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Abstract—This paper features the modeling and design of a 

Robust Decentralized Fast Output Sampling (RDFOS) Feedback 
control technique for the active vibration control of a smart flexible 
multimodel Euler-Bernoulli cantilever beams for a multivariable 
(MIMO) case by retaining the first 6 vibratory modes. The beam 
structure is modeled in state space form using the concept of 
piezoelectric theory, the Euler-Bernoulli beam theory and the Finite 
Element Method (FEM) technique by dividing the beam into 4 finite 
elements and placing the piezoelectric sensor / actuator at two finite 
element locations (positions 2 and 4) as collocated pairs, i.e., as 
surface mounted sensor / actuator, thus giving rise to a multivariable 
model of the smart structure plant with two inputs and two outputs.  
Five such multivariable models are obtained by varying the 
dimensions (aspect ratios) of the aluminium beam. Using model 
order reduction technique, the reduced order model of the higher 
order system is obtained based on dominant Eigen value retention 
and the Davison technique. RDFOS feedback controllers are 
designed for the above 5 multivariable-multimodel plant.  The closed 
loop responses with the RDFOS feedback gain and the magnitudes of 
the control input are obtained and the performance of the proposed 
multimodel smart structure system is evaluated for vibration control. 
 

Keywords—Smart structure, Euler-Bernoulli beam theory, Fast 
output sampling feedback control, Finite Element Method, State 
space model, Vibration control, LMI, Model order Reduction. 

I. INTRODUCTION 
IEZOELECTRIC materials are capable of altering the 
structure’s response through sensing, actuation and 

control. Piezoelectric elements can be incorporated into a 
laminated composite structure, either by embedding it or by 
mounting it onto the surface of the host structure [7]. 
Vibration control of any system is always a formidable 
challenge for any control system designer. Active control of 
vibrations relieves a designer from strengthening the structure 
from dynamic forces and the structure itself from extra weight 

 
Mr. T. C. Manjunath is a Research Scholar in the Interdisciplinary 

Programme for Systems and Control Engineering, Indian Institute of 
Technology Bombay, Powai, Mumbai-400076, Maharashtra, India 
(Corresponding author phone : +91 22 25780263 / 25767884 ; fax: +91 22 
25720057; e-mail: tcmanju@sc.iitb.ac.in, tcmanjunath@gmail.com,  URL : 
http://www.sc.iitb.ac.in/~tcmanju). 

Dr. B. Bandyopadhyay is with the Systems and Control Engineering of  
IIT Bombay, Mumbai-76, Maharashtra, India and is currently a 
Professor. (e-mail : bijnan@ee.iitb.ac.in, URL : 
http://www.sc.iitb.ac.in/~bijnan). 

and cost. The need for intelligent structures such as smart 
structures arises from the high performance requirements of 
such structural members in numerous applications. Intelligent 
structures are those which incorporate actuators and sensors 
that are highly integrated into the structure and have structural 
functionality, as well as highly integrated control logic, signal 
conditioning and power amplification electronics [3].   

A vibration control system consists of 4 parts, viz., actuator, 
controller, sensor and the system or the plant, which is to be 
controlled. When an external force extf  is applied to the beam, 
it is subjected to vibrations. These vibrations should be 
suppressed. Fully active actuators like the Piezoelectrics, MR 
Fluids, Piezoceramics, ER Fluids, Shape Memory Alloys, 
PVDF, etc., can be used to generate a secondary vibrational 
response in a mechanical system. This could reduce the overall 
response of the system plant by the destructive interference with 
the original response of the system, caused by the primary 
source of vibration [1], [6], [2], [5]. 

Extensive research in modeling of piezoelectric materials in 
building them as actuators and sensors for structures is  
reported in this paragraph. Investigations of Crawley and Luis 
[2] emphasized on the derivation of sensor / actuator modeling 
of piezo-electric materials. Moreover, the control analysis of 
cantilever beams using these sensors / actuators have been 
studied by Bailey and Hubbard [1]. Culshaw [3] gave a brief 
introduction to the concept of smart structure, its benefits and 
applications. Hanagud, et al., [6] developed a Finite Element 
Model (FEM) for an active beam with many distributed 
piezoceramic sensors / actuators coupled by signal 
conditioning systems and applied optimal output feedback 
control. Fanson et.al., [5] performed some experiments on a 
beam with piezoelectrics using positive position feedback.  
Hwang and Park [7] presented a FE model for piezoelectric 
sensors and actuators. Feedback control of flexible structures 
was presented by Balas in [13].  Choi et.al. [4] discussed 
about the control techniques of flexible structures using 
distributed piezoelectric sensors / actuators. Feedback control 
of vibrations in mechanical systems has numerous 
applications, like in aircrafts, active noise and shape control, 
acoustic control, control of antennas, earthquake, structural 
health monitoring, control of space structures and in the 
control of flexible manipulators.   

The outline of the paper is as follows. A brief review of 
related literature was given in the introductory section.  
Section 2 gives a brief introduction to the modeling technique 
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(sensor  / actuator model, finite element model, state space 
model) of the smart flexible cantilever beam for a 
multivariable case with two inputs and two outputs. A brief 
review of the controlling technique, viz., the fast output 
sampling feedback control technique, multimodel synthesis, 
design of the LMI formulation, model order reduction 
technique and the design of the robust decentralized fast 
output sampling feedback controller to control the first six 
modes of vibration of the system via the reduced order 
modeling is discussed in section 3.  The controller design is 
presented in section 4.  Conclusions are drawn in section 5 
followed by the simulation results. 

II. MATHEMATICAL MODELING OF SMART BEAM 
Consider a flexible cantilever beam made of aluminum 

bonded with piezoelectric sensor / actuator all along the length 
of the beam as shown in Fig. 1. The dimensions and properties 
of the flexible beam and piezoelectric sensor / actuator are 
given in Tables 1 and 2 respectively.  
 

 

       
Fig.  1   A regular flexible beam and a smart flexible beam. 

F1 and  F2 :  Forces  at  node 1 and  2, M1  and M2 :  Moments at node 
1 and  2,  lb : Length of beam , lp : Length of piezo-layer 
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Fig.  2  A smart flexible beam divided into 4 finite elements with 
piezo patches placed at even FE positions 2 and 4 

 
The flexible cantilever beam as shown in Fig. 1 is divided 

into a number of finite elements viz., 4 as shown in Fig. 2. 
The piezoelectric sensor / actuator is bonded to the master 
structure at finite element positions numbering 2 and 4, thus 
giving rise to a Multiple Input Multiple Output (MIMO) 

system with 2 actuator inputs 21,uu to the actuators and 2 
sensor outputs, 21, yy from the sensors. 

