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Abstract—State Dependent Riccati Equation (SDRE) approach is 

a modification of the well studied LQR method. It has the capability 
of being applied to control nonlinear systems. In this paper the tech-
nique has been applied to control the single inverted pendulum (SIP) 
which represents a rich class of nonlinear underactuated systems. SIP 
modeling is based on Euler-Lagrange equations. A procedure is de-
veloped for judicious selection of weighting parameters and con-
straint handling. The controller designed by SDRE technique here 
gives better results than existing controllers designed by energy based 
techniques. 
 

Keywords—State Dependent Riccati Equation (SDRE), Single In-
verted Pendulum (SIP), Linear Quadratic Regulator (LQR). 

I. INTRODUCTION 
HE simple inverted pendulum (SIP) stabilization and 
tracking is a problem for which a number of nonlinear 

design methods have been used. The problem remains that 
some of these techniques are too complex and may not provide 
simple solutions to controlling transients of the system. The 
main purpose of this paper is to use ideas from time tested 
techniques of a classical method like LQR [1], [2] and build on 
them to obtain a control strategy for nonlinear systems that 
satisfies practical constraints on the system. 

In this paper, nonlinear stabilization problem is addressed as 
the stabilization of SIP by minimizing an accumulative cost 
functional quadratic in states and controls and then it is ex-
tended to give solution for cart position tracking problem. For 
linear systems, this leads to linear feedback control, which is 
found by solving a Riccati equation, and thus referred to as 
linear quadratic regulator (LQR). But SIP is a nonlinear sys-
tem with underactuation degree one and its linearization is far 
from adequate for control design purposes. The technique used 
here involves manipulating the system dynamic equations into 
a pseudo-linear state-dependent coefficient (SDC) form, in 
which system matrices are given explicitly as a function of the 
current state. Treating the system matrices as constant, the 
approximate solution of the nonlinear state-dependent Riccati 
equation is obtained for the reformulated pseudo-linear dy-
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namical system in discrete time steps. The solution is then used 
to calculate a feedback control law that is optimized around 
the system state estimated at each time step. This technique, 
referred to as State-Dependent Riccati Equation (SDRE) [3] 
control, is thus an extension to the LQR as it solves the LQR 
problem at each time step. The SDRE technique is a system-
atic way of designing nonlinear feedback controllers which 
approximates the solution of the infinite horizon optimal con-
trol and has the capability of being implemented in real-time 
for a broad class of problems [4], [5]. 

The rest of the paper is organized in the following way: In 
section II, Lagrangian modeling of SIP is done. Then, in sec-
tion III, SDRE technique is explained briefly and correspond-
ing SDC formulation is shown. The procedure for selection of 
weighting matrices is also explained in this section. It is fol-
lowed by simulations and results in section IV. Lastly, conclu-
sions and future scope of study are given in section V. 

II. MODELING 

A. Single Inverted Pendulum Modeling 
The model of single inverted pendulum is based on [6]. 
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Fig. 1 Planar Pendulum on a cart 

 
The Euler-Lagrange equation is of the form 
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The last matrix is somewhat like G and is useful when SDC 
form is obtained 

B. A Slightly Different Way of Modeling of Input 
In [6], the form of input is changed, based on the work given 

in [7] by exploiting the fact that the relation between input and 
..

2x  is invertible. So the new form is 
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It gives the equation (2) matrices as 
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D is identity matrix and C is zero matrix. 

This form is given so that the results can be compared with 
those obtained in [6]. 

III. STATE DEPENDENT RICCATI EQUATION METHOD 

A. The Technique 
The SDRE approach involves manipulating the dynamic 

equations 

 
.
   ( ,  )x f x u=                 (4) 

into a pseudo-linear state-dependent coefficient (SDC) form in 
which system matrices are explicit functions of the current 
state: 

.
  ( ) ( )x A x x B x u= +                   (5) 

A standard LQR problem (Riccati equation) can then be 
solved at each time step to design the state feedback control 
law on-line. For digital implementation, above equation is ap-
proximately discretized at each time step into  

1 ( ) ( )k k k k kx x x x uφ+ = +Γ        (6) 
And the SDRE regulator is then specified similar to LQR in 

discrete form. 
1 ( ) ( ) ( )T

k k k k k ku R x P x x K x x−=− Γ =−       (7) 

where ( )kP x is the steady state solution of is the steady state 
solution of the difference Riccati equation, obtained by solving 
the discrete-time algebraic Riccati equation 

1[ ( ) ] 0T T TP P R P P P Qφ φ−− Γ +Γ Γ Γ − + =      (8) 

using state-dependent matrices ( )kxφ and ( )kxΓ , which are 
treated as being constant at each time step. Here Q is positive 
semi-definite matrix and R is positive definite matrix. Both 
have only real values as their members. 

