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Controlled Synchronization of an Array of
Nonlinear Systems with Time delays
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Abstract—In this paper, we propose synchronization of an array
of nonlinear systems with time delays. The array of systems is
decomposed into isolated systems to establish appropriate Lyapunov-
Krasovskii functional. Using the Lyapunov-Krasovskii functional, a
sufficient condition for the synchronization is derived in terms of
LMIs(Linear Matrix Inequalities). Delayed feedback control gains
are obtained by solving the sufficient condition. Numerical examples
are given to show the validity the proposed method.
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I. INTRODUCTION

Synchronization phenomena have attracted much attention
of researchers in applied physics, biology, social sciences,
engineering and interdisciplinary fields. Synchronization is a
natural phenomenon, however, in some situations, a control
system have to be added to obtain synchronization or a good
transient performance. The synchronization obtained by using
a control scheme is called controlled synchronization [1].

Many researchers have proposed synchronization techniques
of two systems of master-slave scheme [2]-[4]. Recently,
synchronization of arrays of coupled systems is of interest.
The synchronization of more than two coupled systems has im-
portant applications, particularly, in mechanical systems. One
important application is a mechanical system which behaves
cooperatively to have flexibility and maneuverability, e.g.,
multifinger robot-hands, multirobot systems and multiactuated
platforms.

Rodriguez-Angeles [5] proposed a synchronization tech-
nique for arrays of identical mechanical systems with partial
measurement. This technique is complex significantly and
parameter uncertainties of systems are not considered. To cope
with the parameter uncertainties, Dong [6] studied an adaptive
control architecture to synchronize two robots with kinematic
constraints. Chung and Slotine [7] investigated a technique to
synchronize Lagrangian systems which consist of a special
network, so called two-way ring. This technique guarantees
global exponential convergence, however, no extension to
arbitrary network is considered.
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In this paper, we propose controlled synchronization for
arbitrary arrays of nonlinear systems. Since time delay which
exists in many applications is a natural phenomenon and often
causes instability and poor performance of systems, the effect
of time delay is considered. The array of systems is decom-
posed into isolated systems to establish appropriate Lyapunov-
Krasovskii functional. Using the Lyapunov-Krasovskii func-
tional, a sufficient condition for the synchronization is derived
in terms of LMI (Linear Matrix Inequality). Delayed feedback
control gains are obtained by solving the sufficient condition.
Numerical examples are given to show the validity the pro-
posed method.

The paper is organizes as follows. In section 2 we present a
configuration of an array and the objective of synchronization.
The sufficient condition for stable synchronization derived in
LMI terms and delayed feedback gain is given in section
3. Numerical simulations are given in section 4 and the
conclusion is presented in section 5.

II. PROBLEM STATEMENT

In this section, the configuration of an array of nonlinear
systems is described and the controller is designed. The
objective of control is presented based on the configuration
of the array and the controller.

A. The array of systems

Consider the connection graph described in Fig. 1. The
rectangular is the reference system and circles are nodes. The
arrows represent the connection between nodes or between
reference and node. All arrows have its directions and the
direction of arrows means the flow of information. That is,
bidirectional arrows describe nodes are coupled each other
where unidirectional arrows describe reference systems only
affect the other node. In this paper, it is assumed that the array
is a full chain configuration which means there are no isolated
nodes.
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Fig. 1: Examples of an array of systems
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B. The Synchronization Objective

Consider the following nonlinear systems consisting of an
array with time delays :

i (t) = Aw(t) + f(z,(t), 1) + Bu, )]
#i(t) = Awi(t) + f(zi(t), ) + Blut+vi), (2
where ¢ = 1,...,N, z,(t) € R™ is the state vector of

reference, z;(t) € R™ is the state vector of node i, A € R"*"
is a constant matrix, f(-) is a vector-valued time varying
nonlinear function, B € R"*? is a constant matrix, u € R? is
a control input and v; € R? is a coupling signal.

Assumption 1: The nonlinear function f(-) is bounded and
satisfies the Lipschitz condition

1f (@r (), 8) = f(2i(®), Ol < Lillr(t) =20 3)

where L; is a non-negative constant.
The coupling signals which synchronize all nodes are defined
as follows :

v = Kea(ro(t—h)— it — )
+ K Z Cij(wj(t—h)_%(t_h))
Jj=1,j#1i

quei(t - h)

+ K Z cij(ei(t —h) —ej(t —h))
j=1,j#i
N
= KCzrez -K Z Cl] e] (4)

Jj=1

where h is the time delay, e; is the error between reference
and node i, ie. e;(t) = x.(t) — zi(t), C = (cij)nxn I8
the coupling configuration of the array defined as following
: if there is a connection between node ¢ and j(i # j),
then ¢;; = c¢j = 1, otherwise, ¢;;j = ¢;; = 0 and
Cii:_E]‘:lJ;ﬁiCijv Z:1,2,,N