 
TABLE  I   

PHYSICAL  PARAMETERS 
PROPERTIES OF THE FLEXIBLE CANTILEVER BEAM ELEMENT 

Parameter  (with units) Symbol Numerical values 

Total length (m) 
bl  0.5 

Width (m) b  0.024 

Young’s modulus (GPa) 
bE  193.06 

Density (kg / m3) 
bρ  8030 

Constants used in *C  βα ,  0.001. 0.0001 
Thickness 

bt  Varying from  
0.5 mm to 1 mm, i.e., 
to give 5 models 

 
TABLE  II 

PROPERTIES OF THE  (PZT) PIEZO - SENSOR / ACTUATOR   

Parameter  (with units) Symbol Numerical 
values 

Length (m) 
pl  0.125 

Width (m) b  0.024 

Thickness (mm) 
sa tt ,  0.5 

Young’s modulus (GPa) 
pE  68 

Density (kg / m3) 
pρ  7700 

Piezoelectric stress constant (VmN–1) 31g  13105.10 −×   
Piezo strain constant (m / V) 

31d  1210125 −×  

 
A. Modeling of Regular and Piezo Elements of Beam 
To start with, we consider the modeling of the regular beam 

element and the piezoelectric beam element as shown in the 
Fig. 1.  The dynamic model for the smart structure is 
developed using the Finite Element Method (FEM) [7], [15].  
The smart cantilever beam model is developed using a 
piezoelectric beam element, which includes the sensor and 
actuator dynamics and a regular beam element based on Euler-
Bernoulli theory assumptions.  The piezoelectric beam 
element is used to model the regions where the piezoelectric 
element is bonded as sensor / actuator and the rest of the 
structure is modeled by the regular beam elements.  

In modeling and analysis of the smart beam, the following 
assumptions are made.  The perfect bonding or the adhesive 
between the beam and the sensor / actuator and the thin film 
electrode surfaces have been assumed to add no mass or 
stiffness to the sensor / actuator, i.e., neglected. The cable 
capacitance between sensor and signal-conditioning device 
has been considered negligible and the temperature effects 
have been neglected. The signal conditioning device gain 

)( cG is assumed as 100. The free vibration characteristics of a 
flexible beam is governed by the following fourth order 
differential equation [21], [22] 
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where w  is the transverse displacement of the beam and is a 
function x  and t , x  being the distance of the local 
coordinate from the fixed end, t  being the time and c  is a 

constant which is given by 
A

IE
ρ

.  

AIE and,, ρ  are the young’s modulus, moment of inertia, 
mass density and area of the beam respectively.  When a 
system vibrates, it undergoes to and fro motion and so all 
positions vary with time and therefore, the system has 
velocities and accelerations. Mass times acceleration as inertia 
force appears in the governing differential equation of the 
beam which is given in Eq. (1), i.e., the equation of motion 
involves a fourth order derivative w.r.t. x  and a second order 
derivative w.r.t. time. 

The piezoelectric element is obtained by sandwiching the 
regular beam element between two thin piezoelectric layers as 
shown in Fig. 2. The bottom layer is acting as a sensor and the 
top layer acts as an actuator.  The beam element is assumed to 
have two structural DOF ),( θw at each nodal point and an 
electrical DOF: a transverse deflection and an angle of 
rotation or slope. Since the voltage is constant over the 
electrode, the number of electrical DOF is one for each 
element.  

The electrical DOF is used as a sensor voltage or actuator 
voltage when the piezoelectric material attached to the 
structure behaves as sensor or actuator.  Corresponding to the 
2 DOF, a transverse shear force and a bending moment acts at 
each nodal point. At each nodal point, counteracting moments 
induced by the piezoelectric actuators will be acting.  The 
bending moment resulting from the applied voltage to the 
actuator adds a positive finite element being the moment at 
node 1 while subtracting it at node 2.   

The deflection behavior of the beam element is best 
described by a displacement function )(xW , which is the 
solution of Eq. (1). It is desirable that this function satisfies 
the differential equation of equilibrium for the beam element. 
The solution of the Eq. (1) is assumed as a cubic polynomial 
function of x  given by [21], [22] 
 3

4
2

321)( xaxaxaaxW +++= ,   (2) 

where the constants 1a to 4a are obtained using the boundary  
conditions  of the beam at the nodal points (fixed end and free 
end) as  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

2

1

1

22

3

3

3

4

3

2

1

22
323

000
000

1

θ

θ
w

w

ll
llll

l
l

l
a
a
a
a

bb

bbbb

b

b

b

. (3) 

where 11,θw  and  22 ,θw  are the DOF’s at the node 1 (fixed 
end) and node 2 (free end) respectively.  

The Eq. (2) is rearranged in the final form as 
 ][][)]([ qnTxW = ,  (4) 

where ][ Tn gives the shape functions of the beam  

4,..,1,)( =ixfi as   

 [ ])()()()(][ 4321 xfxfxfxfT =n , (5) 
where                                         

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−

−

+−

+−

=

2

32

3

3

2

2

2

32

3

3

2

2

23

2

231

bb

bb

bb

bb

l
x

l
x

l
x

l
x

l
x

l
xx

l
x

l
x

n
, (6) 

where x  is the local axial coordinate of the finite element 
node from the fixed end, bl  being the length of the beam  and 

q  is the vector of displacements and slopes (nodal 
displacement vector)  and is  given  by   
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for the beam shown in Fig. 1. The displacement, its first, 
second spatial derivatives and its time derivative in matrix 
form is given by )(and)(),(),( tWxWxWxW &′′′  as 
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B. Piezoelectric Strain Rate Sensors and Actuators 
The linear piezoelectric coupling [12] between the elastic 

field and the electric field is expressed by the direct and the 
converse piezoelectric equations as  
 ,ETdD Tε+= ,EdTsS E +=  (11) 
where T is the stress, S is the  strain, E is  the  electric  field, D 
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is  the  dielectric  displacement,ε  is  the  permittivity  of  the 
medium, sE is  the  compliance  of  the  medium  and  d  is  the  
piezoelectric  constant .  

C. Sensor Equation 
The direct piezoelectric equation is used to calculate the 

output charge created by the strain in the structure [12].  Since 
no external field is applied to the sensor layer, the electric 
displacement developed on the sensor surface is directly 
proportional to the strain acting on the sensor.  If the poling is 
done along the thickness direction of the sensors with the 
electrodes on the upper and lower surfaces, the electric 
displacement is given as 
 xxpz eEdD εε 3131 * == , (12) 

where 31e  is the piezoelectric  stress / charge  constant, pE  is  

the Young’s  modulus and xε  is the strain of the testing 
structure at a point on the beam.  

 The total charge )(tQ developed on the sensor surface is 
the spatial summation of all the point charges developed on 

the sensor layer.  Since the current 
dt

tQdti )()( = suggests that 

the closed-circuit current signal generated in a piezoelectric 
lamina is proportional to the strain rate of the testing structure, 
we obtain 

 ∫=
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T dxbezti
0

131)( qn & , (13) 

where a
b t

t
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2
, b  is the width of the beam, pl being the 

length of the piezo-sensor and T
1n is the second spatial 

derivative of shape function of the flexible beam. This current 
is converted into the open circuit sensor voltage sV using a 
signal-conditioning device with the gain cG and applied to the 

actuator with the controller gain cK .  The   sensor output 
voltage is obtained as 

 ∫=
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T
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which is nothing but the signal conditioning gain cG  

multiplied by the closed circuit current )(ti  generated by the 

piezoelectric lamina. Substituting for T
1n from Eq. (8) and 

q& from Eq. (10) and simplifying, we get the sensor voltage for 
a two node finite element of the beam as  
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which can be further expressed as a scalar-vector product 
 qp &TtV s =)( , (16) 

where q&  is the time derivative of the modal coordinate vector 
q , Tp is a constant vector which depends on the type of 
sensor, its characteristics and its location on the beam.  Note 
that the sensor output is a function of the second spatial 
derivative of the mode shape.   This sensor voltage is given 
as input to the controller and the output of the controller 
(which is nothing but the control input to the actuator, i.e., the 
actuator voltage) is the controller gain cK  multiplied by the 

sensor voltage )(tV s .   Thus, the input voltage to the actuator 

)(tV a is given by  

 )()( tVKtV s
c

a = . (17) 