The approach can be seen as nonlinear extension of LQR. 
For tracking the reference signal r, input is taken as 

1 ( ) ( )( ) ( )( )T
k k k k k ku R x P x x r K x x r−=− Γ − =− −   

                    (9) 

B. SDC Formulation for use in SDRE Technique 
The State Dependent Coefficient (SDC) form that can be 

obtained from matrices of Euler Lagrange equation is as given 
below 

.

1 1 1

0 0

SD

I
x x u

D G D C D H− − −

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟= + ⎟⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎟ ⎜⎜− − ⎝ ⎠⎝ ⎠
   (10) 

It helps to bring the dynamic equation to the form of equa-
tion (5), required to apply the SDRE technique [5]. 

C. Choosing Q and R 
The choice of Q and R is very crucial to the stabilization 

and performance of the system. For simplicity we will restrict 
ourselves to using only constant values for entries to these 
matrices, even though results of [4] suggest that taking expo-
nential as values of entries may improve the results. These 
matrices are taken as diagonal matrices to further simplify our 
selection. The tuning of these matrices is mostly as in LQR 
[1], [2] but with an added consideration especially valid in 
case of underactuated systems. The method of tuning these 
matrices, as followed during simulation is as given below: 

1) For values in Q: The larger the values in Q, the larger the 
gain matrix, more the control input, the faster the time taken to 
reduce perturbations. So to enforce some constraint on a state, 
the corresponding entry in Q should be altered. The overshoot 
and settling time trade-offs have to be done here. 

2) For values in R: Increase in values in R causes decrease 
in values of feedback gain. So sluggishness increases. But it 
can be used to out advantage. For example, in case of square 
wave there are sudden changes of state that may increase the 
control input beyond limits. To prevent this from happening it 
is better to make the system a bit sluggish by increasing R val-
ues. Overshoot can be controlled using R also. 

3) For underactuated signals: In case of underactuated sys-
tems, penalizing the states (by increasing corresponding values 
in Q) that are not fully actuated will increase the control effort 
but its effect on the state will be very less. So preference 
should be given to control through fully actuated states. 

The strategy used for tuning these matrices during simula-
tions was to design the controller for the worst case scenario 
(e.g. while tracking square wave, where there are abrupt 
changes in states that may cause maximum control input limit 
violation). Then the desired waveform was given as reference, 
and performance improvement was done first through actuated 
states and then with underactuated states, till the limit (in our 
case maximum control input, or maximum cart velocity or 
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track length) is again reached. Damping of velocity terms may 
require penalizing velocity in cost functional terms also. 

IV. RESULTS AND SIMULATIONS 
The technique was tested by simulation using MATLAB. 

The technique was tested in comparison with IDA-PBC 
method to find relative merits and demerits. Then the practical 
constraint handling capability of the technique was investi-
gated. 

A. Comparison with IDA-PBC Designed Controllers 
The technique was tested with the data given in [6]. The 

model used is as given in section II (B). Full state feedback 
was considered. Parameters a and b were both taken to be one. 
Initial conditions were taken as 
Cart displacement=-0.1 m, Pendulum angle=π/2-0.2 rad 
Cart velocity=0, Pendulum angular velocity=0.1 rad/s 

The objective of control in this problem is to regulate the 
cart position at a displacement of 20 metres measured from the 
zero position and stabilize the system there (far away from the 
initial displacement). 

 

 
Fig. 2 Results for Problem explained in Section IV A when simula-
tion for is run for 40 seconds. (Angles displayed in degrees, time in 

seconds and displacement in metres) 
 
 

 
Fig. 3 Results for Problem explained in Section IV A when simula-

tion for is run for 80 seconds to show steady state conditions. (Angles 
displayed in radians, distance in metres and time in seconds) 

 
The selection of Q and R in this case is not very rigorous but 

still the results obtained are better than those provided in [6]. 
Mainly Q was selected by penalizing each state to get the de-
sired effect and R was used to bring control input down. The 
criterion described in section III (C) (3) was not used as con-
trol effort is not a constraining factor here. Even though the 
sluggishness is increased by increase in R the results given in 
[6] never challenged the results obtained by SDRE. The results 
obtained are given in Figs. 2 and 3. In comparison with results 
in [6], for the same problem we can see that the overshoots are 
much less than those obtained by design though IDA-PBC. 
Overshoot in case of cart position is particularly high in [6]. 
Still the system controlled by SDRE technique settles down 
much earlier. Clearly, the control effort required is much less 
here in comparison. 

The performance of the controller obtained by SDRE tech-
niques is improved as it is easier to tune Q and R matrices as 
per requirement than the implementation of energy shaping 
concepts. 

B. Constraint Handling Capabilities of SDRE 
For this example, data from Quanser Consulting’s IP02 setup 

was used, which is as given below 
Mass of Cart = 0.94kg, Mass of Pendulum = 0.230kg, Pendu-
lum length= 0.6096m 

Instead of giving results having absurdly high values of pa-
rameters just to show large region of attraction we have tried 
to provide results realizable using the above setup and so have 
incorporated stringent input, cart velocity and track length 
constraints. 

The constraints imposed are 
Track Length= 0.914m, Maximum Cart Velocity= 3.989m/s, 
Maximum Input= 0.6294N. 

