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Abstract—Process measurement is the task of empirically and 

objectively assigning numbers to the properties of business processes 
in such a way as to describe them. Desirable attributes to study and 
measure include complexity, cost, maintainability, and reliability. In 
our work we will focus on investigating process complexity. We 
define process complexity as the degree to which a business process 
is difficult to analyze, understand or explain. One way to analyze a 
process’ complexity is to use a process control-flow complexity 
measure. In this paper, an attempt has been made to evaluate the 
control-flow complexity measure in terms of Weyuker’s properties. 
Weyuker’s properties must be satisfied by any complexity measure 
to qualify as a good and comprehensive one.  
 

Keywords—Business process measurement, workflow, 
complexity.  

I. INTRODUCTION 
USINESS Process Management Systems (BPMS) 
provide a fundamental infrastructure to define and 

manage business processes. BPMS, such as Workflow 
Management Systems (WfMS), have become a serious 
competitive factor for many organizations that are 
increasingly faced with the challenge of managing e-business 
applications, workflows, Web services, and Web processes. 

Recently, a new field of research for processes has 
emerged. This new field – termed process measurement – 
presents a set of approaches to the quantification of specific 
properties of processes. Important properties to analyze 
include the estimation of complexity, defects, process size, 
effort of testing, effort of maintenance, understandability, 
time, resources, and quality of service. Process measurement 
is still in its infancy and much work has yet to be undertaken. 

Process measurement can and should be used in every 
phase of the process development life-cycle, including the 
analysis, design, implementation, testing, and maintenance 
phases. Process measurement provides business process 
engineers and managers with a forecast of the characteristics 
of processes early in the development stage so that corrective 
actions can be taken, if necessary, when the cost is low.  

In [1] we have presented a Control-Flow Complexity (CFC) 
measure to analyze the degree of complexity of business 
processes. Process complexity can be defined as the degree to 
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which a business process is difficult to analyze, understand or 
explain. The use of the CFC measure allow designers to create 
less complex processes, thus reducing the time spent reading 
and understanding processes in order to remove faults or adapt 
the process to changed requirements. Nowadays, complexity 
analysis has an increased importance since the emergence of 
processes that span both between and within enterprises have 
an inherent higher complexity. Therefore, methods should be 
used to support the design and redesign of processes to reduce 
their complexity. The CFC can be used to analyze the 
complexity of business processes, as well as workflow and 
Web processes. 

In this paper, our objective is to evaluate the control-flow 
complexity measure presented in [1] in terms of Weyuker’s 
properties [2]. Weyuker’s properties give an important basis 
to classify a complexity measure to determine if it can be 
categorized as a good, structured, and comprehensive one. 

II. PERSPECTIVES TO PROCESS COMPLEXITY 
There is no single metric that can be used to measure the 

complexity of a process. Four main complexity perspectives 
can be identified (Fig. 4): activity complexity, control-flow 
complexity, data-flow complexity, and resource complexity. 
While in this paper we will focus on control-flow complexity, 
we present the main ideas behind each complexity 
perspective. 

Activity complexity: This view on complexity simply 
calculates the number of activities a process has. While this 
complexity metric is very simple, it is very important to 
complement other forms of complexity. The control-flow 
complexity of a process can be very low while its activity 
complexity can be very high. For example, a sequential 
process that has a thousand activities has a control-flow 
complexity of 0, whereas its activity complexity is 100. 

Control-flow complexity: The control-flow behavior of a 
process is affected by constructs such as splits, joins, loops, 
and ending and starting points. Splits allow defining the 
possible control paths that exist in a process. Joins have a 
different role; they express the type of synchronization that 
should be made at a specific point in the process.  

Data-flow complexity: The data-flow complexity of a 
process increases with the complexity of its data structures, 
the number of formal parameters of activities, and the 
mappings between activities’ data. A data-flow complexity 
metric can be composed of several sub-metrics which include: 
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data complexity, interface complexity, and interface 
integration complexity [3].  

 
Fig. 1 Types of complexity analysis 

Resource complexity: Activities in a process need to 
access resources during their executions. The different types 
of resources can be analyzed to determine the complexity of a 
process. This analysis can help managers to lower 
administrative costs and better optimize resource utilization. 