Substituting for )(tV s  from Eq. (14) in Eq. (17), we get 

 ∫=
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T
cc

a dxbzeGKtV
0

131)( qn & . (18) 

D. Actuator Equation 
The actuator strain is derived from the converse 

piezoelectric equation.  The strain developed aε on the 
actuator layer is given by [12]  
 fa Ed31=ε , (19) 

where 31d and fE are the piezo strain constant and the 

electric field respectively.  When the input to the piezoelectric 
actuator )(tV a is applied in the thickness direction at , the 

electric field, fE which is the voltage applied )(tV a divided 

by the thickness of the actuator at ; and  the stress, aσ  which 

is the actuator strain multiplied by the young’s modulus pE of 

the piezo actuator layer are given by  
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f t
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and                              
a
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tVdE )(
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The resultant moment AM acting on the beam is determined 
by integrating the stress throughout the structure thickness as 
 )(31 tVzdEM a

pA = , (22) 

where 
2

)( ba tt
z

+
= , is the distance between the neutral axis 

of the beam and the piezoelectric layer.  The moment results 
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in the generation of the control force.  Finally, the control 
force applied by the actuator is obtained as  

 )(231 tVdxzbdEf a

l

pctrl

p

∫= n  (23) 

or can be expressed as a scalar vector product as 

 )()( tutVf a
ctrl hh ==  , (24) 

where T
2n is the first spatial derivative of the shape function 

of the flexible beam, Th is a constant vector which depends on 
the type of actuator and its location on the beam, given by 

[ ]00 3131 zbdEzbdE pp−=h  and )(tu  is nothing 

but the control input to the actuator, i.e., )(tV a from the 
controller.  If any external forces described by the vector 

extf are acting on the beam, then the total force vector 
becomes  

 ctrlext
t fff += . (25) 

 

E. Dynamic Equation of Smart Structure 
The strain energy U and the kinetic energy T  for the beam 

element with uniform cross section in bending is [21], [22] 
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The equation of motion of the regular beam element is 
obtained by the Lagrangian equation for the regular beam 
element as 
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which after simplification yields as           
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Finally, after simplification, we get 
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where bb KM , are the local mass matrix, the local stiffness 
matrix of the regular beam element.   

Similarly, the lagrangian equation of motion for the 
piezoelectric beam element is obtained as 
 ),(tfqKqM ppp =+&&  (36) 

where pM and pK  are the piezoelectric beam element mass 
matrix and stiffness matrix and are given as 
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where 
 ,2 ppbb IEIEEI +=  (39) 
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and                                                 
 ( )apbb ttbA ρρρ 2+= . (41) 

The  dynamic equation of the smart structure is obtained by 
using both the regular and piezoelectric beam elements given 
by Eqs. (29) and (36).  The mass and stiffness of the bonding 
or the adhesive between the master structure and the sensor / 
actuator pair is neglected.  The mass and stiffness of the entire 
beam, which is divided into 4 finite elements is assembled 
using the FEM technique [7], [15] and the assembled matrices 
(global matrices), M and K are obtained.  The equation of 
motion of the smart structure is finally given by 

 t
ctrlext fff =+=+ KqqM && ,  (42) 

where t
ext f,f,f ctrl

,qKM ,,  are the global mass matrix, 

global stiffness matrix of the smart beam, the vector of 
displacements and slopes, the external force applied to the 
beam, the controlling force from the actuator  and  the  total  
force  coefficient  vector  respectively.   The mass matrix M ,  
stiffness matrix K  and the control force vector Th  in the 
system equation can be varied by changing the position and 
number of regular and piezoelectric beam elements.  

The generalized coordinates are introduced into the Eq. (42) 
using a transformation gTq =  in order to reduce it further 
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such that the resultant equation represents the dynamics of the 
first 6 vibratory modes 1ω  to 6ω of the smart flexible 
cantilever beam. T  is the modal matrix containing the eigen 
vectors representing the first 6 vibratory modes. This method 
is used to derive the uncoupled equations governing the 
motion of the free vibrations of the system in terms of 
principal coordinates by introducing a linear transformation 
between the generalized coordinates q  and the principal 
coordinates g .  The Eq. (42) now becomes  

 21 ctrlctrlext fff ++=+ gTKgTM && ,  (43)  

where 1ctrlf and 2ctrlf are the control force coefficient vectors 

to the actuators from the controller. 
Multiplying Eq. (43) by TT on both sides and further 

simplifying, we get 

 ****
21 ctrlctrlext fffgKgM * ++=+&& ,  (44) 

where ,* TMTM T= T,KTK* T=  ,*
ext

T
ext fTf =   

ictrl
T

ictrl fTf =*   .2to1=i  

****
21,,, ctrlctrlext fff,KM * represents the generalized 

mass matrix, the generalized stiffness matrix, the generalized 
external force vector and the generalized control force vectors 
respectively. 

The generalized structural modal damping matrix 
*C (Raleigh proportional damping) is introduced into the Eq. 

(44) by using 

 *** KMC βα += , (45) 
where α and β are the structural damping constants 
respectively. 

The dynamic equation of the smart flexible cantilever beam 
developed is obtained as 

 **
ctrlext ffgKgCgM *** +=++ &&& , (46) 

where  ***
21 ctrlctrlctrl fff += .  

 
F. State Space Model of the Smart Structure 
The state space model of the smart flexible cantilever beam 

is obtained as follows [21], [22]. Let                                                                   

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6

2

1

x

x
x

M
g  and  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

12

8

7

x

x
x

M
&g . (47) 

 ∴ ,
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

12

8

7

6

2

1

x

x
x

x

x
x

M

&

M

&

&

&g and  .

12

8

7

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

x

x
x

&

M

&

&

&&g  (48) 

Thus,           
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and Eq. (46) now becomes  

 
*****

6

5

4

3

2

1

12

11

10

9

8

7

12

11

10

9

8

7

ctrlext

x
x
x
x
x
x

x
x
x
x
x
x

x
x
x
x
x
x

ffKCM +=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

&

&

&

&

&

&

,  (50) 

which can be further simplified as   
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The generalized external force coefficient vector is   

 ,)(* trff T
ext

T
ext TTf ==   (52) 

where )(tr is the external force input (impulse disturbance) to 
the beam.  

The generalized control force coefficient vector is   
   ,2to1,)()(* ==== itutVf ii

Ta
ii

T
ictrl

T
ictrl hThTTf   (53) 

where the voltages )(tV a
i are the input voltages to the 

actuators 1 and 2 from the controllers respectively, and are 
nothing but the control inputs  )(tui  to  the  actuators, ih  is  
a  constant  vector  which  depends  on  the  actuator  type,  its  
position  on the beam and  is  given  by   
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for one piezoelectric actuator element (say, for the piezo patch 
placed at the finite element position numbering 2), where 

cp azbdE =31 being the actuator constant. So, using the 

Eqs.  (52) and (53) in Eq. (51), the state space equation for the 
smart beam is represented as 
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i.e.,  )()()( trtutx EBAX ++=& . (56) 
The sensor voltage is taken as the output of the system and 

its equation is modeled as 

 ,2,1,)()( === itytV i
T

i
s

i qp &  ,   (57) 

where T
ip is a constant vector which depends on the 

piezoelectric sensor characteristics (i.e., the sensor constant  
cS ) and on the position of the sensor location on the beam. 

