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Control of the thermal evaporation of organic
semiconductors via exact linearization

Martin Steinberger Member, IEEE and Martin Horn Member, IEEE

I. INTRODUCTION

THE deposition of organic semiconductors, e.g. Pentacene
(C22H12) and Alq31, becomes more and more important.

Due to lower process temperatures, the manufacturing of or-
ganic electronic devices such as light emitting diodes (OLEDs)
and thin film transistors (OTFTs) is less energy consuming.
Additionally, these low temperatures also make it possible to
use flexible substrates, e.g. plastic films, which can serve as a
basis for elastic electronic devices.

The crucial part of the fabrication is the deposition of the
active organic layers (films) with a layer thickness between 10
and 100 nanometres. It is mostly done by thermal evaporation
in a high vacuum environment. The mobility of the charge
carriers within the layers and the layer morphology strongly
depend on the deposition rate, i.e. the increase in layer
thickness with time during the deposition process [1], [2]. The
desired deposition rates range between 0.03 and 5 Angstrom
per second.

Usually, the deposition rate is controlled manually by an
”expert”. The result of a manually controlled deposition of
Pentacene is shown in Fig. 1. The desired deposition rate is
very hard to attain, the fluctuations (e.g. between 140 and 160
seconds) lead to a poor layer morphology. As a consequence
of these insufficient results and the long durations of the
deposition process, an automatic control of the deposition is
essential.

In literature only a few control methods for the deposition
of metallic materials e.g. [3] and the control of the steady
state evaporation of organic materials [4] are proposed. In
this work the design of a new deposition rate controller is
presented. It is able to cope with transient evaporation effects.
Therefore, the exact input output linearization is applied to the
mathematical model [5] of the given high vacuum deposition
system, described below.
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Fig. 1. Manual evaporation of Pentacene, deposition rate
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Fig. 2. Functional principle of the high vacuum system

II. HIGH VACUUM SYSTEM

Fig. 2 shows the functional principle of the used high
vacuum system. First, the vacuum chamber is evacuated by
means of a rotary vane pump and a turbo molecular pump to
a pressure of approximately 10−6mbar. The powdery evap-
oration material is placed in the crucible of the effusion cell
(evaporation unit). By help of a resistance heating inside the
effusion cell the temperature can be adjusted and the powder
evaporates for sufficiently high cell temperatures. Depending
on the material, the evaporation temperatures range between
100 and 500◦C.

Due to the high vacuum conditions, the evaporated
molecules propagate in straight lines from the effusion cell to
the substrate holder. An online measurement of the deposition
rate and the thickness of the deposited film is achieved by
means of the deposition sensor (quartz crystal microbalance)
mounted next to the substrate holder as depicted in Fig. 2.

Additionally, the transmission of the evaporation material
can be stopped by closing the cell shutter (see Fig. 3). The
cell is cooled by an indirect water cooling system.

As proposed in [5] the transient thermal evaporation of
organic semiconductors can be described by a system of two

rate, exact linearization

linearization a deposition rate controller is designed and tested
mathematical model is given. Based on the exact input output
evaporation of organic semiconductors is introduced and a
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Fig. 3. Effusion cell

γ1 4.30 · 10−3

γ2 −1.10 · 10−10

γ3 −2.50 · 10−11

γ4 −7.69

γ5 −1.10 · 10−1

γ6 1.60 · 10−1

δ1 3.70 · 10−2

δ2 3.20 · 10−11

δ3 −2.00 · 10−11

δ4 −1.77

δ5 2.20 · 10−3

δ6 −2.50 · 10−3

δ7 −1.60 · 109

c1 2.29 · 103
c2 1.40 · 104

TABLE I
PARAMETERS OF THE MODEL (ALQ3)

ordinary nonlinear differential equations. The state vector

x =

[

x1

x2

]

=

[

TC

TM

]