III. THE CONTROL-FLOW COMPLEXITY METRIC  
For our investigation of complexity we use the following 

practical definitions related to the control-flow complexity 
metric. 
 

Definition 1 (Process): 
A process is a collection of activities that takes one or more 

kinds of input and creates an output that is of value to the 
customer. A process is a specific ordering of activities across 
time and place, with a beginning, an end, and clearly 
identified inputs and outputs. 

 
Definition 2 (Process Property) 
A property is a feature, characteristic or attribute of a 

process, such as complexity, maintainability, cost, reliability, 
etc. Process properties can be evaluated and quantified using 
suitable models, methods, and algorithms. 
 

Definition 3 (Process Measure) 
A process measure is an empirical assignment of numbers 

(or symbols) to processes to characterize a specific property. 
 

Definition 4 (Process Measurement) 
Process measurement is the task of applying measures to 

processes in such a way as to describe them. 
 

Definition 5 (Control-flow Graphs) 
Control-flow graphs can be used to describe the logic 

structure of processes. A process is composed of activities and 
transitions. Activities are represented using circles and 
transitions are represented using arrows. Transitions express 
dependencies between activities. An activity with more than 
one outgoing transition can be classified as an and-split, or-
split or xor-split. And-split activities enable all their outgoing 
transitions after completing their execution. Or-split Activities 
enable one or more outgoing transition after completing their 

execution. Xor-split activities enable only one outgoing 
transition after completing their execution. And-split activities 
are represented with a ‘•’, or-split are represented with a ‘O’ 
and xor-split activities are represented with a ‘⊕’. An activity 
with more than one incoming transition can be classified as an 
and-join, or-join or xor-join. And-join Activities start their 
execution when all their incoming transitions are enabled. Or-
join activities start their execution when a subset of their 
incoming transitions is enabled. Xor-join activities are 
executed as soon as one of the incoming transitions is enabled. 
As with and-split, or-split and xor-split activities, and-join, or-
join and xor-join activities are represented with the symbols 
‘•’, ‘O’ and ‘⊕’, respectively.  
 

Definition 6 (Fan-out) 
Fan-out is the number of transitions going out of an 

activity.  
 

Definition 7 (Control-flow induced state) 
We map the control-flow complexity into the space of 

possible execution states of a process. An induced state is a 
state that can be reached from a particular activity. Splits 
introduce the notion of states in processes. When a split 
(XOR, OR, or AND) is added to a process, the activities 
connected to its outgoing transitions form the states that can 
be reached from the split. 

 
Definition 8 (XOR-split Control-flow Complexity) 
XOR-split CFC (CFCXOR-split(activityi)) is determined by the 

number of induced states that are introduced with the split. 
For XOR-splits, the complexity corresponds to the fan-out of 
the split, i.e. the number of states that follow the XOR-split 
that the process designer needs to consider, analyze, and 
assimilate. 
 

Definition 9 (OR-split Control-flow Complexity) 
OR-split CFC (CFCOR-split(activityi)) is also determined by 

the number of induced states that are introduced with the split. 
For OR-splits, the complexity corresponds to 2n-1, where n is 
the fan-out of the split. OR-splits lead to higher control-flow 
complexity than an XOR-split or AND-split since they 
originate a greater number of induce states. 

 
Definition 10 (AND-split Control-flow Complexity) 
As with the previous types of splits, an AND-split CFC 

(CFCAND-split(activityi)) is determined by the number of 
induced states that are introduced with the split. For AND-
splits, the complexity is simply 1. The designer constructing a 
process needs only to consider and analyze one state that may 
arise from the execution of an AND-split construct since it is 
assumed that all the outgoing transitions are selected and 
executed. 
 

Definition 11 (Control-flow Complexity) 
The complexity of process is connected to effects such as 

readability of processes, understandability, effort, testability, 
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reliability and maintainability. The Control-flow Complexity 
(CFC) is calculated by adding the CFC of all split constructs 
presents in a process.  