The constant vector for the sensor placed at finite element 
position numbering 4 is given by   

 [ ]
[ ],11........00

11........00 81312

−=

−= ×

c

c
T

S

bzeGp  (58) 

where  cc SbzeG =31  is the sensor constant. 
Thus, the sensor output is given by   
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which  can  be  written  as 
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for a multivariable case with 2 inputs and 2 outputs. i.e., 
 .)()()( tutxty T DC +=  (61) 

The multivariable state space model (state equation and the 
output equation) of the smart structure developed for the 
system thus [21], [22], is given by                                                                   
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where )(and)(,,,,,),(),( tytxtutr EDCBA represents the 
external force input, the control input, system matrix, input 
matrix, output matrix, transmission matrix, external load 
matrix, state vector, system output (sensor output).   

By considering the thickness of the beam in the model 1 as 
0.5 mm, thickness of the beam in model 2 as 0.6 mm, 
thickness of the beam in model 3 as 0.7 mm, thickness of the 
beam in the model 4 as 0.8 mm and thickness of the beam in 
the model 5 as 1 mm, 5 multivariable state space models 
(multi-model) of the same smart structure plant are obtained 
as shown in Eq. (62).   

These 5 MIMO models give rise to a multimodel smart 
structure plant. Let  ( )iiiii EDCBA ,,,, ;  5,4,3,2,1=i  be 
the state space matrices of the 5 models of the beam.  State 
space model of the smart cantilever beam with sensor / 
actuator pair at element 2 and 4 for the model 1 for 6 modes is 
represented by Eq. (62) with 
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The state space models of the remaining 4 models are 
obtained similarly. The characteristics of the smart flexible 
cantilever beam of the model 1 are given in Table III. 

 
TABLE  III    

CHARACTERISTICS OF THE SMART FLEXIBLE BEAM FOR THE 
MULTIVARIABLE MODEL 1 

 

Models EIGEN VALUES Natural 
Frequency (Hz.) 

 −0.0071 j±  9.36 1.4892 

 −0.5975 j±  89.2 14.1995 

Model 1 −4.96 j±  257.1 40.9239 

 −21.3 j±  532.1 84.6910 

 −81.2 j±  1037.2 165.0721 

 −224.4 j±  1715.1 272.9711 

 
Similarly, the characteristics of the other 4 models are 

obtained.  

III. DESIGN OF CONTROLLER VIA THE REDUCED ORDER 
MODELING 

In the following section, we develop the control strategy for 
the multivariable cum multimodel representation of the 
developed smart structure model using the fast output 
sampling feedback control law [9], [10], [14] with 1 actuator 
input u and 1 sensor output y for the 5 models of the smart 
structure plant as shown in Fig. 2.   In this type of control law 
as shown in Fig. 3, the value of the input at a particular 

moment depends on the output value at a time prior to this 
moment (namely at the beginning of the period).  Werner and 
Furuta [14], Chammas and Leondes [16] have shown that the 
poles of the discrete time control system could be assigned 
arbitrarily (within the natural restriction that they should be 
located symmetrically with respect to the real axis) using the 
fast output sampling technique. Since the feedback gains are 
piecewise constants, their method could easily be 
implemented, guarantees the closed loop stability and 
indicated a new possibility. Such a control law can stabilize a 
much larger class of systems.  

 
A. Fast  Output  Sampling  
Consider a plant described by a LTI state space model 

given by 

 ),()(),()()(
.

txCtytuBtxAtx =+=    (65) 

where nx ℜ∈ ,  mu ℜ∈ , py ℜ∈ , nnA ×ℜ∈ , 
mnB ×ℜ∈ , npC ×ℜ∈ , A , B , C , are constant matrices of 

appropriate dimensions and it is assumed that the model is 
controllable and observable.  Assume that output 
measurements are available at time instants τkt = , where 

....,3,2,1,0=k Now, construct a discrete linear time invariant 
system from these output measurements at sampling 

rate
τ
1

(sampling interval of τ secs) during which the control 

signal u is held constant. The system obtained so is called as 
the τ  system and is given by 
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 (66) 

where C,, ττ ΓΦ are constant matrices of appropriate 

dimensions.  Assume that the plant is to be controlled by a 
digital computer, with sampling intervalτ and zero order hold 
and that a sampled data state feedback design has been carried 
out to find a state feedback gain F such that the closed loop 
system  
 ( ) ( ) )( τττ ττ kxFkx Γ+Φ=+  (67) 
has desirable properties.    

Let 
N
τ

=Δ  , where >N the observability index υ  of the 

system. The control signal )(ku , which is applied during the 
interval ττ )1( +≤≤ ktk  is then generated according to  

 
[ ]

k

N

yL
ky

ky
ky

LLLku

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ−

Δ+−
−

= −

)(
:
:

)(
)(

.....)( 110

τ

ττ
ττ

,  (68) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:4, 2008

558

 

 

where the matrix blocks jL  represent the output feedback 

gains and the notation kyL , has been introduced here for 

convenience.  Note that 
τ
1

is the rate at which the loop is 

closed, whereas the output samples are taken at the times N - 

times faster rate 
Δ
1

.  To show how a FOS controller in Eqn. 

(68) can be designed to realize the given sampled data state 
feedback gain for a controllable and observable system, we 
construct a fictitious, lifted system for which the Eqn. (68) can 
be interpreted as static output feedback [8], [16].  Let 
( )C,,ΓΦ  denote the system in Eqn. (65) sampled at the rate 

Δ
1

.  Consider the discrete time system having at time 

τkt = , the input )( τkuuk = , the state )( τkxxk = and 

the output ky  as 

y t( )

� =
t
N

t0 � 2� 3�

u t( )

tk +� �k�k� � �

y t( )

L0 L1 L2

 
Fig. 3  Graphical illustration of fast output sampling feedback 

method 
 

 ,, 0011 kkkkkk uxyuxx DC +=Γ+Φ= ++ ττ      (69) 

where         
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Now, design a state feedback gain F such that 
( )Fττ Γ+Φ  has no Eigen values at the origin and provides 
the desired closed loop behavior.  Then, assuming that in the 
interval )( τττ +≤≤ ktk , 

 )()( τkxFtu = ,  (71) 
one can define the fictitious measurement matrix,  
 ( )( ) 1

00),( −Γ+Φ+= FFNF ττDCC , (72) 
which satisfies the fictitious measurement equation  

 kk xy C= . (73) 

For L to realize the effect of F , it must satisfy the 
equation. 
 F=LC .  (74) 

Let υ  denote the observability index of ( )C,,ΓΦ .  It can 

be shown that for υ≥N , generically C has full column 
rank, so that any state feedback gain can be realized by a fast 
output sampling gain L .   If the initial state is unknown, there 
will be an error kkk xFuu −=Δ in constructing the control 
signal under the state feedback; one can verify that the closed-
loop dynamics are governed by 
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The system in Eqn. (69) is stable if F  stabilizes and only if 
( )ττ ΓΦ ,  and the matrix ( )τΓ− F0LD  has all its Eigen 
values inside the unit circle. It is evident that the eigen values 
of the closed loop system under a FOS control law are those 
of ( )Fττ Γ+Φ  together with those of ( )τΓ− F0LD .  

