L)717

(ALY

Ngmax > O and U > O, then it follows from Lemma 4 that
p(M'Ny) < p((I = L)7'U), e, p(Tsmax) < p(T).

Hence p(Tsmax) < P(T) <L

Next we compare Ps . With Psy,.

Theorem 3. Let A be a nonsingular M -matrix with unit
diagonal. Then under the assumption (A), we have

p(Ts max) < p(Tem) <1

Proof. From Theorem 1 and Remark 1, we can see that
P(Tsmax) < 1 and p(Ts) < 1. Now we are in the position
to prove the following inequality

,O(Ts max) < p(Tsm).

As A is a nonsingular M -matrix, then under the assumption
of theorem, we known that there exists a positive eigenvector
x such that T, @ = p(Tsp, )2 and p(Tsy,) > 0. It follows from

(3) and (4) that Ne max — Nem and ]\/[9 max ]‘/Ism = RmAv
thus
Ms_n}b - Ms_nllax = Ms_nllameA]\/[s_ri' (5)
From (5), one obtains
Tsm - Ts max — ]Ms_nl]ameATsm' (6)

Multiplying by x on both sides of (6) gives
P(Tem)2 = Tamax® = p(Tam) Mo B Az,
Since p(T,) > 0, one can obtain that (cf. [5])
Ax > 0.

Hence,
Ts max® < P(Tsm)xa

it follows from Lemma 3 that

P(Ts max) < P(Tsm)~

The proof is completed.

Remark 2. From Theorem 2 and 3, we know that the
spectral radius of the MGS iteration matrix with preconditioner
Py max 18 smaller than that of the classical Gauss-Seidel
iteration matrix and MGS iteration matrices with precondi-
tioners Py, under some conditions. This confirm that the
preconditioner Pk, presented in this paper really improves
the spectral radius of the Gauss-Seidel method..

IV. EXAMPLE

In this part, we give an example to illustrate the theory
developed in Section 3.

Example 1. When the central difference scheme on a
uniform grid with N x N interior nodes (N? = n) is applied
to the discretization of the two-dimension convection-diffusion
equation 5 o

u U

—Au+ 42— =

ox oy /

in the unit squire {2 with Dirichlet boundary conditions, we
obtain a system of linear equations (1) of the coefficient matrix

where ® denotes the Kronecker product,

24 h 2-h
C = tridiag(—=——, 1, — ==

and
1+h 1—h
1):nmmg——£—,a -—)

are N x N tridiagonal matrices, and the step size is h = %

The spectral radii of the classical Gauss-Seidel (i.e., P =
I) iteration matrix and the MGS iteration matrices with the
preconditioners Ps, P, and Ps .y for different problem size
n are listed in Table I.

TABLE I
COMPARISON OF THE SPECTRAL RADII FOR EXAMPLE 1

n=16 n=64 n=256

P=1 0.6288  0.8744  0.9639  0.9904
P =P 0.4676  0.8002 0.9406  0.9840
P = Psm, 0.3363  0.7255 0.9155  0.9770

P = Psmax 0.3354 0.7252 09154  0.9769

n=1024

From Table I, the numerical results for Example 1, we can
see that p(Tsmax) < 1 for all cases. Moreover, the spectral
radus of the MGS iteration matrix with the preconditioner
Psmax> 1€, p(Tsmax), is the smallest one among p(7T),
o(Ts), p(Tsim) and p(Ts max)- The results verify our theoretical
analysis in Section 3.
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