The CFC metric was inspired from the branch of software 
engineering known as software metrics, namely from the 
McCabe’s Cyclomatic complexity [4]. In processes, the 
McCabe’s Cyclomatic complexity cannot be used directly 
since the metric ignores the semantics associated with nodes 
of the graph. While the nodes (i.e. activities) of processes 
have distinct semantics (e.g. different types of splits and 
joins), the nodes of a program’s flowgraph are 
undifferentiated. Therefore, we calculated the control-flow 
complexity for a process P as follows:  
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The greater the value of the CFC(P) the greater the overall 

architectural complexity of a process. CFC(P) analysis seeks 
to evaluate complexity without direct execution of processes.  

IV. CONTROL-FLOW COMPLEXITY AND WEYUKER’S 
PROPERTIES 

Weyuker properties have been applied to software 
engineering and have been seriously discussed in the literature 
[5-8]. Weyuker properties are a widely known formal 
analytical approach and were therefore chosen for our analysis 
since they do provide a basis for some validation of 
complexity metrics. As shown by Weyuker, with such 
properties it is possible to filter out measurements with 
undesirable properties. The majority of these properties are 
formulated in a clear way. This is an advantage because we 
are able to discuss them.  

A. Summary of Weyuker’s Properties  
Weyuker’s first property states that a metric cannot measure 

all software programs as being equally complex. The second 
property states that there are only a finite number of programs 
of the same complexity. The third property states that each 
different program may be complex. The fourth property states 
that the complexity of a program depends on its 
implementation and that even if two programs solve the same 
problem, they can have different complexities. Weyuker’s 
fifth property states that the complexity of two programs 
joined together is greater than the complexity of either 
program considered separately. The sixth property states that a 
program of a given complexity when joined to two other 
programs does not necessarily mean the resulting program 
will be of equal complexity, even if the two added program 
are of equal complexity. Weyuker’s seventh property states 
that a permuted version of a program can have a different 
complexity, so the order of statements matters. The eighth 
property states that if a program is a straight renaming of 

another program, its complexity should be the same as the 
original program. The final property states the complexity of 
two programs joined together may be greater than the sum of 
their individual complexities.  

B. Concatenation Operations on Processes 
Weyuker introduces the concatenation operation (P1;P2) of 

program blocks. Weyuker defines the concatenation operation 
in the following way: a program can be uniquely decomposed 
into a set of disjointed blocks of ordered statements having the 
property whenever the first statement in the block is executed; 
the other statements are executed in the given order.  

In our approach and since we are dealing with processes, 
four concatenation operations exist. Processes can be 
concatenated either sequentially, using an AND, an OR, or a 
XOR. Every AND/OR/XOR split has also a corresponding 
AND/OR/XOR join and the different splits do not overlap 
each other. We have decided to only allow the construction of 
well structured  processes [9] which are based on a set of 
predefined building blocks. This protects users from designing 
invalid processes. Aalst [9] has shown that processes that are 
not well structured contain design errors, such as non-
termination, deadlocks, and spliting of instances. We use 
Weyuker’s properties to evaluate the CFC metric assuming 
that the processes are well-structured for simplicity reasons. 
The CFC metric can be applied to well-structured and 
unstructured processes. 

In the list of properties below, P, Q and R represent 
processes and the complexity of P computed by our 
complexity measure CFC(P) is represented by |P|. 
 

1) When a process P is concatenated sequentially with a 
process Q, we depict the resulting process as P-Q. This type of 
concatenation is illustrated in Fig. 2. 

QP

P-Q

 
Fig. 2 Sequential concatenation 

2) When a process P is concatenated with a process Q using 
an AND-split and an AND-join, we depict the resulting 
process as P•Q.This type of concatenation is illustrated in Fig. 
3. 

P

Q

P•Q

AND-split AND-join

 
Fig. 3 AND concatenation 
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3) When a process P is concatenated with a process Q using 
an OR-split and an OR-join, we depict the resulting process as 
PoQ. This type of concatenation has the same illustration as 
the one in  
Fig. 3, except that the AND-split and the AND-join shown are 
replaced with an OR-split and an OR-join, respectively. 

4) When a process P is concatenated with a process Q using 
a XOR-split and a XOR-join, we depict the resulting process 
as P⊕Q. This type of concatenation has also the same 
illustration as the one in  
Fig. 3, except that the AND-split and the AND-join shown are 
replaced with a XOR-split and a XOR-join, respectively. 