This suggests that the state feedback F  should be obtained so 
as to ensure the stability of both ( )Fττ Γ+Φ  and 

( )τΓ− F0LD .  
The problem with controllers obtained in this way is that, 

although they are stabilizing and achieve the desired closed 
loop behavior in the output sampling instants, they may cause 
an excessive oscillation between sampling instants.  The fast 
output sampling feedback gains obtained may be very high.  
To reduce this effect, we relax the condition that L exactly 
satisfy the linear equation (74) and include a constraint on the 
gain L .  Thus, we arrive at the following in Eqn. (76) as 

 

,3

20

1

ρ

ρ

ρ

τ

<−

<Γ−

<

F

F

LC

LD

L

,

,

 (76) 

where 21 , ρρ  and 3ρ  represents the upper bounds on the 

spectral norms of L ,  ( )τΓ− F0LD  and ( )F−LC . This 
can be formulated in the form of Linear Matrix Inequalities as  
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In this form, the LMI control optimization toolbox is used 
for the synthesis of L  [11].   Here, 1ρ  means low noise 
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sensitivity, 2ρ  small means fast decay of observation error, 

and most importantly, 3ρ  small means that the FOS controller 

with gain L  is a good approximation of the originally 
designed state feedback controller.  If  03 =ρ , then L  is an 
exact solution.   

If suitable bounds 21 , ρρ  are known, one can keep these 

bounds fixed and minimize 3ρ   under these constraints.  This 
requires a search for a FOS controller which gives the best 
approximation of the given state feedback designed under the 
constraints represented by 1ρ  and  2ρ .  It should be noted 

here that closed loop stability requires 12 <ρ , i.e., the eigen 
values which determine the error dynamics must lie within the 
unit disc. In this form, the function mincx ( ) of the LMI 
control toolbox for MATLAB can be used to minimize a 
linear combination of  21 , ρρ  and  3ρ .   

B. Multimodel  Synthesis 
One feature of the fast output sampling control that makes it 

attractive for robust controller design is the fact that a result 
similar to the above can be shown to hold when the same state 
feedback is applied simultaneously to a family of plant models 
representing different operating conditions of the plant. For 
multimodel representation of a plant, it is necessary to design 
controller, which will robustly stabilize the multimodel 
system.  Multimodel representation of the plants can arise in 
several ways.  When a non-linear system has to be stabilized 
at different operating points, linear models are sought to be 
obtained at those operating points.  Even for parametric 
uncertain linear systems, different linear models can be 
obtained for extreme points of the parameters.  These models 
are used for the stabilization of the uncertain systems.  Now, 
instead of a single model, consider a family of plant models 
( )iii CBA ,,  defined by  

  ......,4,3,2,1;, MixCyuBxAx iii ==+=&      (78) 
By sampling at the rate of Δ/1 , we get a family of discrete 

time systems ( )iii C,,ΓΦ . Now, consider the augmented 
system defined as  

 ( )
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⎢
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⎣
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     ( )
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⎥
⎥
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⎢
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Γ
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=ΓΓ=Γ
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......00
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.........~ 2

1

1
MOMM

M
,  (80) 

 [ ] .,......~
5where,to121 === MMiCCCC M   (81) 

Consider the family of discrete time systems obtained from 

Eqn. (82) having at time τkt = , the input )( τkuuk = , the 

state vector )( τkxxk = and output ky as 

 ,, 0011 kikikkikk uxyuxx i DC +=Γ+Φ= ++ ττ   (82) 

where 
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Assume that ( )ii ΓΦ ,τ  are controllable.  Then, we can find 

robust state feedbacks gain F such that ( )Fii ττ Γ+Φ  has 

no eigen values at the origin and the system responses has a 
good settling time.  Then, assuming that in the interval 

)( τττ +≤≤ ktk , 

 )()( τkxFtu = ,   (84) 
one can define the fictitious measurement matrix,  

 ( )( ) 1
00),(

−
Γ+Φ+= FFNF iiiii ττDCC ,  (85) 

which satisfies the fictitious measurement equation  
 kik xy C= . (86) 

For robust fast output sampling gain L to realize the effect 
of F , it may satisfy  
 5.,.,to1, eiMiFi ==LC .    (87) 

The Eqn. (87) can be written as                                

 F~~
=CL ,   (88) 

where                                                         
 [ ]54321

~ CCCCC=C    (89) 
are the new fictitious output measurement matrices for the 
individual plant models and  

 [ ]54321 ,,,,~ FFFFFF = .   (90) 
With a fast output sampling gain which satisfies Eqn. (88), 

for each model the closed loop eigen values are those of  

 5,...,1,0 0
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Γ−

ΓΓ+Φ
iF

F

i

iii
ii τ

τττ
LD .    (91) 

which shows that the closed loop eigen values are still the 
ones for which the state feedback gains iF have been 

designed, together with those of iii F τΓ−0LD . 

C. An LMI formulation of the design problem for a robust 
FOS feedback controller 

Let υ~ denote the observability index of ( )C~,~,~ ΓΦ . It can 

be shown that for υ~≥N , generically C~ has full column 
rank, so that the robust state feedback gain can be realized by 
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a fast output sampling gain L . When this idea is realized in 

practice, i.e., fast output sampling gain L have been obtained 

by realizing the state feedback gain F , two problems are 
required to be addressed.   

The first one is apparent from Eqn. (75).  The fact that the 
closed loop eigen values are the eigen values of Eqn. (91) 
means that the closed loop plant dynamics can be designed 
without considering the dynamics of the observation error 
which are determined by the eigen values of 
( )iii F τΓ−0LD . On the other hand, the choice of 

iF constrains the design of the latter.   
With this type of controller, the unknown states are 

estimated implicitly, using the measured output samples and 
assuming that the initial control is generated by state 
feedback.  If the initial state causes an estimation error, then 
decay of this error will be determined by the eigen values of 
the matrix ( )iii F τΓ−0LD  which depends on L and whose 

dimension equals the number of control inputs.  For stability, 
these eigen values have to be inside the unit disc and for fast 
decay they should be as close to the origin as possible.  This 
problem must be taken into account while designing L . 

The second problem is that the gain matrix L may have 
elements with large magnitude because of noise sensitivity.  
Because, these values are only weights in linear combination 
of output samples, large magnitudes do not necessarily imply 
large control signal and in control theory and in noise free 
simulation problem, they pose no problem.   

But, in practice, they amplify measurement noise and it is 
desirable to keep these values low.  It is feasible to improve 
the performance by not insisting that Fi =LC is satisfied 
exactly, but a slight deviation can be allowed which in turn 
yields smaller gains.  The following method allows a design of 
L such that the spectral norm of ii F τΓ−0LD  and hence 

L  as well as the distance between LC and F can be 
controlled. This objective can be expressed by an upper bound 
ρ on the norm of the gain matrix L as follows.  

While trying to deal with these problem, it is better not to 
insist on an exact solution to the design of Eqn. (87), one can 
allow a small deviation and use an approximation Fi ≈LC , 
which hardly affects the desired closed loop dynamics, but 
may have considerable effect on the two problems described 
above. Instead of looking for an exact solution to the 
equalities, the following inequalities are solved. 
 1ρ<L ,  

 5,...,1,20 =<Γ− iF ii i ρτLD ,   (92) 

 ii F 3ρ<=LC .    