(1)

consists of the temperature TC of the crucible and the evap-
oration temperature TM of the organic material. The input
variable u of the model

d x1

dt
= γ1 x

4

1
+ γ2 x

4

2
+ γ3 x1 + γ4 x2 + γ5 u+ γ6 ,

d x2

dt
= δ1 x

4

1 + δ2 x
4

2 + δ3 x1 + δ4 x2 + δ5
e
− c2

x2√
x2

+

δ6 u+ δ7 (2)

equals the squared heating current of the effusion cell. The
parameters γi (i = 1, . . . , 6) and δj (j = 1, . . . , 7) are
constant. The deposition rate R at the height of the substrate
is the output variable of the system and can be expressed as

y = c1
e
− c2

x2√
x2

. (3)

The model covers the stationary evaporation in accordance
with the relation of Hertz und Knudsen from kinetic theory
of gases. Therefore exponential functions of the evaporation
temperature x2 over the square root of the evaporation tem-
perature appear in the mathematical descriptions (2) and (3).
Furthermore the model takes into account the transient heat
conductance and the reflexions of the heat radiation inside the
effusion cell.

Table I lists the identified parameters of model (2), (3) for
the material Alq3. These parameters yield a good match of

� � � $ � 	 � % � & � �

�

�

$

�

	

�

� � � � � � � � �



��


�
��
��
��

��
��

�

�

�

' � � � � � � � � � �
( � � � � � � � � �

Fig. 4. Measured and simulated deposition rate (Alq3)

the measured and simulated deposition rate as shown in Fig. 4.
Based on the present model a deposition controller is designed
in the next section.

III. CONTROL CONCEPT

A. Exact input output linearization

First, the main idea of exact input output linearization (see
e.g. [7], [6]) of an nth-order affine input system

dx

dt
=a(x) + b(x)u , (4)

y = c(x)

with scalar input u, scalar output y and state x is outlined.
The vector fields a(x), b(x) and the output function c(x) are
assumed to be smooth.

System (4) have the relative degree ρ, if the input u appears
in the ρth time-derivative of y for the first time. The use of
the Lie derivative

La c(x) =
∂ c

∂x
a (x) (5)

and the higher derivatives

Lk
a c(x) = La

(

Lk−1

a c(x)
)

, L0

a c(x) = c(x) (6)

yields
d ρy

dtρ
= Lρ

a c(x) + Lb

(

Lρ−1

a c(x)
)

u . (7)

The relation
d ρy

dtρ
!
= v (8)

leads to a nonlinear compensation

u =
1

Lb

(

Lρ−1
a c(x)

) (−Lρ
a c(x) + v) (9)

as shown in Fig. 5. The combination of compensation and
plant results in an integrator chain of ρ integrators with input
variable v and output variable y. Obviously, the state vector
x is required.

For the model of the high vacuum system of order n = 2,
the output equation (3) solely depends on the state variable
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Fig. 5. Plant with nonlinear compensation

x2. The input variable u appears in the first time-derivative of
y, that is

d y

dt
=− c1 e

− c2
x2 (−2 c2 + x2)

2 x
5

2

2

(

δ1 x
4

1
+ δ2 x

4

2
+

δ3 x1 + δ4 x2 + δ5
e
− c2

x2√
x2

+ δ6 u+ δ7) . (10)

Therefore, the relative degree ρ equals 1. The relation

d y

dt

!
= v (11)

yields the nonlinear compensation

u =
2 x

5

2

2

c1 e
− c2

x2 (−2 c2 + x2) δ6

(−v − δ1 x
4

1
− δ2 x

4

2
−

δ3 x1 − δ4 x2 − δ5
e
− c2

x2√
x2

− δ7) . (12)

Due to ρ = 1 < n = 2 the compensated plant has got
an internal dynamics of order 1. In order to investigate this
internal dynamics the zero dynamics is computed by zeroing
the plant output, i.e. y = 0 and d y

dt = 0. As a consequence
the second state variable x2 equals 0 according to output
equation (3). This yields