C. Evaluating the CFC Metric 
The nine criteria proposed by Weyuker give a framework to 

evaluate software metrics’ properties using a formal 
theoretical basis. The properties are intended to evaluate 
complexity measures on source code metrics. Since there is a 
strong similarity of source code flowgraphs and processes [1], 
we will use Weyuker’ properties to validate our CFC measure. 
This widely used criterion will be presented, adapted and 
applied to processes in the following paragraphs. 
 

Property 1: 
There are processes P and Q such that the complexity of P 

is not equal to the complexity of Q. The property requires that 
a measure should not produce the same complexity value for 
every process. 
 

( )( )( )QPQP ≠∃∃ . 

 
This property is an essential requirement for measures and 

process measurement. It says that a measure should 
distinguish between at least two processes. The property 
stresses that a measure in which all processes are equally 
complex is not really a measure. 

With our measure we can always come up with two 
processes with two different control-flow complexity values. 
We can always design a process P which has the same number 
of split types but with a higher fan-out from those in process 
Q. As another example, let us take two processes, P and Q, 
containing only XOR splits. Let us assume that P=Q (the 
processes are exactly equal). Let us replace the XOR splits of 
process P with OR splits (for correctness reasons, let us also 
replace the XOR joins with OR joins). Since CFCXOR-split(a)= 
fan-out(a) and CFCOR-split(a)= 2fan-out(a)-1, where a is an 
activity, then |P|>|Q|. Therefore Property 1 is satisfied. 
 

Property 2: 
A measure has to be sufficiently sensitive. A measure is not 

sensitive enough if it divides all processes into just a few 
complexity classes 
 
Let c be a nonnegative number. Then there are only finitely 

many processes for which |P| = c. 
 

Our CFC measure does not follow this property. Therefore, 
it makes no provision for distinguishing between processes 
which have a small number of activities (possibly performing 
very little computation) and those which have a large number 
of activities (possibly performing substantial amount of 
computation), provided that they have the same decision 
structure. The influence of the number of activities is captured 
by the activity complexity metric. 
 

Property 3: 
We have processes which have different degrees of 

perceived complexity, but map into the same complexity 
measurement value.  
 
There are distinct processes P and Q such that, |P|=|Q|. 
 

A measure that assigns a distinct value to every process is 
not much of a measure. It would go against the principle of 
measurements which requires that the number of objects that 
can be measured be greater than range of the values of the 
measure. 

Our measure clearly satisfies this property. Let us take two 
processes, P and Q. Let us assume that P has an AND-split at 
activity a with a fan-out(a) of two. Let us construct process Q 
exactly in the same way as process P, but with a fan-out(a) of 
four at the AND-split activity a. Since CFCAND-split(a)= 1, the 
complexity of P is equal to the complexity of Q, i.e. |P|=|Q|, 
but the processes are distinct. 
 

Property 4: 
There exist processes P and Q such that P is equivalent to Q 

but the complexity of P is not equal to the complexity of Q. 
 

( )( )( )QPQPQP ≠≡∃∃  and . 
 

Even though two processes may have the same 
functionality, it is the details of the design that determine the 
process’s complexity. There are different process designs for 
the same functionality. For example let us take a business 
process that makes the backup of a file system composed of 
four activities that save files at different locations. Two 
different designs (processes P and Q) with the same 
functionality of the business process can be constructed. 
Process P, carries out the four activities sequentially, while 
process Q uses an AND-split and an AND-join to reduce the 
time it takes to complete a file system backup. As a result, 
|P|=0 and |Q| =1, i.e. |P|≠|Q|. Therefore this property is 
satisfied by our metric.  
 

Property 5: 
For any processes P and Q, the complexity of P*Q, 

{ }⊕•−∈ ,,,* o , is greater than or equal to the original 
complexity of P (weak positivity). 
 
Case 1 (-): 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

376

 

 

( )( )( )PQPQP ≥−∀∀  
 

For the concatenation operation ‘–‘, the weak positivity 
holds. For any two processes P and Q, |P-Q|=|P|+|Q|, thus |P-
Q| ≥ |P|.  
 