The last constraint is very stringent. The objective in this 
problem is to stabilize the system while cart position tracks a 
reference signal. An angular displacement of 20 degrees (in 
the direction adverse to tracking) was given to pendulum ini-
tially. 

The model used is given in section II (A). The process of 
tuning Q and R is demonstrated in this section. For simplicity 
only the entries in Q matrix corresponding to position terms 
were used. Values of Q=diagonal(7, 10, 0, 0), and R=5 were 
used in case of all the reference signals first and then these 
were changed to improve the tracking. These are very conser-
vative values and have to be kept small so that the control in-
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put remains within limits. The results may seem to be sluggish 
but it is only as Q and R were designed here to keep control 
input within limits in the worst case of sudden change in refer-
ence waveform (i.e. square wave) and applied to continuous 
waveforms (like sinusoidal wave) also. Relaxation of this con-
trol input constraint improves lag times considerably. 

The tracking of Square wave with above values is shown in 
Fig. 4. In all the figures used for this example, angles are dis-
played in degrees and other quantities in SI units. Fig. 5 dis-
plays the tracking of Sinusoidal wave for the same values of Q 
and R as used for square wave reference signal. Here the con-
trol input is well within limits, so the performance can be im-
proved by using higher values of Q as diagonal (10, 45, 0, 0). 
In addition the waveform is continuous so the sluggishness 
introduced in earlier case can be removed by making R=2.  

To check the robustness of the controllers, the least robust 
controller designed here was picked. The controller was calcu-
lated for original mass for sinusoidal wave and applied to the 
system whose parameters have been perturbed. Robustness 
was checked by with respect all constraints. If we observe ro-
bustness using the loss of tracking and stability as the criteria 
for failure and neglect constraints, the magnitude of perturba-
tions that can be handled were be much higher. 

To check the robustness for change of cart mass we de-
creased its mass to 5% of its original value. It should also  

 

 
Fig. 4 Tracking of a Square Wave using Q=diagonal(7, 10, 0, 0), and 

R=5 
 

 
Fig. 5 Tracking of a Sinusoidal Wave using Q=diagonal (7, 10, 0, 0), 

and R=5 
 

be noted that the controller used is most sensitive to perturba-
tions due to the low value of R. The system is stable and tracks 
well even with this perturbation. In some respects the perturba-
tions improved the performance. That is due to the fact that Q 
and R were not tuned to perfection as we just concentrated on 
weights corresponding to position terms. Increasing the weight 

 

 
Fig. 6 Tracking of a Sinusoidal Wave using Q=diagonal (10, 45, 0, 

0), and R=2 
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of cart has a more dramatic effect as we are working near the 
limits of maximum input. Doubling the weight will increase 
oscillations and control input requirements as affects tracking. 
But system still remains stable. Increasing the weight of pen-
dulum by about 10% causes violation of maximum input con-
straint. But the tracking is alright even for higher values of 
perturbations, though oscillations are somewhat increased. For 
the decrease in pendulum mass (to even less than 5% of the 
original), the system remains stable and control input also re-
mains bounded within limits, though the pendulum may keep 
on oscillating and control effort increases. With increase in 
pendulum length by 15% it is observed that the maximum in-
put constraint is violated. For 10% increase in length, the cart 
velocity increase and control effort increase is noticeable. 
Shrinking the pendulum length (even to 10% of the original) 
does not cause any limit violation and stabilization. But oscil-
lations increase. 

The perturbations that are permissible are somewhat lesser 
in case of the controller designed to track continuous signals 
like sine wave. For example, if we use controller designed for 
saw tooth waveform tracking and apply it for tracking sine 
wave, we can increase pendulum length by 40% because of 
more sluggishness. 

After that, all the constraints were relaxed, just to check the 
working of the controller for increased amplitude of the refer-
ence signal and harsher initial conditions. R=1, same Q as 
above were used. Initial angular displacement of 89 degrees 
adverse to tracking was given. The graphs were obtained as in 
Fig. 7. No special tuning was done for this case. Still the re-
sults are good. 

The introduction of integral control is one option that can be 
used to reduce steady state errors, but it is not required here. 

 

 
Fig. 7 Tracking of a Sinusoidal Wave using Q=diagonal (10, 45, 0, 

0), and R=1 when all the constraints are removed 
 

V. CONCLUSION 
This paper demonstrates the systematic procedure that can 

be used for designing SDRE based controllers for underactu-
ated class of systems. Apart from showing better results than 
energy based controllers this paper illustrates that these con-
trollers can be designed within physical constraints imposed on 
the system. The constraint handling and transient condition 
control have been incorporated in the design procedure. 

The system response can be further improved by using ex-
ponential entries for Q matrix instead of constant matrix. The 
future scope of study in this field is in the direction of using 
the geometric structure of the systems in the design of these 
controllers and developing this theory by drawing parallels 
with energy based control techniques like in [8] so as to get 
better system understanding. 
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