Definition 1: The array of systems (1)-(2) is said to achieve
asymptotic synchronization if

- (t) = 21(t) = 22(t) =

According to the Definition 1, the synchronization is achieved
if e;(t) — 0,Vi. By subtracting (2) from (1), the following
error dynamics can be obtained :
€Z(t) = A(ii(t) + Fz((ﬁz(t)) — Buv;
= Aei (t) + Fi(ei (t))

=ay(t),t = +oo.  (5)

N
— BKcirei(t—h)+ BK Y _cijej(t—h) (6)
j=1
where F;(e;(t)) = f(ei(t) +xi(t)) — f(x:(t)). The system (6)
can be rewritten in following form :

é(t) = Ae(t) + F(e(t)) + BKe(t — h)D” (7)

where e(t) = [e1(t) eaft) en(t)], Fle(t) =
[Fi(ei(t)) Fa(ea(t)) Fn(en(t))] and the coupling
matrix D = C — diag{cir, C2r, ..., Ny }. Since the coupling

matrix D is symmetric and irreducible, there exists a unitary
matrix u such that

D = uAuT, wul =T 8)
where u = [ur uz -+ uy] € RVN A =
diag{)\1,...,An}, \; is an eigenvalue of matrix D. Apply-

ing post-multiplication of u to the system (7) and defining
z(t) £ e(t)u, the system (7) becomes

z(t) = Az + F(e)u + z(t — h)A 9
and can be rewritten as

Zi = Azi(t) + gi(t) + Nizi(t — h),

A

where g;(t) = F(e(t))u;. Thus, the synchronization problem
of the array of nonlinear systems is transformed into stabiliza-
tion problem of the corresponding individual error dynamics.
The following lemmas are useful for deriving LMIs conditions
of stability of the system (10).

Lemma 1: [8] For any constant matrix W € R™*™ > 0, a
scalar 7 > 0 and a vector function e(t) : R — R™ such that
the following integration is well defined, then

0
—7'/ T
—T

[T(t) a7t —7)] [*WV/V fgv} L(f(*t)ﬂ} (n

i=1,...,N (10)

(t+OWi(t +£)dE <

III. MAIN RESULTS

In this section, we derive an LMI condition for delay-
dependent stability of error dynamics (10). Consider the as-
sumption 1 to derive bounded condition of the nonlinear term
gi(t). We have

lg: ()l = [f w(1),1) = f(@i (), D)
N
< Z £ (er(8). 1) = Flaa(t), D] - i
kt;l N
< N Lilla () — 2] = > Lillex(t)
k=1 k=1

N
= > Lillz()ui
k=1

where u;y;, is k-th element of u; and L = max(Ly).
We define augmented vectors for ¢ = 1,..., N:

G(t) = [z(t) zi(t) z(t—h) gi(t)]. (13)

Theorem 1: The error dynamics (10) is asymptotically sta-
ble for given time delay h and a scalar e if there exist matrices
P> 0,Q; > 0,R; > 0,Y € R"™™, positive constants «;
satisfying the following LMI:

D1y P P13 Puy
* Doy Doz Doy
* * @33 @34
* * * @44

N
<> Lzt (12)
k=1

<0,7=1,...,N. (14)
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where
@11 = th—FE(Y/—FYT), @12 :PZ'—CAY—FYT,
@13 = 76/\Z'BK, @14 = *EYT,
_ L 1 - _
By = Q;— AY —YTAT - FRi+ NLS;,
I
@23 = —)\z‘BK + ERh @24 = —YT,
_ 1= _
Q33 = —Qi— B P =00y = =S,
Y = Y'Y, B=Y"RY, Q=Y7Q)Y,
R, = YTRY, S =wYTY, K=KY. (15)
Moreover, the delayed feedback control gain is obtained as
K=KY ' (16)
Proof. Consider a Lyapunov-Krasovskii functional such as
N
V(2(t) =Y Vi(zi(1) (7
i=1
where
t
) = TOPa0+ [ T6Qun(s
t—h
0 rt
+ / / 21 (s)Ri%i(s)dsdb. (18)
—hJt+o

The derivative of V;(z;(t)) is shown as follows :
— 2 (t = h)Qizi(t — k) + hz] (t)Rizi(t)
t
/ 2L (s)Riz] (s)ds
t

—h

< 22T ()Pizi(t) — 25 (t — h)Qizi(t — h)
1 ZZT(t) T *Ri RZ Zz(t)
) 2T (t —h) Ri  —Ri| |z(t—h)
hR; P, 0 0
_ *x  Qi— iR 1R, 0
- CzT(t) * *h _Qih_ %Rz 0 Cz(t)
* * * 0
2 OG0 (19)