Case 2 (o):  

( )( )( )PQPQP >∀∀ o  
 

For the concatenation operation ‘o‘, the weak positivity 
holds. For any two processes P and Q, |PoQ|=|P|+|Q|+22-1, 
thus |PoQ| ≥ |P|. Furthermore, for the concatenation operation 
‘o‘ the positivity also holds since |PoQ| > |P|. 
 
Case 3 (●):  

( )( )( )PQPQP >•∀∀  
 

For the concatenation operation ‘●‘, the weak positivity 
holds. For any two processes P and Q, |P●Q|=|P|+|Q|+1, thus 
|P●Q| ≥ |P|. Furthermore, for the concatenation operation ‘●‘ 
the positivity also holds since |P●Q| > |P|. 
 
Case 4 ( ⊕ ):  

( )( )( )PQPQP >⊕∀∀  
 

For the concatenation operation ‘ ⊕ ‘, the weak positivity 
holds. For any two processes P and Q, |P ⊕ Q|=|P|+|Q|+2, thus 
|P ⊕ Q| ≥ |P|. Furthermore, for the concatenation operation 
‘ ⊕ ‘ the positivity also holds since |P ⊕ Q| > |P|. 
 

Property 6: 
There exist processes P, Q, and R, such that |P|=|Q| and 

|P*R|≠|Q*R|, where { }⊕•−∈ ,,,* o .  
 

( )( )( )
{ } ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⊕•−∈

≠=
∃∃∃

,,,* and
 ** and 

o

RQRPQP
RQP  

 
As with property 5, this property has four distinct cases. 
Case 1 (-): |P-R|=|P|+|R| and |Q-R|=|Q|+|R|, since |P|=|Q|, it 
holds that |P-R|= |Q|+|R|, thus |P-R| = |Q-R|. 
 
Case 2 (o): |PoR|=|P|+|R|+22-1 and |QoR|=|Q|+|R|+22-1, since 
|P|=|Q|, it holds that |PoR|= |Q|+|R|+22-1, thus |PoR| = |QoR|. 
 
Case 3 (●): |P●R|=|P|+|R|+1 and |Q●R|=|Q|+|R|+1, since 
|P|=|Q|, it holds that |P●R|= |Q|+|R|+1, thus |P●R| = |Q●R|. 
 
Case 4 ( ⊕ ): |P ⊕ R|=|P|+|R|+2 and |Q ⊕ R|=|Q|+|R|+2, since 
|P|=|Q|, it holds that |P ⊕ R|= |Q|+|R|+2, thus |P ⊕ R| = 
|Q ⊕ R|. 
 

As a result, it is clear that our measurement does not follow 
Weyuker's property 6 in any of the cases presented. 

Property 7: 
There are processes P and Q such that Q is formed by 

permuting the order of the activities of P and |P| is not equal to 
|Q|. 
 
( )( )QP ∃∃  If Q is formed by permuting the order of the 

activities of P, then |P| ≠ |Q|. 
 

This property requires that permutation of elements within a 
process change the metric value. The intent is to ensure that 
the possibility exists for metric values to change due to 
permutation of process activities.  

Let us assume that we have a process P which contains an 
AND-split and an OR-split for the activities a1 and a2, 
respectively. Each split has a different fan-out. Activity a1 has 
a fan-out of two, while activity a2 has a fan-out of three. 
Therefore, 
 

|P| = )( 1aCFC splitAND− + )( 2aCFC splitOR−   
= 1 + 23 -1 = 8 

 
Let us assume that Q is a permutation of the activities of 

process P. More precisely, the activities a1 and a2 are 
exchanged. As a result, activity a1 has now a fan-out of three, 
while activity a2 has a fan-out of two. The complexity of Q 
becomes,  
 

|Q| = )( 2aCFC splitAND−  + )( 1aCFC splitOR−   
= 1+22 -1 = 4 

 
Since |P| ≠ |Q| (i.e. 8 ≠ 4), it happens that our measurement 

follows this property. 
 

Property 8: 
This property states that uniformly changing activity names 

should not affect a process complexity. 
 