321 ,, ρρρ represent the upper bounds on the spectral 

norms of L , τΓ− F0LD and F−LC respectively.  These 
3 objectives have been expressed by the upper bounds on 
matrix norms and each should be as small as possible.  1ρ  

means low noise sensitivity, 2ρ small means fast decay of 

observation error and most importantly, 3ρ  small means that 

fast output sampling controller with gain L is a good 
approximation of the originally designed state feedback 
controller.  If 03 =ρ , then L is an exact solution.  Using the 
schur compliment, it is straight forward to bring these 
conditions in the form of LMI’s as follows.  
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−−
IF

FI
T
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ii
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In this form, the function mincx ( ) of the LMI control tool 
box for Matlab can be used immediately to minimize a linear 
combination of  321 ,, ρρρ .  The following approach turned 
out to be useful.  If the actual measurement noise is known, 
the magnitude of L is fixed accordingly.  Likewise the eigen 
values of ( ) 05.0<Γ− ii F ττLD  cause no problem.  So, we 

fix 21 , ρρ and only 3ρ is minimized subject to these 
constraints.   

This requires a search for a fast output sampling controller, 
which gives the best approximation of the given state 
feedback, designed under the constraints represented by 

21 , ρρ .  It should be noted here that closed loop stability 

requires 12 <ρ , i.e., the eigen values which determine the 
error dynamics must like within the unit disc. In this form, the 
LMI tool box of Matlab can be used for synthesis [11]. The 
fast output sampling feedback controller obtained by the 
above method requires only constant gains and hence is easier 
to implement.   

D. Model Order Reduction Technique 
For many complex processes or when the modes of a 

dynamical system are very high, the order of the state matrix 
may be quite large.  It would be difficult to work with these 
large scale dynamical systems [19] in their original form.  In 
such cases, it is common to study the process by 
approximating it to a simpler model.  These mathematical 
models correspond to approximating a system by its dominant 
pole-zeros in the complex plane.  They generally require 
empirical determination of the system parameters.  Many 
different methods have been developed to accomplish the 
purpose by estimating the ‘dominant’ part of the large system 
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and finding a simpler (or reduced order) system representation 
that has its behaviour akin to the original system.    

Here, we discuss the model order reduction technique based 
on the dominant modes retention.  It is usually possible to 
describe the dynamics of a physical dynamical system by a 
number of simultaneous linear differential equations with 
constant coefficients as  
 CxyBuAxx =+= ,& ,  (94) 
where A  is a ( )nn×  matrix.  
 The simulation and design of controllers become very 
cumbersome if the order of the system goes high.  One way to 
overcome this difficulty is to develop a reduced model of the 
higher order system.  One of the well known technique is 
based on dominant eigenvalue retention based on the Davison 
technique [17], [18].  By this method, a system of higher order 
can be numerically approximated to one of smaller order.  The 
method suggests that a large ( )nn×  system can be reduced to 
a simpler ( )rr ×  model ( )nr ≤ by considering the effects of 
the r  most dominant (dominant in the sense of being closest 
to the instability) eigenvalues alone.   

The  principle of the method is to neglect the eigen values 
of the original system that are farthest from the origin and 
retain only the dominant eigenvalues and hence dominant time 
constants of the original system in the reduced order model.  
This implies that the overall behaviour of the approximate 
system will be very similar to that of the original system since 
the contribution of the unretained eigenvalues to the system 
response are important only at the beginning of the response, 
whereas the eigenvalues retained are important throughout the 
whole of the response.  For the system represented by the Eqn. 
(94), consider the linear transformation, 
 zPx = , (95) 
which transforms the model Eqn. (94) into the following form, 

 zCyuBzAz ˆ,ˆˆ =+=& , (96) 

where Â  is a ( )rr ×  matrix and 

 PAPA 1ˆ −= , BPB 1ˆ −=  and PCC =ˆ . (97) 

Â  is in the diagonal form as  
 [ ]ndiagA λλλ ,.....,,ˆ

21=   (98) 
and       
 )(......)()( 21 nReReRe λλλ ≥≥≥ . (99) 

Further, assume that only r eigenvalues are dominant, i.e., 
the order of the reduced model is r  and partition the model in 
Eqn. (96) as 

 uBzAz 1111
ˆˆ +=& , uBzAz 2222

ˆˆ +=&  
and 

 2211
ˆˆ zCzCy +=  (100) 

where                                         
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   (101) 

and are respectively ( )rr × , ( ) ( )rnrn −×− , ( )mr ×  and 

( ) mrn ×−  matrices obtained by portioning of  Â  and  B̂  

suitably.  In Eqn. (100), the order of  1z  is r  and that of 2z  
is ( )rn − . Now, because the contribution of the modes 

represented by the eigenvalues nrr λλλ ,.....,, 21 ++  is not 

significant, it may be assumed that 02 =z , whereby we have 
from Eqn. (95), 

 1
21

11

2

1 z
P
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x
x

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
, (102) 

where 11P  and  21P  are respectively, ( )rr ×  and ( ) rrn ×−  

submatrices obtained by portioning of  1P  and 1z , 2z  are 
respectively, r  and ( )rn −  dimensional state vectors 
corresponding to the original state variables.  It follows from 
Eqn. (102) that  
 1

1
111 xPz −= , (103) 

with which the model in Eqn. (100) can be transformed to  

 uBxAuBPxPAPx rx +=+= −
1111

1
111111

ˆˆ&  
and 

 11
1

111
ˆ xCxPCy r== −  (104) 

Moreover, from Eqns. (102), and (103), we have 

 1
1

11212 xPPx −= . (105) 

Thus, the original thn order model represented by Eqn. (94) 
is reduced to an thr order model given by Eqn. (104).  The 
state variables of the approximate model are the same as the 
first r state variables of the original higher-order model.  The 
remaining state variables are given in terms of the first r state 
variables by Eqn. (105). 

E. Robust Decentralized  FOS  Feedback Technique via 
Reduced Order Model for the Multimodel System 

Let us consider a family of plants { }iii CBAS ,,=  
defined [23] by  
 .,, ,....,2,1 MixCyuBxAx iii ==+=&  (106) 

The discrete time invariant systems with sampling interval 
τ  seconds can be represented as  
 )()(,)()()1( kxCkykukxkx iii =Γ+Φ=+ ττ . (107) 

There exists a transformation iV , such that, 

 zVx i=  (108) 
transforms the above system in Eqn. (107) into the following 
block diagonal modal form as 

 )(ˆ)(),(ˆ)(ˆ)1( kzCkykukzkz iii =Γ+Φ=+ , (109) 
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where                                        
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Φ

Φ
=Φ  (110) 

and the eigen values are arranged in the order of their 
dominance. We now extract an thr order model, retaining the 
r  dominant eigen values, by truncating the above systems.  
Using Eqns. (109) and (110), we get 
 )()(),()()1( 111 kzCkykukzkz riirir =Γ+Φ=+ .(111) 

Let rr zSku =)(  be a stabilizing control for the reduced 
order model in Eqn. (111).  Thus, the closed loop reduced 
model ( )rii S11 Γ+Φ  becomes stable.  Now,   

 [ ] [ ] xVIzIZ rnrrrnrrr
1

)(*)(* 0:0: −
−− == ,  (112) 