δ6
d x1

dt
=(γ3 δ6 − γ5 δ3)x1 + (γ1 δ6 − γ5 δ1)x

4

1+

(γ6 δ6 − γ5 δ7) (13)

for the zero dynamics. After the calculation of the equilibrium
points xE of (13) the state transformation

x1 = xE +Δx1 (14)

leads to the differential equation

δ6
dΔx1

dt
= γ1δ6xE

4 + 4 γ1δ6xE
3Δx1+ (15)

6 γ1δ6xE
2Δx1

2 + 4 γ1δ6xEΔx 1
3 + γ1δ6Δx 1

4+

γ6δ6 − γ5δ1xE
4 − 4 γ5δ1xE

3Δx 1 − 6 γ5δ1xR
2Δx1

2−
4 γ5δ1xRΔx 1

3 − γ5δ1Δx1
4 + γ3δ6xE + γ3δ6Δx1−

γ5δ3xE − γ5δ3Δx 1 − γ5δ7

for the displacement Δx1. A quadratic Lyapunov function

V (Δx1) =
1

2
Δx2

1 (16)

is used to determine the asymptotic stability of xE . Its time
derivative d V

dt is locally negative as it is shown in Fig. 6. As
a consequence the zero dynamics is asymptotically stable and
the compensated plant is minimum-phase. Therefore, the exact
linearization technique can be applied in the present case.
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Fig. 6. Lyapunov function for the zero-dynamic

Pentacene Alq3

KP 5 · 10−2 3 · 10−1

KI 2 · 10−3 1 · 10−2

TABLE II
PARAMETERS OF THE LINEAR CONTROLLER
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Fig. 7. Desired trajectory for the deposition rate

B. Controller design

To control the compensated plant, a PI-controller

C(s) = KP +
KI

s
(17)

is used. Its parameters KP and KI are constant and were
found by simulation. Table II shows the chosen control pa-
rameters for the materials Pentacene and Alq3.

The implementation of the control algorithm in the high
vacuum system is done in the discrete time form [8]

ui = ui−1 +KP ei + (KI TS −KP ) ei−1 , (18)

with a sampling period TS . Here, ui symbolises the actuating
signal and ei the control error at the time instants t = i TS

(i = 0, 1, 2, . . .). In order to prevent the windup-effect, the
integral action is turned off in case of a saturated actuating
signal.

C. Trajectory planning

A trajectory for a transition between a initial point y(t =
0) = y0 at time t = 0 and an final point y(t = t1) = y1 at
time t1 should be planned as shown in Fig 7. Therefore, the
polynomial [9]

yd(t) = y0 + (y1 − y0)

2n+1
∑

i=n+1

pi

(

t

t1

)i

(19)

is chosen. If the first n derivatives of yd should vanish at t = 0
and t = t1, the parameters pi can be evaluated uniquely.
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Fig. 8. Control of the deposition rate (Pentacene)

� � � � � � �
�

� � 	

�

� � 	

�

� � 	

$



��


�
��
��
��

��
��
�

� � � � � � � � �

�

� � � � � � �
� � � � � � � �

Fig. 9. Control of the deposition rate (Alq3)

IV. RESULTS

As depicted in Fig. 8 the proposed control approach based
on the exact input output linearization leads to outstanding
results for the evaporation of Pentacene. In contrast to the
deposition by hand and the approach in [4] also transients can
be tracked in a very satisfactory manner.

Even for Alq3 the proposed method yields highly satisfying
results as shown in Fig. 9. Note that Alq3 is more difficult to
evaporate as it tends to impulsive expulsion of the material
during a heating process.

V. CONCLUSION

A high vacuum system for evaporating organic semiconduc-
tors is introduced and a mathematical model consisting of two
ordinary nonlinear differential equations is given to describe
the systems behaviour. Based on this model a nonlinear
compensation is designed by means of exact linearization
technique.

The nonlinear compensation and a PI-Controller are used to
control the deposition rate during the evaporation. It is shown
that the method is well-suited to solve this task.

As the main drawback of this approach, the state variables
have to be measurable. Other nonlinear control methods e.g. a
flatness based approach can be used to overcome this difficulty.
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