If P is a renaming of Q, then |P| = |Q|. 
This property requires that when the name of the activities 

or processes changes, the metric should remain unchanged. As 
the metric being considered in this research does not depend 
on the name of activities or processes, it satisfies this property. 
 

Property 9: 
The complexity of a process formed by concatenating two 

processes can be greater than the sum of their individual 
complexities (wholeness property). This property states that 
the whole must be at least as great as the sum of the parts. The 
idea behind wholeness is that the whole is more complex than 
the sum of its components. 
 

( )( ) { }( ),,,,* and ,* ⊕•−∈+>∃∃ oQPQPQP  

 
This property states that, at least in some cases, the 

complexity of a process formed by concatenating two 
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processes is greater than the sum of their complexities. This 
reflects the fact that there may be interactions between the 
concatenated processes. 

As with previous properties, this property has four distinct 
cases. 
 
Case 1 (-): |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|+|Q|. 
 
Case 2 (o): |PoQ|=|P|+|Q|+22-1, thus |PoQ| > |P|+|Q|. 
 
Case 3 (●): |P●Q|=|P|+|Q|+1, thus |P●Q| > |P|+|Q|. 
 
Case 4 ( ⊕ ): |P ⊕ Q|=|P|+|Q|+2, thus |P ⊕ Q| > |P|+|Q|. 
 

As a result, our measurement follows property 9 for case 2, 
3, and 4. Case 1 follows a variation of the wholeness property, 
called the weak wholeness property. 
 

( )( )( )QPQPQP +≥−∃∃  

D. Dealing with Process Loops 
Our complexity metric is able to cope with the modeling of 

loops. When a transition “goes back” to a previous activity, a 
XOR split as to be place on the activity that will decide if the 
loop will be taken or not. As presented earlier, our analysis of 
Weyuker’s properties accounts for the existence of XOR splits 
in a process. 

V. RELATED WORK 
While a significant amount of research on the complexity of 

software programs has been done in the area of software 
engineering, the work found in the literature on complexity 
analysis for business processes, workflows, and processes in 
general is almost inexistent. 

Research in software engineering has produced various 
measurements for software. Among others are lines-of-code, 
the Halstead’s measure [10], McCabe’s measure [4], the and 
the COCOMO model [11]. There is a vast literature on 
software metrics which represents the result from the 
measurement of the development, operation and maintenance 
of software in order to supply meaningful and timely 
management information. 

Misra and Misra [12] have evaluated cognitive complexity 
measure in terms of Weyuker properties and has found that 
most of Weyuker properties have been satisfied by the 
cognitive weight software complexity measure and established 
the cognitive complexity as a well structured one. 

In [13] the authors attempt to formalize some properties 
which any reasonable control-flow complexity measure must 
satisfy. Their approach is directed to large software programs 
which are often built by sequencing and nesting of simpler 
constructs, the authors explore how control-flow complexity 
measures behave under such compositions. 

Please note that these two last fields of research have been 
carried out in the context of software engineering and not 
process management. 

VI. CONCLUSIONS 
Most of the work done so far in the business process field 

has been tool-oriented and technological in nature; the main 
goal has been during years the definition and development of 
WfMS including models, modeling languages, correctness 
analysis, and execution environments. Recently, a new field of 
research for processes has emerged. This new field – termed 
process measurement – presents a set of approaches to the 
quantification of specific properties of processes, such as their 
complexity.  

The process control-flow complexity (CFC) metric is a 
design-time metric that can be used to evaluate the difficulty 
of producing business process, Web process, and workflow 
designs before an actual implementation exist. When process 
control-flow complexity analysis becomes part of the process 
development cycle, it has a considerable influence in the 
design phase, leading to less complex processes. 

To increase the confidence, acceptance, and use of the CFC 
measure we have carried out a serious validation procedure 
using Weyuker’s nine properties. These properties give a 
formal analytical approach to classify our measure. Since our 
CFC measure happens to fully satisfy seven of the Weyuker’s 
nine properties and partially satisfies one property it can be 
considered to have passed a significant part of the 
theoretically validation process. Therefore, it can be 
categorized as a good, structured, and comprehensive one. 
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