∴,  we get,    

 [ ] xSxVISku irnrrr == −
−

1
)(*0:)( , (113) 

which makes the closed loop system ( )iii Sττ Γ+Φ  stable 

and has no eigenvalues at the origin. Thus, ii FS ≡  are the 
stabilizing state feedback gains for the system in Eqn. (107).  
Using these state feedback gains iF , the following inequalities 
are solved.  
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The controller obtained from the above equation will give 
desired behaviour, but might require excessive control action.  
To reduce this effect, we relax the condition that L  exactly 
satisfy the above linear equation and include a constraint on 
the gain L .  Thus, we arrive at the following in equations,  
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If the LMI constraints given in Eqns. (114) and (115) are 
solved using the above iF , the robust FOS feedback gain may 
become full.  This results in the control input of each model 
being a function of the outputs of all the models.  To obtain 
the RDFOS feedback control, the off-diagonal elements of 

110 ......,,, −NLLL matrices are made equal to zero as a result of 
which the control input to each actuator is a function of the 
output of that corresponding sensor only.  This makes the FOS 
control technique a robust decentralized one.   

IV. CONTROL SIMULATIONS OF THE SMART BEAM 
The FEM and the state space model of the smart cantilever 

beam is developed in MATLAB using Euler-Bernoulli beam 
theory.  The flexible cantilever beam is divided into 4 finite 
elements and the sensor and actuator as collocated pairs at 
finite element positions 2 and 4 respectively, thus giving rise 
to a multivariable beam with 2 inputs and 2 outputs.  By 
varying the thickness of the beam from 0.5, 0.6, 0.7, 0.8 and 1 
mm, 5 multivariable models are obtained.  A 12th order state 
space model of the system is obtained on retaining the first 6 
modes of vibration of the system.  Simulations are carried out 
in MATLAB.  The FOS control technique discussed above is 
used to design a controller to suppress the 1st 6 vibration 
modes of a cantilever beam through smart structure concept 
for the various multivariable models of the smart beam.  
RDFOS feedback based reduced model order controllers are 
designed for multimodel smart structure system using the 
developed multivariable state space model and its 
performance is evaluated for the Active Vibration Control.  

The first task in designing the FOS controller is the 
selection of the sampling interval τ . The maximum 
bandwidth for all the sensor / actuator locations on the beam 
are calculated (here, the 6th vibratory mode of the plant) and 
then by using existing empirical rules for selecting the 
sampling interval based on bandwidth, approximately 10 
times of the maximum 6th vibration mode frequency of the 
system has been selected. The sampling interval used is 

004.0=τ  seconds. The number of sub-intervals N is chosen 
to be 10.   

An external force extf of 1 Newton is applied for duration 
of 50 ms at the free end of the beam for all the 5 models of the 
Fig. 2.  RDFOS Controllers via the reduced order modeling 
has been designed to control the first 6 modes of vibration of 
the smart cantilever beam for the 5 models of the smart 
structure.    A large 12th order system of )1212( × is reduced 
to a simpler 6th order model of )66( × , by considering the 
effects of the 6 most dominant (dominant in the sense of being 
closed to instability) eigen values.  The eigen values of the 
original system that are farthest from the origin are neglected 
and only dominant eigen values of the original system in the 
reduced order model is retained.  The open loop and closed 
loop responses of the system with the state feedback gain F 
are observed. 

The fast output sampling feedback gain matrix L for the 
system given is obtained by solving F≅LC using the LMI 
optimization method [11] which reduces the amplitude of the 
control signal u .  For convenience, only the closed loop 
impulse responses (sensor outputs 1y and 2y ) with FOS 

feedback gain L of the system and the variation of the control 
signal 1u and 2u with time for the multivariable-multimodel 
system are shown in Figs. 4 - 13 respectively.  

The 5 multivariable models of the smart structure system 
are considered for designing the RDFOS feedback controller 
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via the reduced order model using the LMI technique 
approach of MATLAB.  The discrete models are obtained for 
sampling time of 004.0=τ seconds.  The reduced order 
models are computed from the adjoint discrete models.  Using 
the method discussed in section III, common stabilizing gain 
matrix rS is obtained for the reduced order model using the 
LMI toolbox.  Using aggregation techniques [20], the state 
feedback gain iF  can be calculated for the higher order 
(actual model).   

This FOS feedback gain can be obtained which 
approximately realizes the designed iF  for all the models of 
the family.  Here, as we are dealing with robust stabilization, 
we have to find a L which will satisfy ii F=LC , 

( )5to1=i all these equations using the LMI approach. The 

gain sequences of L are chosen 10 ( )1021 .....,,, LLL .  Using 

the iF , LMI constraints given in Eqns. (114) and (115) are 

solved for different values of 1ρ , 2ρ and 3ρ to find the robust 

decentralized gain matrix L via the reduced order model 
which is given as 

)202(30.425302.6288-00.1069
034.4828-02.68120
00.0020-0005-1.2890

0.0968-00.00160
086.7592-0

006-9.8467-0169.2613
2.2531092.72160

068.3585-0176.0630-
108.15920144.1840-0

079.0428-0172.1137

×
⎥
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⎤

⎢
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⎡
=

e

e

L

 (116) 

The closed loop responses with this RDFOS feedback gain 
L via the reduced order model for all the models are 
satisfactory and are able to stabilize the outputs.  The eigen 
values of ( )CN LΓ+Φ  are found to be within the unit circle.   
It is found that the designed robust decentralized FOS 
feedback controllers via the reduced order model provide 
good damping enhancement for the various multivariable 
models of the smart structure plant.  The proposed robust 
decentralized control for the multimodel smart structure 
system can be applied simultaneously to all the models and 
results in satisfactory response behaviour to damp out the 
vibrations, which can be seen form the simulation results in 
section 4.  The input applied to each actuator of the model is a 
function of the output of that respective sensor only, which 
makes the control technique a robust, decentralized one.   

V. CONCLUSION 
Robust Decentralized Fast Output Sampling Feedback 

Controller is designed for the multivariable smart structure 
using the various models of the single plant via the reduced 
order modeling. Simulations are done in Matlab and the 

various responses are obtained for the designed state space 
based FE model of the smart flexible cantilever beam. 
Through the simulation results, it is shown that when the plant 
is placed with the designed robust decentralized FOS 
controller, the 5 models performs well.   In the designed 
control law, the control input to each actuator of the 
multivariable plant’s multimodel is a function of the output of 
that corresponding sensor only and the gain matrix has got all 
off-diagonal elements zero or very small compared to the 
diagonal terms. This makes the FOS control technique a 
robust decentralized one. This would render better control.   

The robust decentralized FOS controller designed by the 
above method requires only constant gains and hence is easier 
to implement.   Closed loop responses are simulated for the 
various multivariable models of the smart structure plant.  A 
new algorithm is presented for the design of robust 
decentralized controllers for a multivariable system using FOS 
feedback technique via the reduced order model.  The 
computation of the state feedback gain, which is needed to 
obtain the decentralized FOS feedback based smart structure 
system, becomes very tedious when a number of modes, 
especially greater than 5 are considered.   