We can obtain following equality constraint from Eq. (10)
[11]:
2 [T (YT (YT
x [2i(t) = Azi(t) = gi(t) — Nizi(t —h)] =0 (20)
for any appropriate dimension matrix Y and any constant

scalar e. The equality constraint (20) can be represented by
augmented vector (;(¢) as

e(Y +YT) —eYTA+Y
* —YTA—-ATY — LR,
¢ N . h
* *

—eNMYTBK  —eY”T
-xYTBK  —Y7T
0 o | 4™
* 0

2 ()¢ (t) 1)

Now, to deal with the nonlinearities, the following inequality
from (12) has to be considered :

> (Hgi(t)ll - ZLIZk(t)||>
i=1 k=1
=2 Ulgi@®ll = NL][z(®)}) <0 (22)

2

and this inequality holds if following inequalities are all
satisfied :

lg:@)] = NL||z:(t)[| <0, i=1,....,N.  (23)

The inequalities (23) are placed to each Lyapunov-Krasovskii

functional V;(z;(t)) so that

LI

G(t) = cF)Qusi(t) <0, (24)

OOOOZO

£y

—~

~

~
(el el en B e B e B en)
(ol sl an B e B e B @n)
~N O O O oo

fori=1,...,N.
By applying S-procedure [9] and utilizing (19), (21) and (24),
we have following inequalities :

() + Uz — @iQ43) G (1)
o), i=1,....N (25

Vi(zi(t))

1> IA

where «; is a positive constant. It is obvious that if the matrix
Q; is negative definite for all i, the error dynamics (10) is
asymptotic stable. However, it is not easy to solve the sufficient
condition (25) and to find the control gain K because it is not
a standard LMI form. To represent the sufficient conditions in
LMI terms, pre and post multiply the matrix diag{Y,---,I}
to both side of matrix §2; as following :

T

WYTRY +¢(V +YT)  YTPY — eAV + Y7

. YTQ.Y — AY — yTAT
* *
* *
e\;iBKY —el
MBKY + 2YTRY —I
_0s— LYTRY o | (26)
k3 h T
* —aul

then the inequality (26) is equivalent to (14) and guarantees
the asymptotical stability. l
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IV. NUMERICAL EXAMPLE

In this section, two examples are used to illustrate the
validity of the proposed method given in Theorem 1.
Example 1: [10] Consider an array of 5 linear systems where
each node is a three-dimensional linear systems described by

i,’l -1 0 0 Tl 1
i‘ig = 0 —2 0 T2 + 1 (U+U¢)
I'ig 0 0 -3 ;3 1
and
D = C- diag{clrac2r7' o 7CN7'}
-2 1 0 0 1 1 0 0 00
1 -3 1 1 0 00 0 0O
= 0 1 -2 1 0|—-—[0 0 0 O O
0 1 1 -3 1 00 0 00
1 0 0 1 =2 00 0 0 0

The matrix D is irreducible and its eigenvalues are
A = —4.8150, —3.6728, —2.7995, —1.5714, —0.1414.

Time delay h and a constant € is given by h = 0.5, ¢ = 0.1.
The initial state values are randomly selected and the control
input u is chosen as wu(t) = sin(¢). By solving the LMI
in Theorem 1, one can obtain the delayed feedback gain
K = [0.0411 0.0248 0.0216]. The synchronization error
is shown in Figs. 2-3.

Example 2: Consider an array of 3 nonlinear systems:

o=

fQ} Bj + @)+ m (u+ v7)

and
D = C - diag{cl’!‘chT?' o 7CNT}
-1 1 0 100
= 1 -2 1|-10 0 0
0o 1 -1 0 0 0
where f(z) = [{tanh(z;) 0]7. The Lipschitz constant
is L = % Time delay h and a constant € is given by
h = 0.5, ¢ = 0.5. The initial state values are randomly

selected and the control input u is chosen as u(t) = sin(¢).
By solving LMI, one can obtain the delayed feedback gain
K = [0.0494 0.2176]. The synchronization error is shown
in Figs. 4-5.

V. CONCLUSIONS

In this paper, we proposed a synchronization technique for
an array of nonlinear systems in the presence of time delays.
The nonlinearity of the systems is dealt with Lipschitz condi-
tion and employed to equality constraints using S-procedure.
The sufficient condition in LMI terms and delayed feedback
control gain is obtained. Through two numerical examples, we
have demonstrated the validity of the proposed methods.

Fig. 2: Synchronization errors between reference and the node
i=1

Fig. 3: Synchronization errors between reference and the node
i=2

Fig. 4: Synchronization errors between reference and the node
i=1
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Fig. 5: Synchronization errors between reference and the node
1=2
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