Here, a state feedback gain is computed from the reduced 
order model of the smart system and using the aggregation 
techniques, a state feedback gain can be obtained for the 
higher order (actual model).  The RDFOS feedback gain 
which realizes this state feedback gain, can be obtained for the 
actual model. It is found that the designed and proposed 
robust controller via the reduced order model provides good 
damping enhancement for the models of the smart structure 
system.  Thus, an integrated finite element model to analyze 
the vibration suppression capability of a smart cantilever 
beams with surface mounted piezoelectric devices based on 
Euler-Bernoulli beam theory and reduced order modeling is 
presented in this paper. 

VI. SIMULATION  RESULTS 

 
Fig. 4   Closed loop response and control input  

(sensor / actuator placed at FE 2) : Model 1 
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Fig. 5   Closed loop response and control input  

(sensor / actuator placed at FE 4) : Model 1 
 

 
 

Fig. 6   Closed loop response and control input  
(sensor / actuator placed at FE 2) : Model 2 

 
 

 
 

Fig. 7   Closed loop response and control input  
(sensor / actuator placed at FE 4) : Model 2 

 

 
 

Fig. 8   Closed loop response and control input  
(sensor / actuator placed at FE 2) : Model 3 

 

 
Fig. 9   Closed loop response and control input  

(sensor / actuator placed at FE 4) : Model 3 
 
 

 
Fig. 10   Closed loop response and control input 

 (sensor / actuator placed at FE 2) : Model 4 
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Fig. 11   Closed loop response and control input 

 (sensor / actuator placed at FE 4) : Model 4 
 

 
Fig. 12   Closed loop response and control input  

(sensor / actuator placed at FE 2) : Model 5 
 

 
 

Fig. 13   Closed loop response and control input  
(sensor / actuator placed at FE 4) : Model 5 

ACRONYMS / ABBREVIATIONS 
SISO Single Input Single Output   
FEM Finite Element Method  
FE Finite Element  
LMI Linear Matrix Inequalities 
MR Magneto Rheological  
ER Electro Rheological   
PVDF Poly Vinylidene Fluoride  
SMA Shape Memory Alloys 
CF Clamped Free   
CC Clamped Clamped  
CT Continuous Time 
DT Discrete Time  
OL Open Loop   
CL Closed Loop 
HOBT Higher Order Beam Theory  
RHS Right Hand Side  
LTI Linear Time Invariant  
FOS Fast Output Sampling 
AVC Active Vibration Control 
EB Euler-Bernoulli  
PZT Lead Zirconate Titanate 
DOF Degree Of Freedom 
IEEE Institute of Electrical & Electronics Engineers 
IOP Institute of Physics 
ISSS Institute of Smart Structures and Systems  
SPIE  Society of Photonics & Instrumentation Engineers 

APPENDIX 
The stiffness matrix for the sandwich beam element is 

obtained using the Eqn. (65) as 
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The mass matrix for the sandwich beam element is obtained 
using Eqn. (61) as 
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NOMENCLATURE (LIST OF SYMBOLS) 

A  Area of the piezo patches 

4321 ,,, aaaa  Polynomial coefficients for transverse 
displacement  

A  System matrix which represents dynamics of 
system (comprises of mass and stiffness of 
system) 

5511, AA     Extensional and shear stiffness coefficient  

11B  Bending-extensional stiffness coefficient 
B  Input matrix 

321 ,, bbb  Polynomial coefficients for  
c  Width of the beam 

321 ,, ccc  Polynomial coefficients for axial 
displacement  

C       Output matrix 
*C  Generalized damping matrix or the 

structural modal damping matrix 

0C  Fictitious matrix  

D  Transmission matrix 

0D  Fictitious matrix  

11D  Bending stiffness coefficient  
D  Layer constitutive matrix 

3D  Electric displacement in the thickness 
direction 

3115 ,dd  Piezoelectric strain constants 

11E  Actuator induced axial force 

15e  Piezoelectric constant 

fE  Electric potential applied to the actuator 

E  External load matrix, which couples the 
disturbance to the system 

extf  Vector of externally applied nodal forces 
tf  Total force vector 

ctrlf  Control force vector  
** , ctrlext ff  Generalized external force coefficient and 

external control force coefficient vector 
**

21, ctrlctrl ff  Control force coefficient vectors to the 
actuators 1 and 2 

11F  Actuator induced bending moment 
F       State feedback gain 

1F  and  2F     Forces  at  node 1 and  2 of figure 1 

55G  Actuator induced shear force 

cG  Signal conditioning gain 

G  Modulus of rigidity 
g  Principal coordinates 

h  Height of the beam + the piezo-patches 
h  Constant vector, which depends on the type 

of actuator and its FE position 

21,hh  Constant vectors of the actuators 1 and 2 

321 ,, III  Mass inertias 

I  Inertia matrix 
i  Variable ( 1, 2, 3, … ) 

)(ti  Current induced by the sensor surface 
*KK ,  Stiffness matrix (global stiffness matrix) and 

generalized stiffness matrix of the beam 
k  Variable ( 1, 2, 3, … ) 

cK  Gain of the controller 

K  Shear correction factor = 5/6 

jiK  Elements of the stiffness matrix 

( )62,1 ....,,, =ji  for the sandwich / 
composite beam 

L       Fast output sampling feedback gain 
L  Length of the beam  

pL       Length of the piezo-patch (sensor / actuator) 

jL  Output feedback gains 
*MM ,  Mass matrix (global mass matrix) and 

generalized mass matrix of the beam 

jiM  Elements of the mass matrix 

( )62,1 ....,,, =ji  for the sandwich / 
composite beam 

1M   and  2M   Moments acting at node 1 and  2 of figure 1 
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xM  Internal force on the cross section of the 
beam 

θNNN wu ,,  Shape functions due to axial displacement, 
transverse displacement and rotation or the 
slope 

6,....,1 NN  Elements of shape function due to axial 
displacement 

107 ,...., NN  Elements of shape function due to transverse 
displacement 

14,....,11 NN  Elements of shape function due to rotation 
or slope 

n  Number of layers of the beam 
N       Number of sub-intervals 
N       Matrix of shape functions 

xN  Internal force on the cross section of the 
beam 

p  Constant vector, which depends on the 
sensor type and its FE location in the 
embedded structure 

21,pp  Constant vectors of the sensors 1 and 2 
( )q t  Charge accumulated on the sensor surface 

)(tq&  Rate of change of electric charge, i.e., the 
current produced by sensor 

q  Vector of nodal displacements (modal 
coordinate vector), i.e., the generalized 
coordinates 

0q  Transverse distributed loading 

)(tr  External force input to the beam 
q&  Time derivative of the nodal coordinate 

vector 
q&&       Nodal acceleration vector 

665522

131211

,,
,,,

QQQ
QQQ

 Material constants of steel, foam, PE  

xzQ  Internal force on the cross section of the 
beam 

T  Modal matrix containing the eigen values 
representing the first 3 modes of vibration 

t  Time 
T  Kinetic energy 
t  Total thickness of the beam (top layer + 

piezo-patch + bottom layer thickness) 

kt  Thickness of the each layer of the beam 
3,2,1=k  

pt  Thickness of the piezoelectric layer 

pa ttt s ==  Thickness of actuator / sensor = thickness of 
the piezoelectric layer 

u  Axial displacement of the point 

21 ,uu  Axial displacements at fixed end and at free 
end 

)(,)( 21 tutu  Control inputs to actuators 1 and 2 
U  Strain energy 

sa VV ,  Actuator input voltage and sensor voltage 
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